HARBOR - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
573800.9979Unveiling the Genomic Landscape of Understudied Salmonella enterica Serovars from Poultry and Human: Implications for Food Safety. Despite the bacteria of the genus Salmonella are pathogens of zoonotic importance, the factors associated with some serovars genetic diversity remain unclear. We investigated genotypic profiles of antimicrobial resistance, plasmid replicons, and virulence factors in 301 S. enterica genomes from human and animal sources, supplemented by ten sequenced genomes from fecal samples of laying hens in Brazil. Many antimicrobial resistance genes have been detected across various Salmonella serovars; with a limited number of unique resistance genes predicted in poultry isolates compared to human isolates. Specifically, among the 52 antimicrobial resistance genes identified, 48% were shared between poultry and human isolates, while 21.1% were exclusive to poultry isolates and 30.7% were exclusive to human isolates. Chromosomal mutations in the gyrA and parC genes were also predicted. To the best of our knowledge, this is the first work to report S. Braenderup carrying the SPI-10. SGI-1 was detected in a few isolates of S. Schwarzengrund from poultry and the CS54 island was solely noticed in genomes referring to the serovars S. Saintpaul and S. Braenderup. Among the serovars analyzed, S. Saintpaul showed the lowest plasmid diversity. A total of 161 (161/271) virulence genes were common to all serovars, the remaining genes were exclusively identified within specific serovars, revealing a distinct distribution pattern within the S. enterica population. Overall, our study brings to light the genetic potential of Salmonella serovars frequently neglected in poultry production, which threatens public health, particularly due to multidrug-resistant profiles against active principles used to treat human infections.202540327155
172710.9979Coexistence and genomics characterization of mcr-1 and extended-spectrum-β-lactamase-producing Escherichia coli, an emerging extensively drug-resistant bacteria from sheep in China. The emergence of pathogens harboring multiple resistance genes poses a great threat to global public health. However, the coexistence of mobile resistance genes that provide resistance to both third-generation cephalosporins and colistin in sheep-origin Escherichia coli has not been previously investigated in China. This study is the first to characterize five E. coli isolates from sheep in Shaanxi province that harbor both Extended-Spectrum β-Lactamase (ESBL) and mcr-1 resistance genes. The isolates were identified and characterized by Illumina sequencing, nanopore sequencing, bioinformatic analysis, conjugation experiments, and antimicrobial susceptibility testing. Genetic analysis revealed that bla(CTX-M-55) gene, mediated by the IS26, was located on the IncFIB-IncFIC plasmid, while the mcr-1 gene was located on the IncI2(Delta) plasmid. Notably, two copies of bla(CTX-M-55) gene were also identified on the chromosome of one isolate (SX45), facilitated by the ISEcp1 insertion sequence. Additionally, the plasmid pSX23-2 was identified as a complex plasmid derived through homologous recombination of pMG337 from E. coli (MK878890) and pZY-1 from Citrobacter freundii (CP055248). Data mining of publicly available databases revealed that isolates carrying both bla(CTX-M-55) and mcr-1 genes have been found in humans, animals, and the environment, indicating the widespread presence of these critical resistance genes across different niches. Antimicrobial susceptibility testing showed that the five isolates were resistant to a nearly all tested antibiotics, except meropenem. Conjugative transfer experiments demonstrated that the IncFIB-IncFIC and IncI2(Delta) plasmids carrying mcr-1 and bla(CTX-M-55) were capable of transferring between different sequence types (STs) of sheep-origin E. coli, including ST10, ST162, and ST457. This finding suggests the potential for wide dissemination of these resistance markers among diverse E. coli strains. Overall, the characterization of these ESBL and mcr-1 co-harboring isolates enhances our understanding of the spread of these resistance genes in sheep-origin E. coli. Global surveillance of these isolates, particularly within the One Health framework, is essential to monitor and mitigate the risks posed by the dissemination of these resistance genes across various settings.202439426540
572220.9979Emergence of colistin resistance genes (mcr-1) in Escherichia coli among widely distributed wild ungulates. The environment is considered a major reservoir of antimicrobial resistant microorganisms (AMR) and antimicrobial resistance genes (ARG). Colistin, a "last resort" antibiotic, is used for the treatment of severe infections caused by multidrug-resistant Gram-negative bacteria. The global dissemination of mobile colistin resistance genes (mcr) in natural and non-natural environments is a major setback in the fight against antimicrobial resistance. Hitherto, there is a limited number of studies screening this resistance determinant in bacteria from wildlife. In this study, we describe for the first time the detection of plasmid-mediated colistin resistance in Escherichia coli from wild ungulates in Portugal, which are also widely distributed across Europe. This information is critical to identify the importance of ungulates in the dissemination of resistant bacteria, and their corresponding genes, across the environment. Here, 151 resistant-Enterobacteriaceae isolated from 181 samples collected from different wild ungulate species throughout Portugal were screened for mcr genes. Four mcr-1-positive Escherichia coli were detected from four fallow deer individuals that were sampled in the same hunting ground. These four isolates harboured mcr-1-related IncP plasmids belonging to sequencing types ST155, ST533 and ST345 (n = 2), suggesting bacterial and/or plasmid circulation. All mcr-1-positive E. coli also showed other resistance phenotypes, including MDR, including the B1 commensal phylogenetic profile. All mcr-1-positive E. coli show additional resistance phenotypes, including MDR, including the B1 commensal phylogenetic profile. Our findings are upsetting, highlighting the global dissemination of colistin resistance genes in the whole ecosystem, which, under the One Health framework, emphasizes the urgent need for effective implementation of AMR surveillance and control in the human-animal-environment interfaces.202134530238
165530.9978Genomic analysis of Escherichia coli circulating in the Brazilian poultry sector. Escherichia coli are gut commensal bacteria and opportunistic pathogens, and the emergence of antimicrobial resistance threatens the safety of the food chain. To know the E. coli strains circulating in the Brazilian poultry sector is important since the country corresponds to a significant chicken meat production. Thus, we analyzed 90 publicly genomes available in a database using web-based tools. Genomic analysis revealed that sul alleles were the most detected resistance genes, followed by aadA, bla(CTX-M), and dfrA. Plasmids of the IncF family were important, followed by IncI1-Iα, Col-like, and p0111. Genes of specific metabolic pathways that contribute to virulence (terC and gad) were predominant, followed by sitA, traT, and iss. Additionally, pap, usp, vat, sfa/foc, ibeA, cnf1, eae, and sat were also predicted. In this regard, 11 E. coli were characterized as avian pathogenic E. coli and one as atypical enteropathogenic E. coli. Phylogenetic analysis confirmed the predominant occurrence of B1 but also A, D, B2, F, E, G, C, and Clade I phylogroups, whereas international clones ST38, ST73, ST117, ST155, and ST224 were predicted among 53 different sequence types identified. Serotypes O6:H1 and:H25 were prevalent, and fimH31 and fimH32 were the most representatives among the 36 FimH types detected. Finally, single nucleotide polymorphisms-based phylogenetic analysis confirmed high genomic diversity among E. coli strains. While international E. coli clones have adapted to the Brazilian poultry sector, the virulome background of these strains support a pathogenic potential to humans and animals, with lineages carrying resistance genes that can lead to hard-to-treat infections.202235864380
186340.9978Genomic surveillance of extended-spectrum cephalosporin-resistant Escherichia coli isolated from poultry in the UK from 2016 to 2020. INTRODUCTION: Surveillance is vital for monitoring the increasing risk of antimicrobial resistance (AMR) in bacteria leading to failures in humans and animals to treat infections. In a One Health context, AMR bacteria from livestock and food can transfer through the food chain to humans, and vice versa, which can be characterized in detail through genomics. We investigated the critical aspects of AMR and the dynamics of AMR in poultry in the UK. METHODS: In this study, we performed whole genome sequencing for genomic characterization of 761 extended-spectrum cephalosporinases (ESCs) harboring Escherichia coli isolated from poultry caeca and meat through EU harmonized monitoring of AMR in zoonotic and commensal bacteria from 2016 and 2018 and UK national monitoring in 2020. RESULTS: The most common ESC in 2016 and 2018 was blaCTX-M-1; however, 2020 had a greater diversity of ESCs with blaCTX-M-55 dominant in chickens and blaCTX-M-15 more prevalent in turkeys. Co-resistance to sulphonamides, tetracycline, and trimethoprim was widespread, and there were several positive correlations between the sequence types (STs) and ESC genes. We identified certain AMR genotypes and STs that were frequent each year but not as successful in subsequent years, e.g., ST350 harboring blaCTX-M-1, sul2, and tetA-v4.Phylogenetic comparison of isolates prevalent in our panel with global ones from the same STs available in public databases showed that isolates from the UK generally clustered together, suggesting greater within-country than between-country transmission. DISCUSSION: We conclude that future genomic surveillance of indicator organisms will be invaluable as it will enable detailed comparisons of AMR between and within neighboring countries, potentially identifying the most successful sequence types, plasmids, or emerging threats.202338352060
187950.9978Multidrug resistance in Salmonella isolates of swine origin: mobile genetic elements and plasmids associated with cephalosporin resistance with potential transmission to humans. The emergence of foodborne Salmonella strains carrying antimicrobial resistance (AMR) in mobile genetic elements (MGE) is a significant public health threat in a One Health context requiring continuous surveillance. Resistance to ciprofloxacin and cephalosporins is of particular concern. Since pigs are a relevant source of foodborne Salmonella for human beings, we studied transmissible AMR genes and MGE in a collection of 83 strains showing 9 different serovars and 15 patterns of multidrug resistant (MDR) previously isolated from pigs raised in the conventional breeding system of Northern Spain. All isolates were susceptible to ciprofloxacin and three isolates carried bla(CMY-2) or bla(CTX-M-9) genes responsible for cefotaxime resistance. Filter mating experiments showed that the two plasmids carrying bla(CTX-M-9) were conjugative while that carrying bla(CMY-2) was self-transmissible by transformation. Whole-genome sequencing and comparative analyses were performed on the isolates and plasmids. The IncC plasmid pSB109, carrying bla(CMY-2), was similar to one found in S. Reading from cattle, indicating potential horizontal transfer between serovars and animal sources. The IncHI2 plasmids pSH102 in S. Heidelberg and pSTM45 in S. Typhimurium ST34, carrying bla(CTX-M-9), shared similar backbones and two novel "complex class 1 integrons" containing different AMR and heavy metal genes. Our findings emphasize the importance of sequencing techniques to identify emerging AMR regions in conjugative and stable plasmids from livestock production. The presence of MGE carrying clinically relevant AMR genes raises public health concerns, requiring monitoring to mitigate the emergence of bacteria carrying AMR genes and subsequent spread through animals and food.IMPORTANCEThe emergence of foodborne Salmonella strains carrying antimicrobial resistance (AMR) in mobile genetic elements (MGE) is a significant public health threat in a One Health context. Since pigs are a relevant source of foodborne Salmonella for humans, in this study, we investigate different aspects of AMR in a collection of 83 Salmonella showing nine different serovars and 15 patterns of multidrug resistant (MDR) isolated from pigs raised in the conventional breeding system. Our findings emphasize the importance of sequencing techniques to identify emerging AMR regions in conjugative and stable plasmids from livestock production. The presence of MGE carrying clinically relevant AMR genes raises public health concerns, requiring monitoring to mitigate the emergence of bacteria carrying AMR genes and subsequent spread through animals and food.202438695519
200460.9978Deciphering the Structural Diversity and Classification of the Mobile Tigecycline Resistance Gene tet(X)-Bearing Plasmidome among Bacteria. The emergence of novel plasmid-mediated resistance genes constitutes a great public concern. Recently, mobile tet(X) variants were reported in diverse pathogens from different sources. However, the diversity of tet(X)-bearing plasmids remains largely unknown. In this study, the phenotypes and genotypes of all the tet(X)-positive tigecycline-resistant strains isolated from a slaughterhouse in China were characterized by antimicrobial susceptibility testing, conjugation, pulsed-field gel electrophoresis with S1 nuclease (S1-PFGE), and PCR. The diversity and polymorphism of tet(X)-harboring strains and plasmidomes were investigated by whole-genome sequencing (WGS) and single-plasmid-molecule analysis. Seventy-four tet(X4)-harboring Escherichia coli strains and one tet(X6)-bearing Providencia rettgeri strain were identified. The tet(X4)-bearing elements in 27 strains could be transferred to the recipient strain via plasmids. All tet(X4)-bearing plasmids isolated in this study and 15 tet(X4)-bearing plasmids reported online were analyzed. tet(X4)-bearing plasmids ranged from 9 to 294 kb and were categorized as ColE2-like, IncQ, IncX1, IncA/C2, IncFII, IncFIB, and hybrid plasmids with different replicons. The core tet(X4)-bearing genetic contexts were divided into four major groups: ISCR2-tet(X4)-abh, △ISCR2-abh-tet(X4)-ISCR2, ISCR2-abh-tet(X4)-ISCR2-virD2-floR, and abh-tet(X4)-ISCR2-yheS-cat-zitR-ISCR2-virD2-floR Tandem repeats of tet(X4) were universally mediated by ISCR2 Different tet(X)-bearing strains existed in the same microbiota. Reorganization of tet(X4)-bearing multidrug resistance plasmids was found to be mediated by IS26 and other homologous regions. Finally, single-plasmid-molecule analysis captured the heterogenous state of tet(X4)-bearing plasmids. These findings significantly expand our knowledge of the tet(X)-bearing plasmidome among microbiotas, which establishes a baseline for investigating the structure and diversity of human, animal, and environmental tigecycline resistomes. Characterization of tet(X) genes among different microbiotas should be performed systematically to understand the evolution and ecology.IMPORTANCE Tigecycline is an expanded-spectrum tetracycline used as a last-resort antimicrobial for treating infections caused by superbugs such as carbapenemase-producing or colistin-resistant pathogens. Emergence of the plasmid-mediated mobile tigecycline resistance gene tet(X4) created a great public health concern. However, the diversity of tet(X4)-bearing plasmids and bacteria remains largely uninvestigated. To cover this knowledge gap, we comprehensively identified and characterized the tet(X)-bearing plasmidome in different sources using advanced sequencing technologies for the first time. The huge diversity of tet(X4)-bearing mobile elements demonstrates the high level of transmissibility of the tet(X4) gene among bacteria. It is crucial to enhance stringent surveillance of tet(X) genes in animal and human pathogens globally.202032345737
165170.9978Comparative Genomic Analysis of Antimicrobial-Resistant Escherichia coli from South American Camelids in Central Germany. South American camelids (SAC) are increasingly kept in Europe in close contact with humans and other livestock species and can potentially contribute to transmission chains of epizootic, zoonotic and antimicrobial-resistant (AMR) agents from and to livestock and humans. Consequently, SAC were included as livestock species in the new European Animal Health Law. However, the knowledge on bacteria exhibiting AMR in SAC is too scarce to draft appropriate monitoring and preventive programs. During a survey of SAC holdings in central Germany, 39 Escherichia coli strains were isolated from composite fecal samples by selecting for cephalosporin or fluoroquinolone resistance and were here subjected to whole-genome sequencing. The data were bioinformatically analyzed for strain phylogeny, detection of pathovars, AMR genes and plasmids. Most (33/39) strains belonged to phylogroups A and B1. Still, the isolates were highly diverse, as evidenced by 28 multi-locus sequence types. More than half of the isolates (23/39) were genotypically classified as multidrug resistant. Genes mediating resistance to trimethoprim/sulfonamides (22/39), aminoglycosides (20/39) and tetracyclines (18/39) were frequent. The most common extended-spectrum-β-lactamase gene was bla(CTX-M-1) (16/39). One strain was classified as enteropathogenic E. coli. The positive results indicate the need to include AMR bacteria in yet-to-be-established animal disease surveillance protocols for SAC.202236144308
189080.9977Emergence and Characterization of Tigecycline Resistance Gene tet(X4) in ST609 Escherichia coli Isolates from Wastewater in Turkey. Emergence of pathogens harboring tigecycline resistance genes incurs great concerns. Wastewater is recognized as the important reservoir of antimicrobial resistance genes. Here we characterized the phenotypes and genotypes of bacteria carrying tet(X4) from wastewater in Turkey for the first time. Four tet(X4)-positive Escherichia coli isolates were identified and characterized by PCR, Sanger sequencing, antimicrobial susceptibility testing, conjugation assays, Illumina sequencing, nanopore sequencing and bioinformatic analysis. Four tet(X4)-harboring isolates were multidrug-resistant (MDR) bacteria and the tet(X4) gene was nontransferable in four isolates. Genetic analysis revealed that tet(X4) genes in four isolates were located on plasmids co-harboring two replicons IncFIA(HI1) and IncFIB(K). However, none of the four plasmids carried genes associated with horizontal transfer of plasmids. The coexistence of bla(SHV-12)-bearing IncX3-type plasmid and tet(X4)-harboring plasmid was also found in one isolate. These findings indicate that continuous surveillance of the tet(X4)-bearing isolates in different environments worldwide should be strengthened. IMPORTANCE The emergence of tigecycline resistance genes in humans and animals in China seriously threatens the clinical utility of tigecycline, but the molecular epidemiology of tigecycline-resistant bacteria in other countries remained largely unknown. Therefore, it is necessary to learn the prevalence and molecular characteristics of bacteria carrying tigecycline resistance genes, particularly the mobilizable tet(X4), in other countries. In the study, we first described the presence and molecular characteristics of the tet(X4)-positive E. coli isolates from wastewater in Turkey. Four tet(X4)-bearing isolates belonged to ST609, an E. coli clone commonly found from humans, animals and the environment. These findings highlight the importance of monitoring the tet(X4) gene in different settings globally.202235863037
185990.9977Transcontinental Dissemination of Enterobacterales Harboring bla(NDM-1) in Retail Frozen Shrimp. The global food trade provides a means of disseminating antimicrobial resistant (AMR) bacteria and genes. Using selective media, carbapenem-resistant species of Enterobacterales (Providencia sp. and Citrobacter sp.), were detected in a single package of imported frozen shrimp purchased from a grocery store in Ohio, USA. Polymerase chain reaction confirmed that both isolates harbored bla(NDM-1) genes. Following PacBio long read sequencing, the sequences were annotated using the NCBI Prokaryotic Genome Annotation Pipeline. The bla(NDM-1) genes were found in IncC plasmids, each with different antimicrobial resistance island configuration. We found that the bla(NDM-1) AMR islands had close relationships with previously reported environmental, food, and clinical isolates detected in Asia and the United States, highlighting the importance of the food chain in the global dissemination of antimicrobial resistance.202538563789
5741100.9977Multidrug-Resistant Klebsiella variicola Isolated in the Urine of Healthy Bovine Heifers, a Potential Risk as an Emerging Human Pathogen. Klebsiella variicola, a member of Klebsiella pneumoniae complex, is found to infect plants, insects, and animals and is considered an emerging pathogen in humans. While antibiotic resistance is often prevalent among K. variicola isolates from humans, this has not been thoroughly investigated in isolates from nonhuman sources. Prior evidence suggests that K. variicola can be transmitted between agricultural products as well as between animals, and the use of antibiotics in agriculture has increased antibiotic resistance in other emerging pathogens. Furthermore, in animals that contain K. variicola as a normal member of the rumen microbiota, the same bacteria can also cause infections, such as clinical mastitis in dairy cows. Here, we describe K. variicola UFMG-H9 and UFMG-H10, both isolated from the urine of healthy Gyr heifers. These two genomes represent the first isolates from the urine of cattle and exhibit greater similarity with strains from the human urinary tract than isolates from bovine fecal or milk samples. Unique to the UFMG-H9 genome is the presence of flagellar genes, the first such observation for K. variicola. Neither of the sampled animals had symptoms associated with K. variicola infection, even though genes associated with virulence and antibiotic resistance were identified in both strains. Both strains were resistant to amoxicillin, erythromycin, and vancomycin, and UFMG-H10 is resistant to fosfomycin. The observed resistances emphasize the concern regarding the emergence of this species as a human pathogen given its circulation in healthy livestock animals. IMPORTANCE Klebsiella variicola is an opportunistic pathogen in humans. It also has been associated with bovine mastitis, which can have significant economic effects. While numerous isolates have been sequenced from human infections, only 12 have been sequenced from cattle (fecal and milk samples) to date. Recently, we discovered the presence of K. variicola in the urine of two healthy heifers, the first identification of K. variicola in the bovine urinary tract and the first confirmed K. variicola isolate encoding for flagella-mediated motility. Here, we present the genome sequences and analysis of these isolates. The bovine urinary genomes are more similar to isolates from the human urinary tract than they are to other isolates from cattle, suggesting niche specialization. The presence of antibiotic resistance genes is concerning, as prior studies have found transmission between animals. These findings are important to understand the circulation of K. variicola in healthy livestock animals.202235416681
5725110.9977Commonality of Multidrug-Resistant Klebsiella pneumoniae ST348 Isolates in Horses and Humans in Portugal. Multidrug-resistant (MDR) Klebsiella pneumoniae is considered a major global concern by the World Health Organization. Evidence is growing on the importance of circulation of MDR bacterial populations between animals and humans. Horses have been shown to carry commensal isolates of this bacterial species and can act as human MDR bacteria reservoirs. In this study, we characterized an extended-spectrum β-lactamase (ESBL)-producing K. pneumoniae sequence type (ST) 348 isolate from a horse, an ST reported for the first time in an animal, using next-generation sequencing. We compared it with six other MDR K. pneumoniae ST348 human isolates previously identified in health-care facilities in Portugal using a core genome multi-locus sequence typing approach to evaluate a possible genetic link. The horse isolate was resistant to most of the antimicrobials tested, including 3rd generation cephalosporins, fluoroquinolones, and aminoglycosides, and presented several antimicrobial resistance genes, including bla (ESBL). Twenty-one allele differences were found between the horse isolate and the most similar human isolate, suggesting a recent common ancestor. Other similarities were observed regarding the content on antimicrobial resistance genes, plasmid incompatibility groups, and capsular and somatic antigens. This study illustrates the relevance of the dissemination of MDR strains, and enhances that identification of these types of bacterial strains in both human and veterinary settings is of significant relevance in order to understand and implement combined control strategies for MDR bacteria in animals and humans.201931379799
1776120.9977Broad-Host Dissemination of Plasmids Coharboring the fos Operon for Fructooligosaccharide Metabolism with Antibiotic Resistance Genes. The fos operon encoding short-chain fructooligosaccharide (scFOS) utilization enables bacteria of the family Enterobacteriaceae to grow and be sustained in environments where they would struggle to survive. Despite several cases of the detection of the fos operon in isolates of avian and equine origins, its global distribution in bacterial genomes remains unknown. The presence of the plasmid-harbored fos operon among resistant bacteria may promote the spread of antibiotic resistance. A collection of 11,538 antimicrobial-resistant Enterobacteriaceae isolates from various sources was screened for the fosT gene encoding the scFOS transporter. Out of 307 fosT-positive isolates, 80% of them originated from sources not previously linked to fosT (humans, wastewater, and animals). The chromosomally harbored fos operon was detected in 163/237 isolates subjected to whole-genome sequencing. In the remaining 74 isolates, the operon was carried by plasmids. Further analyses focusing on the isolates with a plasmid-harbored fos operon showed that the operon was linked to various incompatibility (Inc) groups, including the IncHI1, IncF-type, IncK2, IncI1, and IncY families. Long-read sequencing of representative plasmids showed the colocalization of fos genes with antibiotic resistance genes (ARGs) in IncHI1 (containing a multidrug resistance region), IncK2 (bla(TEM-1A)), IncI1 [sul2 and tet(A)], and IncY [aadA5, dfrA17, sul2, and tet(A)] plasmids, while IncF-type plasmids had no ARGs but coharbored virulence-associated genes. Despite the differences in the locations and structures of the fos operons, all isolates except one were proven to utilize scFOSs. In this study, we show that the fos operon and its spread are not strictly bound to one group of plasmids, and therefore, it should not be overlooked. IMPORTANCE It was believed that members of the family Enterobacteriaceae are unable to grow under conditions with short-chain fructooligosaccharides as the only source of carbon. Nevertheless, the first Escherichia coli isolate from chicken intestine was able to utilize these sugars owing to the chromosomally harbored fos operon. Studies on E. coli isolates from horses discovered the horizontal transfer of the fos operon on IncHI1 plasmids along with genes for antibiotic resistance. The first plasmid detected was pEQ1, originating from the feces of a hospitalized horse in the Czech Republic. Follow-up studies also revealed the dissemination of the IncHI1 plasmid-harbored fos operon in the Netherlands, Germany, Denmark, and France among healthy horses. Despite several cases of detection of the fos operon, its global distribution in bacterial genomes remains unknown. The fos operon possibly plays a role in the adaptation of plasmids among resistant bacteria and therefore may promote the spread of antibiotic resistance.202337578374
2088130.9977Architecture of Class 1, 2, and 3 Integrons from Gram Negative Bacteria Recovered among Fruits and Vegetables. The spread of antibiotic resistant bacteria throughout the food chain constitutes a public health concern. To understand the contribution of fresh produce in shaping antibiotic resistance bacteria and integron prevalence in the food chain, 333 antibiotic resistance Gram negative isolates were collected from organic and conventionally produced fruits (pears, apples, and strawberries) and vegetables (lettuces, tomatoes, and carrots). Although low levels of resistance have been detected, the bacterial genera identified in the assessed fresh produce are often described not only as environmental, but mostly as commensals and opportunistic pathogens. The genomic characterization of integron-harboring isolates revealed a high number of mobile genetic elements and clinically relevant antibiotic resistance genes, of which we highlight the presence of as mcr-1, qnrA1, bla GES-11, mphA, and oqxAB. The study of class 1 (n = 8), class 2 (n = 3) and class 3 (n = 1) integrons, harbored by species such as Morganella morganii, Escherichia coli, Klebsiella pneumoniae, led to the identification of different integron promoters (PcW, PcH1, PcS, and PcWTNG-10) and cassette arrays (containing drfA, aadA, cmlA, estX, sat, and bla GES). In fact, the diverse integron backbones were associated with transposable elements (e.g., Tn402, Tn7, ISCR1, Tn2 (*), IS26, IS1326, and IS3) that conferred greater mobility. This is also the first appearance of In1258, In1259, and In3-13, which should be monitored to prevent their establishment as successfully dispersed mobile resistance integrons. These results underscore the growing concern about the dissemination of acquired resistance genes by mobile elements in the food chain.201627679611
1590140.9977Molecular characterization of highly prevalent Escherichia coli and Escherichia marmotae resistant to extended-spectrum cephalosporins in European starlings (Sturnus vulgaris) in Tunisia. European starlings are widespread migratory birds that have already been described as carrying bacteria resistant to extended-spectrum cephalosporins (ESC-R). These birds are well known in Tunisia because they spend the wintertime in this country and are hunted for human consumption. The goal of our study was to estimate the proportion of ESC-R in these birds and to characterize the collected isolates using whole-genome sequencing. Results showed that 21.5% (42/200) of the birds carried either an extended-spectrum beta-lactamase (ESBL) or an acquired AmpC gene. Diverse bla (CTX-M) genes were responsible for the ESBL phenotype, bla (CTX-M-14) being the most prevalent, while only bla (CMY-2) and one bla (CMY-62) were found in AmpC-positive isolates. Likewise, different genetic determinants carried these resistance genes, including IncHI2, and IncF plasmids for bla (CTX-M) genes and IncI1 plasmids for bla (CMY-2) genes. Three chromosomally encoded bla (CTX-M-15) genes were also identified. Surprisingly, species identification revealed a large proportion (32.7%) of Escherichia marmotae isolates. This species is phenotypically indistinguishable from Escherichia coli and has obviously the same capacity to acquire ESC-R genes. Our data also strongly suggest that at least the IncHI2/pST3 plasmid can spread equally between E. coli and E. marmotae. Given the potential transmission routes between humans and animals, either by direct contact with dejections or through meat preparation, it is important to closely monitor antimicrobial resistance in European starlings in Tunisia and to set up further studies to identify the sources of contamination of these birds. IMPORTANCE The One Health concept highlighted knowledge gaps in the understanding of the transmission routes of resistant bacteria. A major interest was shown in wild migratory birds since they might spread resistant bacteria over long distances. Our study brings further evidence that wild birds, even though they are not directly submitted to antibiotic treatments, can be heavily contaminated by resistant bacteria. Our results identified numerous combinations of resistance genes, genetic supports, and bacterial clones that can spread vertically or horizontally and maintain a high level of resistance in the bird population. Some of these determinants are widespread in humans or animals (IncHI2/pST3 plasmids and pandemic clones), while some others are less frequent (atypical IncI1 plasmid and minor clones). Consequently, it is essential to be aware of the risks of transmission and to take all necessary measures to prevent the proportions of resistant isolates from increasing uncontrollably.202337772831
1980150.9977Genotypic analyses of IncHI2 plasmids from enteric bacteria. Incompatibility (Inc) HI2 plasmids are large (typically > 200 kb), transmissible plasmids that encode antimicrobial resistance (AMR), heavy metal resistance (HMR) and disinfectants/biocide resistance (DBR). To better understand the distribution and diversity of resistance-encoding genes among IncHI2 plasmids, computational approaches were used to evaluate resistance and transfer-associated genes among the plasmids. Complete IncHI2 plasmid (N = 667) sequences were extracted from GenBank and analyzed using AMRFinderPlus, IntegronFinder and Plasmid Transfer Factor database. The most common IncHI2-carrying genera included Enterobacter (N = 209), Escherichia (N = 208), and Salmonella (N = 204). Resistance genes distribution was diverse, with plasmids from Escherichia and Salmonella showing general similarity in comparison to Enterobacter and other taxa, which grouped together. Plasmids from Enterobacter and other taxa had a higher prevalence of multiple mercury resistance genes and arsenic resistance gene, arsC, compared to Escherichia and Salmonella. For sulfonamide resistance, sul1 was more common among Enterobacter and other taxa, compared to sul2 and sul3 for Escherichia and Salmonella. Similar gene diversity trends were also observed for tetracyclines, quinolones, β-lactams, and colistin. Over 99% of plasmids carried at least 25 IncHI2-associated conjugal transfer genes. These findings highlight the diversity and dissemination potential for resistance across different enteric bacteria and value of computational-based approaches for the resistance-gene assessment.202438684834
1978160.9977Antibiotic resistance plasmids in Enterobacteriaceae isolated from fresh produce in northern Germany. In this study, the genomes of 22 Enterobacteriaceae isolates from fresh produce and herbs obtained from retail markets in northern Germany were completely sequenced with MiSeq short-read and MinION long-read sequencing and assembled using a Unicycler hybrid assembly. The data showed that 17 of the strains harbored between one and five plasmids, whereas in five strains, only the circular chromosomal DNA was detected. In total, 38 plasmids were identified. The size of the plasmids detected varied between ca. 2,000 and 326,000 bp, and heavy metal resistance genes were found on seven (18.4%) of the plasmids. Eleven plasmids (28.9%) showed the presence of antibiotic resistance genes. Among large plasmids (>32,000 bp), IncF plasmids (specifically, IncFIB and IncFII) were the most abundant replicon types, while all small plasmids were Col-replicons. Six plasmids harbored unit and composite transposons carrying antibiotic resistance genes, with IS26 identified as the primary insertion sequence. Class 1 integrons carrying antibiotic resistance genes were also detected on chromosomes of two Citrobacter isolates and on four plasmids. Mob-suite analysis revealed that 36.8% of plasmids in this study were found to be conjugative, while 28.9% were identified as mobilizable. Overall, our study showed that Enterobacteriaceae from fresh produce possess antibiotic resistance genes on both chromosome and plasmid, some of which are considered to be transferable. This indicates the potential for Enterobacteriaceae from fresh produce that is usually eaten in the raw state to contribute to the transfer of resistance genes to bacteria of the human gastrointestinal system. IMPORTANCE: This study showed that Enterobacteriaceae from raw vegetables carried plasmids ranging in size from 2,715 to 326,286 bp, of which about less than one-third carried antibiotic resistance genes encoding resistance toward antibiotics such as tetracyclines, aminoglycosides, fosfomycins, sulfonamides, quinolones, and β-lactam antibiotics. Some strains encoded multiple resistances, and some encoded extended-spectrum β-lactamases. The study highlights the potential of produce, which may be eaten raw, as a potential vehicle for the transfer of antibiotic-resistant bacteria.202439287384
1887170.9977Complete Genetic Analysis of Plasmids Carrying mcr-1 and Other Resistance Genes in Avian Pathogenic Escherichia coli Isolates from Diseased Chickens in Anhui Province in China. Antimicrobial resistance associated with colistin has emerged as a significant concern worldwide, threatening the use of one of the most important antimicrobials for treating human disease. This study aimed to investigate the prevalence of colistin-resistant avian-pathogenic Escherichia coli (APEC) and shed light on the possibility of transmission of mcr-1 (mobilized colistin resistance)-positive APEC. A total of 72 APEC isolates from Anhui Province in China were collected between March 2017 and December 2018 and screened for the mcr-1 gene. Antimicrobial susceptibility testing was performed using the broth dilution method. Pulsed-field gel electrophoresis, Southern blot analysis, and conjugation assay were performed to determine the location and conjugative ability of the mcr-1 gene. Whole-genome sequencing and analysis were performed using Illumina MiSeq and Nanopore MinION platforms. Three APEC isolates (AH25, AH62, and AH65) were found to be positive for the mcr-1 gene and showed multidrug resistance. The mcr-1 genes were located on IncI2 plasmids, and conjugation assays revealed that these plasmids were transferrable. Notably, strains AH62 and AH65, both belonging to ST1788, were collected from different places but carried the same drug resistance genes and shared highly similar plasmids. This study highlights the potential for a possible epidemic of mcr-1-positive APEC and the urgent need for continuous active monitoring.IMPORTANCE In this study, three plasmids carrying mcr-1 were isolated and characterized from APEC isolates from Anhui Province in China. The mcr-1 genes were located on IncI2 plasmids, and these plasmids were transferrable. These three IncI2 plasmids had high homology with the plasmids harbored by pathogenic bacteria isolated from other species. This finding showed that IncI2 plasmids poses a risk for the exchange of genetic material between different niches. Although colistin has been banned for use in food-producing animals in China, the coexistence of the broad-spectrum β-lactamase and mcr-1 genes on a plasmid can also lead to the stable existence of mcr-1 genes. The findings illustrated the need to improve the monitoring of drug resistance in poultry systems so as to curb the transmission or persistence of multidrug-resistant bacteria.202133853876
1725180.9977Letter to the Editor: Escherichia fergusonii Harboring IncHI2 Plasmid Containing mcr-1 Gene-A Novel Reservoir for Colistin Resistance in Brazil. Emergence of colistin-resistant bacteria harboring mobile colistin resistance genes (mcr genes) pose a threat for food-producing animals and humans. In this article, we aim to highlight the emergence of Escherichia fergusonii as an important new reservoir to mcr-1-harboring plasmid in poultry production. Three strains closely related were isolated from cloacal swabs. Their genome contains four plasmids, including a 182,869 bp IncHI2 plasmid harboring the colistin resistance gene mcr-1. These results will contribute to our understanding of plasmid-mediated mcr-1 gene presence and transmission in E. fergusonii.202133001761
1882190.9977Genomic Characterization of Multidrug-Resistant Pathogenic Enteric Bacteria from Healthy Children in Osun State, Nigeria. Antimicrobial resistance (AMR) is responsible for the spread and persistence of bacterial infections. Surveillance of AMR in healthy individuals is usually not considered, though these individuals serve as reservoirs for continuous disease transmission. Therefore, it is essential to conduct epidemiological surveillance of AMR in healthy individuals to fully understand the dynamics of AMR transmission in Nigeria. Thirteen multidrug-resistant Citrobacter spp., Enterobacter spp., Klebsiella pneumoniae, and Escherichia coli isolated from stool samples of healthy children were subjected to whole genome sequencing (WGS) using Illumina and Oxford nanopore sequencing platforms. A bioinformatics analysis revealed antimicrobial resistance genes such as the pmrB_Y358N gene responsible for colistin resistance detected in E. coli ST219, virulence genes such as senB, and ybtP&Q, and plasmids in the isolates sequenced. All isolates harbored more than three plasmid replicons of either the Col and/or Inc type. Plasmid reconstruction revealed an integrated tetA gene, a toxin production caa gene in two E. coli isolates, and a cusC gene in K. quasivariicola ST3879, which induces neonatal meningitis. The global spread of AMR pathogenic enteric bacteria is of concern, and surveillance should be extended to healthy individuals, especially children. WGS for epidemiological surveillance will improve the detection of AMR pathogens for management and control.202438543556