HALF - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
178000.9984A comparison of antibiotic resistance integrons in cattle from separate beef meat production systems at slaughter. AIMS: To compare antibiotic resistance integrons in cattle from three separate grass-fed, grain-fed and certified organic cattle production systems at slaughter. METHODS AND RESULTS: In this study 198 samples from three separate cattle production systems were tested by PCR for the presence of class 1 and class 2 integrons. Integron-containing bacteria were readily isolated from pen faeces and hide samples regardless of production system. Lower numbers of integron-containing bacteria were isolated from the remaining sample types. Ninety-one class 1 and 34 class 2 integron-containing bacteria were isolated. Characterization of the integrons demonstrated a high degree of similarity across the three production systems with aadA1 and aadA2 routinely present. Integrons harbouring the cassette array cmlA5-bla(OXA-10)-aadA1 and the putative insertion sequence IS1066 were isolated from organic and grass-fed cattle and have not been described previously. CONCLUSIONS: Integrons carrying antibiotic resistance genes were common in cattle from differing production systems at slaughter and the likelihood of presence appears unrelated to the production system. SIGNIFICANCE AND IMPACT OF THE STUDY: Similar integron arrays are present in different cattle production systems suggesting that their presence may be independent of production practices. This is the first report of two novel integron structures present in Aeromonas.200817927756
96610.9983Classes 1 and 2 integrons in faecal Escherichia coli strains isolated from mother-child pairs in Nigeria. BACKGROUND: Antimicrobial resistance among enteric bacteria in Africa is increasingly mediated by integrons on horizontally acquired genetic elements. There have been recent reports of such elements in invasive pathogens across Africa, but very little is known about the faecal reservoir of integron-borne genes. METHODS AND FINDINGS: We screened 1098 faecal Escherichia coli isolates from 134 mother-child pairs for integron cassettes by PCR using primers that anneal to the 5' and 3' conserved ends of the cassette regions and for plasmid replicons. Genetic relatedness of isolates was determined by flagellin and multi-locus sequence typing. Integron cassettes were amplified in 410 (37.5%) isolates and were significantly associated with resistance to trimethoprim and multiple resistance. Ten cassette combinations were found in class 1 and two in class 2 integrons. The most common class 1 cassette configurations were single aadA1 (23.4%), dfrA7 (18.3%) and dfrA5 (14.4%). Class 2 cassette configurations were all either dfrA1-satI-aadA1 (n = 31, 7.6%) or dfrA1-satI (n = 13, 3.2%). A dfr cassette was detected in 294 (31.1%) of trimethoprim resistant strains and an aadA cassette in 242 (23%) of streptomycin resistant strains. Strains bearing integrons carried a wide range of plasmid replicons of which FIB/Y (n = 169; 41.2%) was the most frequently detected. Nine isolates from five different individuals carried the dfrA17-aadA5-bearing ST69 clonal group A (CGA). The same integron cassette combination was identified from multiple distinct isolates within the same host and between four mother-child pairs. CONCLUSIONS: Integrons are important determinants of resistance in faecal E. coli. Plasmids in integron-containing strains may contribute to dispersing resistance genes. There is a need for improved surveillance for resistance and its mechanisms of dissemination and persistence and mobility of resistance genes in the community and clinical settings.201728829804
289520.9983Diversity of antimicrobial resistance genes and class-1-integrons in phylogenetically related porcine and human Escherichia coli. Antimicrobial resistant bacteria and resistance genes can be transferred between the microbial flora of humans and animals. To assess the dimension of this risk, we compared the phylogenetic ancestry of human and porcine tetracycline-insusceptible Escherichia coli. Further, we compared the resistance gene profiles (tetA/tetB/tetC/tetD/tetM/sulI/sulII/sulIII/strA-strB/addA) and the prevalence of class-1-integrons in isolates of identical and different phylogroups by endpoint-PCR. This is the first genotypic comparison of antimicrobial resistance in E. coli from humans and animals which allows for the phylogenetic ancestry of the isolates. E. coli isolates from diseased humans belonged regularly to phylogroup B2 (24.3%) or D (30.9%) and were rarely not typeable (7.2%); by contrast, isolates from pig manure were regularly not typeable (46.7%) and rarely grouped into phylogroup B2 (2.2%) or D (2.9%). Class-1-integrons were detected in 40.8% of clinical (n=152), in 9.5% of community-derived (n=21) and in 10.9% of porcine (n=137) E. coli. The prevalence of sulI (42.4%/16.0%) in phylogroup A and of tetA, tetB and sulII in phylogroup B1 differed significantly between human clinical and porcine strains. Human clinical isolates (except B2-isolates) carried significantly more different resistance genes per strain, compared to porcine or community-derived isolates. ERIC-PCR-analysis of B2- (and D-) isolates with identical genetic profiles revealed that only a minor part was clonally related. The dominant resistance gene profiles differed depending on phylogroup and source. Human and porcine isolates do not exceedingly share their genes, and might rapidly adapt their resistance gene equipment to meet the requirements of a new environment. The study underlines that resistance gene transfer between human and porcine isolates is limited, even in phylogenetically related isolates.201222854332
165630.9983Characterisation of Commensal Escherichia coli Isolated from Apparently Healthy Cattle and Their Attendants in Tanzania. While pathogenic types of Escherichia coli are well characterized, relatively little is known about the commensal E. coli flora. In the current study, antimicrobial resistance in commensal E. coli and distribution of ERIC-PCR genotypes among isolates of such bacteria from cattle and cattle attendants on cattle farms in Tanzania were investigated. Seventeen E. coli genomes representing different ERIC-PCR types of commensal E. coli were sequenced in order to determine their possible importance as a reservoir for both antimicrobial resistance genes and virulence factors. Both human and cattle isolates were highly resistant to tetracycline (40.8% and 33.1%), sulphamethazole-trimethoprim (49.0% and 8.8%) and ampicillin (44.9% and 21.3%). However, higher proportion of resistant E. coli and higher frequency of resistance to more than two antimicrobials was found in isolates from cattle attendants than isolates from cattle. Sixteen out of 66 ERIC-PCR genotypes were shared between the two hosts, and among these ones, seven types contained isolates from cattle and cattle attendants from the same farm, suggesting transfer of strains between hosts. Genome-wide analysis showed that the majority of the sequenced cattle isolates were assigned to phylogroups B1, while human isolates represented phylogroups A, C, D and E. In general, in silico resistome and virulence factor identification did not reveal differences between hosts or phylogroups, except for lpfA and iss found to be cattle and B1 phylogroup specific. The most frequent plasmids replicon genes found in strains from both hosts were of IncF type, which are commonly associated with carriage of antimicrobial and virulence genes. Commensal E. coli from cattle and attendants were found to share same genotypes and to carry antimicrobial resistance and virulence genes associated with both intra and extraintestinal E. coli pathotypes.201627977751
263540.9983Presence and Diversity of Extended-Spectrum Cephalosporin Resistance Among Escherichia coli from Urban Wastewater and Feedlot Cattle in Alberta, Canada. A recent preliminary study from our group found that extended-spectrum cephalosporin-resistance determinants can be detected in the majority of composite fecal samples collected from Alberta feedlot cattle. Most notably, bla(CTX-M) genes were detected in 46.5% of samples. Further isolate characterization identified bla(CTX-M-15) and bla(CTX-M-27), which are widespread in bacteria from humans. We hypothesized that Escherichia coli of human and beef cattle origins share the same pool of bla(CTX-M) genes. In this study, we aimed to assess and compare the genomic profiles of a larger collection of bla(CTX-M)-positive E. coli recovered from fecal composite samples from Canadian beef feedlot cattle and human wastewater through whole-genome sequencing. The variants bla(CTX-M-55), bla(CTX-M-32), bla(CTX-M-27), bla(CTX-M-15), and bla(CTX-M-14) were found in both urban wastewater and cattle fecal isolates. Core genome multilocus sequence typing showed little similarity between the fecal and wastewater isolates. Thus, if the dissemination of genes between urban wastewater and feedlot cattle occurs, it does not appear to be related to the expansion of specific clonal lineages. Further investigations are warranted to assemble and compare plasmids carrying these genes to better understand the modalities and directionality of transfer.202031553261
542450.9982The large plasmid carried class 1 integrons mediated multidrug resistance of foodborne Salmonella Indiana. Salmonella enterica serovar Indiana (S. Indiana) has aroused widespread concern as an important zoonotic pathogen. The molecular mechanism of multidrug resistance (MDR) in S. Indiana is not known and should be assessed. We aim to investigate the molecular mechanism of MDR and the importance of large plasmids carried class 1 integrons in the MDR of foodborne S. Indiana. Class 1 integrons in 48 S. Indiana isolates and 200 isolates of 7 other Salmonella serotypes were detected by polymerase chain reaction (PCR). To analyze the antimicrobial resistance genes (ARGs) of two S. Indiana isolates, designated S. Indiana 15 and S. Indiana 222, next-generation sequencing (NGS) was performed, and the resulting sequences were compared with the complete nucleotide sequences of S. Indiana D90 and S. Indiana C629. Comparative functional analysis was conducted between the intI1 (1,014 bp) of S. Indiana 222 and the intI1 (699 bp) of S. Indiana 15. Plasmid conjugation transfer analysis was performed to analyze the horizontal gene transfer of the integrons-related resistance genes with integron-positive and integron-negative Salmonella isolates. 64.58% of S. Indiana isolates carried class 1 integrons, which was significantly higher than that of other Salmonella serotypes (p < 0.001). The NGS results showed that the S. Indiana 15 and S. Indiana 222 isolates carried a large plasmid with a class 1 integron and multiple ARGs, similar to S. Indiana D90 and S. Indiana C629. Two integrases found in S. Indiana isolates belong to class 1 integrases and could integrate resistance genes into specific integration sites of the integrons. The conjugation frequency of intI1 (1,014 bp) was 6.08 × 10(-5), which was significantly higher than that of intI1 (699 bp) (p < 0.01). The large plasmids carrying a class 1 integron and the number of ARGs were strongly correlated (p < 0.001). The conjugation frequency of integron-positive S. Indiana recipient isolates was significantly higher than that of integron-negative recipient isolates (p < 0.05). S. Indiana containing large plasmids carrying a class 1 integron more easily captured resistance genes from other bacteria (S. Enteritidis and S. Derby), which could be an important cause of the emerging pandemic of MDR clones. Graphical abstractS. Indiana containing large plasmids carrying a class 1 integron more easily captured resistance genes from other bacteria (S. Enteritidis and S. Derby), which could be an important cause of the emerging pandemic of MDR clones.202236312970
165160.9982Comparative Genomic Analysis of Antimicrobial-Resistant Escherichia coli from South American Camelids in Central Germany. South American camelids (SAC) are increasingly kept in Europe in close contact with humans and other livestock species and can potentially contribute to transmission chains of epizootic, zoonotic and antimicrobial-resistant (AMR) agents from and to livestock and humans. Consequently, SAC were included as livestock species in the new European Animal Health Law. However, the knowledge on bacteria exhibiting AMR in SAC is too scarce to draft appropriate monitoring and preventive programs. During a survey of SAC holdings in central Germany, 39 Escherichia coli strains were isolated from composite fecal samples by selecting for cephalosporin or fluoroquinolone resistance and were here subjected to whole-genome sequencing. The data were bioinformatically analyzed for strain phylogeny, detection of pathovars, AMR genes and plasmids. Most (33/39) strains belonged to phylogroups A and B1. Still, the isolates were highly diverse, as evidenced by 28 multi-locus sequence types. More than half of the isolates (23/39) were genotypically classified as multidrug resistant. Genes mediating resistance to trimethoprim/sulfonamides (22/39), aminoglycosides (20/39) and tetracyclines (18/39) were frequent. The most common extended-spectrum-β-lactamase gene was bla(CTX-M-1) (16/39). One strain was classified as enteropathogenic E. coli. The positive results indicate the need to include AMR bacteria in yet-to-be-established animal disease surveillance protocols for SAC.202236144308
177970.9982New structures simultaneously harboring class 1 integron and ISCR1-linked resistance genes in multidrug-resistant Gram-negative bacteria. BACKGROUND: The connection structure of class 1 integron and insertion sequence common region 1 (ISCR1) is called "complex class 1 integrons" or "complex sul1-type integrons", which is also known to be associated with many resistance genes. This structure is a powerful gene-capturing tool kit that can mobilize antibiotic resistance genes. In order to look for and study the structure among clinical multidrug-resistant (MDR) Gram-negative isolates, 63 isolates simultaneously harbored class 1 integron and ISCR1-linked resistance genes were isolated from 2309 clinical non-redundant MDR Gram-negative isolates in Nanfang Hospital in 2008-2013. The connecting regions between the class 1 integrons and ISCR1 were examined using PCR and DNA sequencing to determine the structures in these isolates. RESULT: The two elements (the variable regions of the class 1 integron structures and the ISCR1-linked resistance genes) are connected in series among 63 isolates according to long-extension PCR and DNA sequencing. According to the kinds and permutations of resistance genes in the structure, 12 distinct types were identified, including 8 types that have never been described in any species. Several types of these structures are similar with the structures of other reports, but not entirely same. CONCLUSION: This study is the first to determine the structure simultaneously harboring class 1 integron and ISCR1-linked resistance genes by detecting the region connecting class 1 integrons and ISCR1 in a large number of MDR bacteria. These structures carrying various resistance genes were closely associated with multidrug resistance bacteria in Southern China.201627103443
295180.9982The diversity in antimicrobial resistance of MDR Enterobacteriaceae among Chinese broiler and laying farms and two mcr-1 positive plasmids revealed their resistance-transmission risk. This research aimed to investigate the microbial composition and diversity of antimicrobial resistance genes (ARGs) found in Chinese broiler and layer family poultry farms. We focused on the differences in resistance phenotypes and genotypes of multidrug-resistant Enterobacteriaceae (MDRE) isolated from the two farming environments and the existence and transmissibility of colistin resistance gene mcr-1. Metagenomic analysis showed that Firmicutes and Bacteroides were the dominant bacteria in broiler and layer farms. Many aminoglycoside and tetracycline resistance genes were accumulated in these environments, and their absolute abundance was higher in broiler than in layer farms. A total of 526 MDRE were isolated with a similar distribution in both farms. The results of the K-B test showed that the resistance rate to seven antimicrobials including polymyxin B and meropenem in broiler poultry farms was significantly higher than that in layer poultry farms (P ≤ 0.05). PCR screening results revealed that the detection rates of mcr-1, aph(3')Ia, aadA2, bla (oxa-1) , bla (CTX-M) , fosB, qnrD, sul1, tetA, and catA1 in broiler source MDRE were significantly higher than those in layers (P ≤0.05). A chimeric plasmid p20432-mcr which carried the novel integron In1866 was isolated from broiler source MDRE. The high frequency of conjugation (10(-1) to 10(-3)) and a wide range of hosts made p20432-mcr likely to play an essential role in the high detection rate of mcr-1, aph(3')-Ia, and aadA2 in broiler farms. These findings will help optimize disinfection and improve antimicrobial-resistant bacteria surveillance programs in poultry farms, especially broilers.202235992687
202790.9982In Silico Detection of Integrons and Their Relationship with Resistance Phenotype of Salmonella Isolates from a Brazilian Pork Production Chain. The pork production chain is an important reservoir of antimicrobial resistant bacteria. This study identified and characterized integrons in Salmonella isolates from a Brazilian pork production chain and associate them with their antibiotic resistance pattern. A total of 41 whole-genome sequencing data of nontyphoidal Salmonella were analyzed using PlasmidSPAdes and IntegronFinder software. Nine isolates (21.9%) had some integrons identified (complete and/or incomplete). Six complete class 1 integrons were found, with streptomycin resistance genes (aadA1, aadA2) alone or downstream of a trimethoprim resistance gene (dfrA1, dfrA12), and some also containing resistance genes for sulfonamides (sul1, sul3) and chloramphenicol (cmlA1). Class 2 integron was detected in only one isolate, containing dfrA1-sat2-aadA1 gene cassettes. Five isolates harbored CALINs-clusters attC but lacking integrases-with antimicrobial resistance genes typically found in integron structures. In all, integrons were observed among four serotypes: Derby, Bredeney, Panama, and monophasic var. Typhimurium I 4,[5],12:i:-. The association of integrons with antibiotic resistance phenotype showed that these elements were predominantly identified in multidrug resistance isolates, and six of the seven gentamicin-resistant isolates had integrons. So, surveillance of integrons in Salmonella should be performed to identify the potential for the spread of antimicrobial resistance genes among bacteria.202438917456
2018100.9982Genetic diversity of three classes of integrons in antibiotic-resistant bacteria isolated from Jiulong River in southern China. We identified antibiotic-resistant bacterial isolates from the surface waters of Jiulong River basin in southern China and determined their extent of resistance, as well as the prevalence and characterization of three classes of integrons. A phylogenetic analysis of 16S ribosomal DNA (rDNA) sequences showed that 20 genera were sampled from a total of 191 strains and the most common genus was Acinetobacter. Antimicrobial susceptibility testing revealed that the 191 isolates were all multiresistant and there were high levels of resistance to 19 antimicrobials that were tested, particularly the β-lactam, sulfonamide, amphenicol, macrolide, and rifamycin classes. Moreover, class 1 integrons were ubiquitous while only five out of 191 strains harbored class 2 integrons and no class 3 integrons were detected. The variable region of the class 1 integrons contained 30 different gene cassette arrays. Nine novel arrays were found in 65 strains, and seven strains had empty integrons. Among these 30 arrays, there were 34 different gene cassettes that included 25 resistance genes, six genes with unknown functions, two mutant transposase genes, and a new gene. The unique array dfrA1-sat2-aadA1 was detected in all five isolates carrying the class 2 integron. We found that antibiotic-resistant bacterial isolates from Jiulong River were diverse and antibiotic resistance genes associated with integrons were widespread.201525869436
2043110.9982Antimicrobial Resistance Genotypes and Mobile Genetic Elements of Poultry-Derived Escherichia coli: A Retrospective Genomic Study from the United States. The presence of antibiotic resistance in commensal bacteria may be an influential factor in the persistence of resistance in pathogens. This is especially critical for Escherichia coli that consumers may be exposed to through the consumption of uncooked meat. In this study, E. coli isolates previously recovered from poultry in the US between 2001 and 2012 were whole-genome sequenced to identify their antibiotic resistance genes and mobile genetic elements. The genomes of 98 E. coli isolates from poultry carcass rinsates and 2 isolates from poultry diagnostic samples with multidrug resistance or potential extended-spectrum β-lactam (ESBL)-producing phenotypes as well as the genetic variabilities among the E. coli were assessed. All E. coli isolates were positive for at least one antibiotic resistance gene and plasmid replicon, with 37 resistance genes and 27 plasmid replicons detected among the isolates. While no ESBL genes were detected, bla(CMY-2) was the most common β-lactamase gene, and bla(TEM) and bla(CARB-2) were also identified. Most isolates (95%) harbored at least one intact phage, and as many as seven intact phages were identified in one isolate. These results show the occurrence of antibiotic resistance genes and mobile genetic elements in these 100 poultry-associated E. coli isolates, which may be responsible for the resistance phenotypes exhibited by the isolates. This retrospective study also enables comparisons of resistance genes and mobile genetic elements from more recent E. coli isolates associated with poultry to aid in understanding the trends of both antibiotic resistance phenotypes and genotypes in the poultry setting over time.202540872236
2038120.9982Salmonella enterica Serotype 4,[5],12:i:- in Swine in the United States Midwest: An Emerging Multidrug-Resistant Clade. BACKGROUND: Salmonella 4,[5],12:i:-, a worldwide emerging pathogen that causes many food-borne outbreaks mostly attributed to pig and pig products, is expanding in the United States. METHODS: Whole-genome sequencing was applied to conduct multiple comparisons of 659 S. 4,[5],12:i:- and 325 Salmonella Typhimurium from different sources and locations (ie, the United States and Europe) to assess their genetic heterogeneity, with a focus on strains recovered from swine in the US Midwest. In addition, the presence of resistance genes and other virulence factors was detected and the antimicrobial resistance phenotypes of 50 and 22 isolates of livestock and human origin, respectively, was determined. RESULTS: The S. 4,5,12:i:- strains formed two main clades regardless of their source and geographic origin. Most (84%) of the US isolates recovered in 2014-2016, including those (48 of 51) recovered from swine in the US Midwest, were part of an emerging clade. In this clade, multiple genotypic resistance determinants were predominant, including resistance against ampicillin, streptomycin, sulfonamides, and tetracyclines. Phenotypic resistance to enrofloxacin (11 of 50) and ceftiofur (9 of 50) was found in conjunction with the presence of plasmid-mediated resistance genes (qnrB19/qnrB2/qnrS1 and blaCMY-2/blaSHV-12, respectively). Higher similarity was also found between S. 4,[5],12:i:- from the emerging clade and S. Typhimurium from Europe than with S. Typhimurium from the United States. CONCLUSIONS: Salmonella 4,[5],12:i:- currently circulating in swine in the US Midwest are likely to be part of an emerging multidrug-resistant clade first reported in Europe, and can carry plasmid-mediated resistance genes that may be transmitted horizontally to other bacteria, and thus may represent a public health concern.201829069323
2856130.9982Multiresistant Enterobacteriaceae with class 1 and class 2 integrons in a municipal wastewater treatment plant. In this study, 1832 strains of the family Enterobacteriaceae were isolated from different stages of a municipal wastewater treatment plant, of which 221 (12.1%) were intI-positive. Among them 61.5% originated from raw sewage, 12.7% from aeration tank and 25.8% from the final effluent. All of the intI-positive strains were multiresistant, i.e. resistant to at least three unrelated antimicrobials. Although there were no significant differences in resistance range, defined as the number of antimicrobial classes to which an isolate was resistant, between strains isolated from different stages of wastewater treatment, for five β-lactams the percentage of resistant isolates was the highest in final effluent, which may reflect a selective pressure the bacteria are exposed to, and the possible route of dissemination of β-lactam resistant strains to the corresponding river. The sizes of the variable part of integrons ranged from 0.18 to 3.0 kbp and contained up to four incorporated gene cassettes. Sequence analysis identified over 30 different gene cassettes, including 24 conferring resistance to antibiotics. The highest number of different gene cassettes was found in bacteria isolated from the final effluent. The gene cassettes were arranged in 26 different resistance cassette arrays; the most often were dfrA1-aadA1, aadA1, dfrA17-aadA5 and dfrA12-orfF-aadA2. Regarding the diversity of resistance genes and the number of multiresistant bacteria in the final effluent, we concluded that municipal sewage may serve as a reservoir of integron-embedded antibiotic resistance genes.201222507248
3552140.9982Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids. In this study, the prevalence and types of transferable antibiotic resistance plasmids in piggery manure were investigated. Samples from manure storage tanks of 15 farms in Germany were analysed, representing diverse sizes of herds, meat or piglet production. Antibiotic resistance plasmids from manure bacteria were captured in gfp-tagged rifampicin-resistant Escherichia coli and characterized. The occurrence of plasmid types was also detected in total community DNA by PCR and hybridization. A total of 228 transconjugants were captured from 15 manures using selective media supplemented with amoxicillin, sulfadiazine or tetracycline. The restriction patterns of 81 plasmids representing different antibiotic resistance patterns or different samples clustered into seven groups. Replicon probing revealed that 28 of the plasmids belonged to IncN, one to IncW, 13 to IncP-1 and 19 to the recently discovered pHHV216-like plasmids. The amoxicillin resistance gene bla-TEM was detected on 44 plasmids, and sulphonamide resistance genes sul1, sul2 and/or sul3 on 68 plasmids. Hybridization of replicon-specific sequences amplified from community DNA revealed that IncP-1 and pHHV216-like plasmids were detected in all manures, while IncN and IncW ones were less frequent. This study showed that 'field-scale' piggery manure is a reservoir of broad-host range plasmids conferring multiple antibiotic resistance genes.200818557938
5591150.9982Widespread dissemination of Salmonella, Escherichia coli and Campylobacter resistant to medically important antimicrobials in the poultry production continuum in Canada. The Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) monitors Escherichia coli, Salmonella and Campylobacter and their resistance to antimicrobials in broiler chickens at the farm and slaughter plant levels. In response to many years of CIPARS' observations and farmers' data, the Chicken Farmers of Canada implemented a strategy to reduce antimicrobial use in 2014. As resistance genes can be transmitted vertically from parents to their offspring, a study was conducted in broiler breeder flocks to assess the frequency of target bacteria, their antimicrobial resistance (AMR) and to obtain a comprehensive picture of AMR in poultry production. Spent breeder flocks slaughtered between 2018 and 2021 were sampled and data from broiler flocks at the farm and slaughter plants were assessed. Salmonella was most frequently detected in farm broiler chickens (46%), while Campylobacter was most frequently detected in broiler breeders (73%). In Campylobacter, high levels (20-24%) of ciprofloxacin resistance were found across the three production stages, and was highest in farm broiler chickens (24%). In E. coli, an indicator organism, low-level ceftriaxone resistance and occasional isolates that were non-susceptible to ciprofloxacin were noted. Using the indicator, fully susceptible E. coli, broiler breeders had the highest frequency (54%) compared to farm (36%) and slaughtered (35%) broiler chickens. In Salmonella broiler breeders had the highest resistance to most antimicrobials tested.Fully susceptible Salmonella was lowest in broiler breeders (16%) compared to farm (42%) and slaughtered (42%) broiler chickens. Salmonella serovars differed between the production stages, but S. Kentucky was the most predominant. Resistance to critically important antimicrobials in human medicine and regional variations in resistance profiles were observed. This study suggests that broiler breeders carry foodborne bacteria resistant to antimicrobials used in human medicine, demonstrating their role in the maintenance of AMR in poultry and the need to adopt a harmonized sector-wide AMU strategy.202539999076
2954160.9982Prevalence and genetic characterization of linezolid resistance gene reservoirs in hospital sewage from Zhejiang Province, China. Hospital sewage represented important hotspots for the aggregation and dissemination of clinically relevant pathogens and antimicrobial resistance genes. To investigate the prevalence and molecular epidemiology of linezolid resistance genes in hospital sewage, both influent and effluent samples from 11 hospitals in Zhejiang Province, China, were collected and analyzed for linezolid resistance gene carriers. Thirty colonies of putative isolates that grew on the selective media with 10 mg/L florfenicol were randomly picked per sample. A total of 420 Gram-positive isolates, including 330 from 11 influent samples and 90 from three effluent samples, were obtained. Each isolate carried at least one of the linezolid resistance genes, including optrA, poxtA, cfr, and cfr(D), and the optrA gene was highly dominant (388/420). Enterococci displayed predominance among the linezolid resistance gene carriers in the hospital sewage, exhibiting a resistance rate to linezolid of 77.8 %. The wild-type OptrA and OptrA variants KLDP, RDK, and KLDK, all associated with high linezolid MICs, were most frequently detected. Phylogenetic analysis revealed the multispecies and polyclonal distribution of linezolid-resistant bacteria in hospital sewage, while Enterococcus faecalis sequence types (STs) 16 and 179 demonstrated the widest dissemination across different hospitals. Despite generally high genetic diversity, phylogenetic analysis showed that 87 isolates, assigned to ten STs from both sewage and other sources, were genetically related. Moreover, the genetic environment of linezolid resistance genes in isolates from sewage was similar to that from animals, humans, or the environment, with "Tn554-fexA-optrA" as the most common structure. These findings revealed the potential risk of the transmission of linezolid resistance genes through hospital sewage to other environments.202439461535
1978170.9982Antibiotic resistance plasmids in Enterobacteriaceae isolated from fresh produce in northern Germany. In this study, the genomes of 22 Enterobacteriaceae isolates from fresh produce and herbs obtained from retail markets in northern Germany were completely sequenced with MiSeq short-read and MinION long-read sequencing and assembled using a Unicycler hybrid assembly. The data showed that 17 of the strains harbored between one and five plasmids, whereas in five strains, only the circular chromosomal DNA was detected. In total, 38 plasmids were identified. The size of the plasmids detected varied between ca. 2,000 and 326,000 bp, and heavy metal resistance genes were found on seven (18.4%) of the plasmids. Eleven plasmids (28.9%) showed the presence of antibiotic resistance genes. Among large plasmids (>32,000 bp), IncF plasmids (specifically, IncFIB and IncFII) were the most abundant replicon types, while all small plasmids were Col-replicons. Six plasmids harbored unit and composite transposons carrying antibiotic resistance genes, with IS26 identified as the primary insertion sequence. Class 1 integrons carrying antibiotic resistance genes were also detected on chromosomes of two Citrobacter isolates and on four plasmids. Mob-suite analysis revealed that 36.8% of plasmids in this study were found to be conjugative, while 28.9% were identified as mobilizable. Overall, our study showed that Enterobacteriaceae from fresh produce possess antibiotic resistance genes on both chromosome and plasmid, some of which are considered to be transferable. This indicates the potential for Enterobacteriaceae from fresh produce that is usually eaten in the raw state to contribute to the transfer of resistance genes to bacteria of the human gastrointestinal system. IMPORTANCE: This study showed that Enterobacteriaceae from raw vegetables carried plasmids ranging in size from 2,715 to 326,286 bp, of which about less than one-third carried antibiotic resistance genes encoding resistance toward antibiotics such as tetracyclines, aminoglycosides, fosfomycins, sulfonamides, quinolones, and β-lactam antibiotics. Some strains encoded multiple resistances, and some encoded extended-spectrum β-lactamases. The study highlights the potential of produce, which may be eaten raw, as a potential vehicle for the transfer of antibiotic-resistant bacteria.202439287384
2841180.9982Antimicrobial resistance reservoirs in salmon and broiler processing environments, sidestreams, and waste discharges. Mapping reservoirs of antimicrobial resistance (AMR) across food value chains and their environmental dissemination pathways is essential for limiting the spread and impact of AMR. The aim of this study was to investigate the prevalence of AMR genes and bacteria in sidestream materials, waste discharges, and processing environments of salmon and broiler. A targeted hybrid capture-based sequencing approach was used to characterize the resistome in samples collected from four processing plants, revealing a diverse range of AMR genes. Among these, we found several high-risk AMR genes, including the multidrug resistance genes TolC and mdtE, tetracycline genes tet(L) and tet(M), aminoglycoside genes APH(3')-IIIa and APH(6)-Id, and beta-lactam genes mecA and mecR1. Overall, the highest numbers of AMR genes were found in samples of process wastewater and sludge, ranging from 32 to 330 unique genes. More than 300 bacterial isolates, including Enterobacterales, Enterococcus and Pseudomonas spp. were also collected and identified, and a subset was tested for antibiotic susceptibility. Antibiotic resistance among Enterococcus and Pseudomonas spp. was low. Quinolone-resistant Escherichia coli (QREC) were detected in waste discharges from two broiler processing plants, while multidrug resistant (MDR) E. coli were found only in one plant. Whole genome sequencing of MDR isolates revealed multiple plasmids and AMR genes such as sul2, ant(3″)-Ia, qnrS1, and bla(CTX-M-1) . Our study highlights that wastewater from food industries can contribute to the release of AMR bacteria and genes to the environment. While the prevalence of AMR bacteria in sidestream materials was low among the isolates in our collection, numerous AMR genes were detected, which may be re-introduced to new production systems.202541035889
2928190.9982Antibiotic use in infants within the first year of life is associated with the appearance of antibiotic-resistant genes in their feces. BACKGROUND: Antibiotic resistance, an increasing challenge, is not only a national threat but also a global threat. Carriage of resistance genes is not limited to adults alone, various microbiota niches present in the body system of children have been found to harbor bacteria carrying resistant genes, especially, their gut microbiota. This study aims to identify selected antibiotic-resistant genes from the fecal samples of infants and the association of antibiotics use with the occurrence of resistant genes in the infant's gut. METHODS: A total number of 172 metagenomic DNA samples previously extracted from stool samples of 28 Nigerian babies longitudinally within their first year of life were screened for the presence of ESBL genes (blaSHV, blaTEM, and blaCTX-M), PMQR genes (qnrA, qnrB, qnrS, qepA), ribosomal protection protein tetracycline resistance gene, (RPP) β-lactamase (blaZ), macrolide (ermA, ermB, mefA/E), aminoglycoside modifying enzymes gent(R) (aac(6')/aph(2″)) and dfrA genes by PCR. Nineteen (19) of the 28 babies used antibiotics during the study. The association between antibiotic use by the babies within the first year of life and occurrence of resistant genes were analyzed by Spearman rank correlation. RESULTS: One hundred and twenty-two (122) samples (71%) out of the 172 isolates had antibiotic-resistance genes. PMQR genes were absent in all the samples. Three isolates had blaTEM gene, nine isolates had blaSHV gene, six isolates had blaCTX-M gene and 19 isolates had dfrA gene, 31 samples had tet gene, 29 samples had mef gene, 27 samples had ermB gene, four samples had ermA gene, 13 samples had blaZ gene and 16 samples had aac gene. The babies whose samples had resistant genes used antibiotics in the same months the samples were collected. Interestingly, the 11 babies whose samples had the dfrA gene all used antibiotics in the same months their samples were collected but none of them used trimethoprim/sulfamethoxazole antibiotic. The overall correlation matrix of the babies showed a strong association between antibiotic use (AU) and antibiotic use presence of resistance genes (AUPRG) with a coefficient of 0.89. Antibiotic-resistant genes are present in the gut of infants and their occurrence is strongly connected with antibiotic use by infants.202337214087