# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1332 | 0 | 0.9851 | First study on capsular serotypes and virulence factors of Pasteurella multocida isolates from Phan Rang sheep in Vietnam. BACKGROUND AND AIM: Pasteurella multocida is considered as a main factor mediating pneumonic pasteurellosis in ruminants, including sheep. It is also a current threat to Phan Rang sheep in Vietnam. This study aimed to characterize P. multocida isolated from Phan Rang sheep, their antibiotic resistance profile, and the prevalence of some virulence-associated genes of these strains. MATERIALS AND METHODS: Bacteria were isolated on brain heart infusion, 10% sheep blood agar plates, and screened by biochemical tests. The polymerase chain reaction technique was used with specific primers to identify P. multocida, the presence of virulence-associated genes, and serotypes of isolates. Antimicrobial susceptibility and biofilm formation of isolates were examined using the disk diffusion method and crystal violet-based method, respectively. RESULTS: A total of 41 P. multocida strains were isolated from 485 samples from clinically sick and healthy sheep. Of the isolates, 58.53% were serotype A, 9.75% were serotype B, and 31.71% were serotype D. Healthy animals were infected with serotype D only. All 15 virulence genes were identified in all strains isolated from clinically sick sheep, while strains isolated from healthy sheep carried 11/15 virulence genes tested. Among virulence-associated genes exbB, exbD, tonB, ompA, oma87, fimA, hgbA, and nanB were detected in over 90% of isolates, whereas hgbB, nanH, tbpA and pfhA were less frequent. Interestingly, pmHAS and tadD were highly prevalent in capsular type A strains, whereas the toxA gene was detected in capsular type D strains only. All of the isolated strains were fully susceptible to enrofloxacin, ciprofloxacin, neomycin, and ofloxacin. About 92.68% were susceptible to chloramphenicol and 90.24% to amikacin, but there was high resistance to erythromycin, tetracycline, and amoxicillin. Our results reveal that 53.65% of 41 isolates could produce biofilm, whereas 46.34% could not. CONCLUSION: Pasteurella multocida from Phan Rang sheep possess many virulence genes and resistance to several common antibiotics such as erythromycin, tetracycline, and amoxicillin. The results are an important warning regarding antibiotic resistance of P. multocida. | 2023 | 37042011 |
| 5866 | 1 | 0.9849 | tet(L)-mediated tetracycline resistance in bovine Mannheimia and Pasteurella isolates. OBJECTIVES: Tetracycline-resistant Mannheimia and Pasteurella isolates, which were negative for the tetracycline resistance genes (tet) commonly detected among these bacteria, were investigated for other tet genes present and their location. METHODS: Mannheimia and Pasteurella isolates were investigated for their MICs of tetracycline and their plasmid content. Identification of tet genes was achieved by PCR. Plasmids mediating tetracycline resistance were identified by transformation and hybridization experiments. Plasmid pCCK3259 from Mannheimia haemolytica was sequenced completely and analysed for its structure and organization. RESULTS: All tetracycline-resistant isolates carried the gene tet(L) either on plasmids or on the chromosome. Two M. haemolytica isolates and one Mannheimia glucosida isolate harboured a common 5.3 kb tet(L) plasmid, designated pCCK3259. This plasmid was similar to the tet(B)-carrying tetracycline resistance plasmid pHS-Tet from Haemophilus parasuis and the streptomycin/spectinomycin resistance plasmid pCCK647 from Pasteurella multocida in the parts coding for mobilization functions. The tet(L) gene was closely related to that of the Geobacillus stearothermophilus plasmid pTB19. However, the translational attenuator responsible for the tetracycline-inducible expression of tet(L) was missing in plasmid pCCK3259. A recombination site was identified downstream of tet(L), which might explain the integration of the tet(L) gene region into a basic pCCK3259 replicon. CONCLUSION: A tet(L) gene was shown for the first time to be responsible for tetracycline resistance in Mannheimia and Pasteurella isolates. This report demonstrates a lateral transfer of a tetracycline efflux gene in Gram-negative bovine respiratory tract pathogens, probably originating from Gram-positive bacteria. | 2005 | 15972309 |
| 5386 | 2 | 0.9849 | Antibiotic resistance of lactic acid bacteria isolated from Chinese yogurts. The aim of this study was to evaluate the susceptibility of 43 strains of lactic acid bacteria, isolated from Chinese yogurts made in different geographical areas, to 11 antibiotics (ampicillin, penicillin G, roxithromycin, chloramphenicol, tetracycline, chlortetracycline, lincomycin, kanamycin, streptomycin, neomycin, and gentamycin). The 43 isolates (18 Lactobacillus bulgaricus and 25 Streptococcus thermophilus) were identified at species level and were typed by random amplified polymorphic DNA analysis. Thirty-five genotypically different strains were detected and their antimicrobial resistance to 11 antibiotics was determined using the agar dilution method. Widespread resistance to ampicillin, chloramphenicol, chlortetracycline, tetracyclines, lincomycin, streptomycin, neomycin, and gentamycin was found among the 35 strains tested. All of the Strep. thermophilus strains tested were susceptible to penicillin G and roxithromycin, whereas 23.5 and 64.7% of Lb. bulgaricus strains, respectively, were resistant. All of the Strep. thermophilus and Lb. bulgaricus strains were found to be resistant to kanamycin. The presence of the corresponding resistance genes in the resistant isolates was investigated through PCR, with the following genes detected: tet(M) in 1 Lb. bulgaricus and 2 Strep. thermophilus isolates, ant(6) in 2 Lb. bulgaricus and 2 Strep. thermophilus isolates, and aph(3')-IIIa in 5 Lb. bulgaricus and 2 Strep. thermophilus isolates. The main threat associated with these bacteria is that they may transfer resistance genes to pathogenic bacteria, which has been a major cause of concern to human and animal health. To our knowledge, the aph(3')-IIIa and ant(6) genes were found in Lb. bulgaricus and Strep. thermophilus for the first time. Further investigations are required to analyze whether the genes identified in Lb. bulgaricus and Strep. thermophilus isolates might be horizontally transferred to other species. | 2012 | 22916881 |
| 1264 | 3 | 0.9849 | Characterization of mannitol-fermenting methicillin-resistant staphylococci isolated from pigs in Nigeria. This study was conducted to determine the species distribution, antimicrobial resistance pheno- and genotypes and virulence traits of mannitol-positive methicillin-resistant staphylococci (MRS) isolated from pigs in Nsukka agricultural zone, Nigeria. Twenty mannitol-positive methicillin-resistant coagulase-negative staphylococcal (MRCoNS) strains harboring the mecA gene were detected among the 64 Staphylococcus isolates from 291 pigs. A total of 4 species were identified among the MRCoNS isolates, namely, Staphylococcus sciuri (10 strains), Staphylococcus lentus (6 strains), Staphylococcus cohnii (3 strains) and Staphylococcus haemolyticus (one strain). All MRCoNS isolates were multidrug-resistant. In addition to β-lactams, the strains were resistant to fusidic acid (85%), tetracycline (75%), streptomycin (65%), ciprofloxacin (65%), and trimethoprim/sulphamethoxazole (60%). In addition to the mecA and blaZ genes, other antimicrobial resistance genes detected were tet(K), tet(M), tet(L), erm(B), erm(C), aacA-aphD, aphA3, str, dfrK, dfrG, cat pC221, and cat pC223. Thirteen isolates were found to be ciprofloxacin-resistant, and all harbored a Ser84Leu mutation within the QRDR of the GyrA protein, with 3 isolates showing 2 extra substitutions, Ser98Ile and Arg100Lys (one strain) and Glu88Asp and Asp96Thr (2 strains). A phylogenetic tree of the QRDR nucleotide sequences in the gyrA gene revealed a high nucleotide diversity, with several major clusters not associated with the bacterial species. Our study highlights the possibility of transfer of mecA and other antimicrobial resistance genes from MRCoNS to pathogenic bacteria, which is a serious public health and veterinary concern. | 2015 | 26413075 |
| 1256 | 4 | 0.9849 | Prevalence of antimicrobial resistant genes in Bacteroides spp. isolated in Oita Prefecture, Japan. INTRODUCTION: Bacteroides spp. are the most common anaerobic bacteria isolated from the human gastrointestinal tract. Several resistant genes are present in Bacteroides spp. However, most studies have focused on the prevalence of the cfiA gene in Bacteroides fragilis alone. We assessed the susceptibility to antimicrobial agents and the prevalence of cepA, cfiA, cfxA, ermF, nim, and tetQ genes in Bacteroides strains isolated from clinical specimens in our hospital. METHODS: We isolated 86 B. fragilis and 58 non-fragilis Bacteroides strains from human clinical specimens collected from January 2011 to November 2021. Resistance against piperacillin (PIPC), cefotaxime (CTX), cefepime (CFPM), meropenem (MEPM), clindamycin, and minocycline was determined. RESULTS: The resistant rates of penicillins and cephalosporins in non-fragilis isolates were significantly higher than those in B. fragilis isolates. In B. fragilis isolates, the resistant rates of PIPC, CTX, and CFPM in cfxA-positive isolates were significantly higher than those in cfxA-negative isolates (71% vs. 16%, 77% vs. 19%, and 77% vs. 30%, respectively). Thirteen B. fragilis isolates harbored the cfiA gene, two of which were resistant to MEPM. Six of the 13 cfiA-positive B. fragilis isolates were heterogeneously resistant to MEPM. CONCLUSION: It is important to evaluate the use of MEPM as empirical therapy for Bacteroides spp. infections, considering the emergence of carbapenem resistance during treatment, existence of MEPM-resistant strains, and heterogeneous resistance. | 2023 | 36473684 |
| 1335 | 5 | 0.9849 | Prevalence of virulence factor, antibiotic resistance, and serotype genes of Pasteurella multocida strains isolated from pigs in Vietnam. AIM: The study was conducted to determine the prevalence and characterization of the Pasteurella multocida isolates from suspected pigs in Vietnam. MATERIALS AND METHODS: A total of 83 P. multocida strains were isolated from lung samples and nasal swabs collected from pigs associated with pneumonia, progressive atrophic rhinitis, or reproductive and respiratory symptoms. Isolates were subjected to multiplex polymerase chain reaction (PCR) for capsular typing, detection of virulence-associated genes and antibiotic resistance genes by PCR. The antimicrobial sensitivity profiles of the isolates were tested by disk diffusion method. RESULTS: All the isolates 83/83 (100%) were identified as P. multocida by PCR: serogroup A was obtained from 40/83 (48.19%), serogroup D was detected from 24/83 strains (28.91%), and serogroup B was found in 19/83 (22.35%) isolates. The presence of 14 virulence genes was reported including adhesins group (ptfA - 93.97%, pfhA - 93.97%, and fimA - 90.36%), iron acquisition (exbB - 100%, and exbD - 85.54%), hyaluronidase (pmHAS - 84.33%), and protectins (ompA - 56.62%, ompH 68.67%, and oma87 - 100%). The dermonecrotoxin toxA had low prevalence (19.28%). The antimicrobial susceptibility testing revealed that cephalexin, cefotaxime, ceftriaxone, ofloxacin, pefloxacin, ciprofloxacin, and enrofloxacin were the drugs most likely active against P. multocida while amoxicillin and tetracycline were inactive. The usage of PCR revealed that 63/83 isolates were carrying at least one of the drug resistance genes. CONCLUSION: Unlike other parts of the word, serotype B was prevalent among Vietnamese porcine P. multocida strains. The high antibiotic resistance detected among these isolates gives us an alert about the current state of imprudent antibiotic usage in controlling the pathogenic bacteria. | 2020 | 32636585 |
| 1260 | 6 | 0.9849 | Isolation, Identification, and Antimicrobial Susceptibilities of Bacteria from the Conjunctival Sacs of Dogs with Bacterial Conjunctivitis in Different Regions of Wuhan, China. In order to investigate the bacterial species present in the conjunctival sacs of dogs with bacterial conjunctivitis in Wuhan (Hongshan District, Wuchang District, Jiangxia District, and Huangpi District) and their resistance to aminoglycoside antibiotics, samples of conjunctival sac secretions were collected from 56 dogs with bacterial conjunctivitis in various regions of Wuhan. Drug susceptibility testing for aminoglycoside antibiotics was performed on the most commonly isolated gram-positive and gram-negative bacteria. The expression of two aminoglycoside modifying enzyme genes, aacA-aphD and aac (6')-Ib, and three 16S rRNA methyltransferase genes, rmtB, rmtE and npmA, were analyzed by PCR. The results showed that a total of 123 bacterial strains were cultured from 56 conjunctival sac secretion samples, with Staphylococcus being the most commonly isolated species, followed by Escherichia. Among them, 14 strains of Staphylococcus pseudointermedius were not resistant to tobramycin, amikacin, gentamicin or neomycin, but the resistance rates to streptomycin and kanamycin were 35.71% and 42.86%, respectively. Among them, 14 Escherichia coli strains were not resistant to tobramycin and gentamicin, but they showed high resistance rates to neomycin and kanamycin (both at 50%). The detection rate of the aacA-aphD gene in Staphylococcus pseudointermedius strains was 100%. The detection rates of the rmtB gene and rmtE gene in Escherichia coli were 85.71% and 28.57%, respectively, while the aac(6')-Ib gene and npmA gene were not detected. | 2025 | 39852896 |
| 2096 | 7 | 0.9848 | Investigation of isepamicin in vitro efficiency in Gram negative bacteria efficacy of isepamicin. CONTEXT: Isepamicin is a new semisynthetic aminoglycoside derived from gentamicin B and it is effective against Gram negative bacteria. Antibiotic resistance is an emerging problem and new options need for the treatment of infections caused by Gram negative bacteria. AIMS: In this study we aimed to investigate the in vitro efficiency in carbapenem susceptible and nonsusceptible Enterobacterales and Pseudomonas aeruginosa. METHODS AND MATERIAL: A total of 214 isolates of Gram-negative bacteria (Enterobacterales n = 129 and P. aeruginosa n = 85). Identification of the bacteria was tested in Vitek MS (Biomeriux, France). Susceptibility of isepamicin, amikacin, gentamicin, tobramycin and netilmicin was determined by Kirby Bauer disc diffusion method. The breakpoints for susceptibility to isepamicin, amikacin, gentamicin, streptomycin, tobramycin and netilmicin were evaluated according to the Comité de l'Antibiogramme dela Société Française de Microbiologie (CA-SFM) and EUCAST, respectively. Aminoglycoside modifying enzyme (AME) genes were investigated by multiplex PCR method. RESULTS: Isepamicin susceptibility was determined as 92.3% for Enterobacterales and 67% for P. aeruginosa and 94.4% for carbapenem resistant Enterobacterales. The most common AME gene was aac (6')-Ib in both Enterobacterales (76%) and P. aeruginosa (14.1%). Seven of the isepamicin intermediate or resistant isolates were positive aac (6')-Ib in Enterobacterales and P. aeruginosa. CONCLUSIONS: In this study, isepamicin showed good efficiency against both susceptible and carbapenem nonsusceptible Enterobacterales. But amikacin was prior to isepamicin P. aeruginosa isolates. Isepamicin could be a therapeutic option for the infections caused by Enterobacterales. | 2021 | 33610258 |
| 1265 | 8 | 0.9848 | Coagulase-negative staphylococci (CoNS) isolated from ready-to-eat food of animal origin--phenotypic and genotypic antibiotic resistance. The aim of this work was to study the pheno- and genotypical antimicrobial resistance profile of coagulase negative staphylococci (CoNS) isolated from 146 ready-to-eat food of animal origin (cheeses, cured meats, sausages, smoked fishes). 58 strains were isolated, they were classified as Staphylococcus xylosus (n = 29), Staphylococcus epidermidis (n = 16); Staphylococcus lentus (n = 7); Staphylococcus saprophyticus (n = 4); Staphylococcus hyicus (n = 1) and Staphylococcus simulans (n = 1) by phenotypic and genotypic methods. Isolates were tested for resistance to erythromycin, clindamycin, gentamicin, cefoxitin, norfloxacin, ciprofloxacin, tetracycline, tigecycline, rifampicin, nitrofurantoin, linezolid, trimetoprim, sulphamethoxazole/trimethoprim, chloramphenicol, quinupristin/dalfopristin by the disk diffusion method. PCR was used for the detection of antibiotic resistance genes encoding: methicillin resistance--mecA; macrolide resistance--erm(A), erm(B), erm(C), mrs(A/B); efflux proteins tet(K) and tet(L) and ribosomal protection proteins tet(M). For all the tet(M)-positive isolates the presence of conjugative transposons of the Tn916-Tn1545 family was determined. Most of the isolates were resistant to cefoxitin (41.3%) followed by clindamycin (36.2%), tigecycline (24.1%), rifampicin (17.2%) and erythromycin (13.8%). 32.2% staphylococcal isolates were multidrug resistant (MDR). All methicillin resistant staphylococci harboured mecA gene. Isolates, phenotypic resistant to tetracycline, harboured at least one tetracycline resistance determinant on which tet(M) was most frequent. All of the isolates positive for tet(M) genes were positive for the Tn916-Tn1545 -like integrase family gene. In the erythromycin-resistant isolates, the macrolide resistance genes erm(C) or msr(A/B) were present. Although coagulase-negative staphylococci are not classical food poisoning bacteria, its presence in food could be of public health significance due to the possible spread of antibiotic resistance. | 2015 | 25475289 |
| 1267 | 9 | 0.9848 | Detection and characterization of methicillin-resistant and susceptible coagulase-negative staphylococci in milk from cows with clinical mastitis in Tunisia. OBJECTIVES: This study investigated prevalence of methicillin-resistant (MR) and methicillin-susceptible (MS) coagulase-negative staphylococci (CNS) and the implicated mechanisms of resistance and virulence in milk of mastitis cows. In addition, the presence of SCCmec type was analyzed in MR Staphylococcus epidermidis (MRSE). RESULTS: Three hundred milk samples from cows with clinical mastitis were obtained from 30 dairy farms in different regions of Tunisia. Sixty-eight of the 300 tested samples contained CNS strains. Various CNS species were identified, with Staphylococcus xylosus being the most frequently found (40%) followed by Staphylococcus warneri (12%). The mecA gene was present in 14 of 20 MR-CNS isolates. All of them were lacking the mecC gene. The SCCmecIVa was identified in four MRSE isolates. Most of CNS isolates showed penicillin resistance (70.6%) and 58.3% of them carried the blaZ gene. MR-CNS isolates (n = 20) showed resistance to erythromycin, tetracycline and trimethoprim-sulfametoxazole harboring different resistance genes such us erm(B), erm(T), erm(C), mph(C) or msr(A), tet(K) and dfr(A). However, a lower percentage of resistance was observed among 48 MS-CNS isolates: erythromycin (8.3%), tetracycline (6.2%), streptomycin (6.2%), clindamycin (6.2%), and trimethoprim-sulfametoxazole (2%). The Inu(B) gene was detected in one Staphylococcus xylosus strain that showed clindamycin resistance. The virulence gene tsst-1 was observed in one MR-CNS strain. DISCUSSION: Coagulase-negative staphylococci containing a diversity of antimicrobial resistance genes are frequently detected in milk of mastitis cows. This fact emphasizes the importance of identifying CNS when an intramammary infection is present because of the potential risk of lateral transfer of resistant genes among staphylococcal species and other pathogenic bacteria. | 2018 | 30077662 |
| 2410 | 10 | 0.9848 | Phenotypic and molecular characterization of antimicrobial resistance in Trueperella pyogenes strains isolated from bovine mastitis and metritis. BACKGROUND: Trueperella pyogenes is one of the most clinically imperative bacteria responsible for severe cases of mastitis and metritis, particularly in postpartum dairy cows. The bacterium has emergence of antibiotic resistance and virulence characters. The existing research was done to apprise the phenotypic and genotypic evaluation of antibiotic resistance and characterization of virulence factors in the T. pyogenes bacteria of bovine mastitis and metritis in postpartum cows. METHODS: Two-hundred and twenty-six bovine mastitic milk and 172 uterine swabs were collected and transferred to laboratory. Samples were cultured and T. pyogenes isolates were subjected to disk diffusion and DNA extraction. Distribution of virulence and antibiotic resistance genes was studied by PCR. RESULTS: Thirty-two out of 226 (14.15%) mastitic milk and forty-one out of 172 (23.83%) uterine swab samples were positive for T. pyogenes. Isolates of mastitic milk harbored the highest prevalence of resistance toward gentamicin (100%), penicillin (100%), ampicillin (90.62%), amoxicillin (87.50%) and trimethoprim-sulfamethoxazole (87.50%), while those of metritis harbored the highest prevalence of resistance toward ampicillin (100%), amoxicillin (100%), gentamicin (97.56%), penicillin (97.56%) and cefalexin (97.56%). AacC, aadA1, aadA2 and tetW were the most generally perceived antibiotic resistance genes. All bacteria harbored plo (100%) and fimA (100%) virulence factors. NanP, nanH, fimC and fimE were also the most generally perceived virulence factors. CONCLUSIONS: All bacteria harbored plo and fimA virulence factors which showed that they can use as specific genetic markers with their important roles in pathogenicity of T. pyogenes bacteria. Phenotypic pattern of antibiotic resistance was confirmed by genotypic characterization of antibiotic resistance genes. | 2019 | 31881834 |
| 2413 | 11 | 0.9848 | Antibiotic resistance of Gallibacterium anatis biovar haemolytica isolates from chickens. INTRODUCTION: Gallibacterium anatis is an opportunistic bacteria inducing a range of clinical signs in poultry. Gallibacterium anatis strains show multidrug resistance to antibacterial substances. The purpose of this study was to examine the susceptibility of G. anatis biovar haemolytica isolates collected from the respiratory, reproduction and gastrointestinal tracts of chickens to different antibiotics from various classes. MATERIAL AND METHODS: Gallibacterium anatis biovar haemolytica was identified in tracheal swab and gastrointestinal and reproductive tract tissue samples from Polish layer and broiler chicken flocks. Twenty six isolates with β-haemolysis capability, each from a different flock, obtained from the respiratory (n = 8), reproductive (n = 10) and gastrointestinal (n = 8) tracts were selected and identified by matrix-assisted laser desorption/ionisation-time-of-flight mass spectrometry after culturing. A PCR method targeting the 16S genes was used for verification of isolates. The isolates' susceptibility to 20 antimicrobials was evaluated using the disc diffusion method for 8 drugs and the dilution method for the other 12. In addition, they were tested for the presence of the GtxA, gyrB and flfA virulence genes and blaROB, aphA, tetB and tetH antibiotic resistance genes by PCR. RESULTS: The most prevalent antibiotic resistance was to tilmicosin, tylosin and quinupristin/dalfopristin (all 100%), erythromycin (96.2%), tetracycline (96.2%), linezolid (92.3%) and teicoplanin (92.3%). Universal susceptibility was to only one antibiotic, chloramphenicol. Statistically significant differences were found between the resistance of gastrointestinal tract strains and that of strains from other tracts to daptomycin, gentamicin, ciprofloxacin and colistin. The GtxA and gyrB genes were detected in 100% of isolates and flfA in 19.2%. The isolates most frequently contained tetB and less frequently tetH and aphA, and did not contain blaROB. CONCLUSION: Most G. anatis biovar haemolytica isolates were resistant to many classes of antibiotics. Therefore, it is necessary and important to be vigilant for the occurrence of these bacteria and thorough in their diagnosis. | 2024 | 38525234 |
| 1257 | 12 | 0.9847 | Antimicrobial Susceptibility Pattern in the Bacteria Isolated from Surgical Site Infection: Emphasis on Staphylococcus Aureus; Yasuj City, Southwest Iran. BACKGROUND: Surgical site infections (SSIs) in surgical wards remains the most common cause of postoperative complications and realistically is the third most common origin of healthcare-related conditions. Staphylococcus aureus is undoubtedly the most common bacteria causing SSIs. The current study aimed at investigating the antimicrobial susceptibility pattern in bacteria isolated from SSIs, evaluation of tetracycline resistance genes, and SCCmec typing in S. aureus isolates isolated from patients with SSIs from 2018 to 2019 in Yasuj, Kohgiluyeh, and Boyer-Ahmad Province, Iran. METHODS: This study diligently investigated 240 potential patients. Antimicrobial susceptibility testing was performed properly by the disk diffusion method. For the final confirmation of isolated bacteria, PCR was used. The presence of tet genes and SCCmec typing was carried out by multiplex PCR. RESULTS: The results showed that the most common isolated pathogens included S. aureus, E. coli, P. aeruginosa, Coagulase-negative Staphylococci, and K. pneumonia in 58.8%, 19.8%, 9.2%, 6.8% and 5.4% of cases, respectively. The majority of the Gram positive isolates were resistant against penicillin (86%) and Gram negative were resistant against ciprofloxacin (75.6%). In isolates of Staphylococcus aureus, the mecA gene was detected in 63.6% of isolates. The predominant SCCmec types were type III (59.1%) and type I (18.4%). The tetK and tetM genes were detected in 80.7% and 71.9% of the S. aureus isolates, respectively. There was a statistically significant difference between tet genes (tetK and tetM) from the viewpoint of resistance to tetracycline (p = 0.024). CONCLUSIONS: According to the results of the current study, it is recommended to administer vancomycin, amikacin, and imipenem in Yasuj to treat SSIs. | 2021 | 33616327 |
| 2384 | 13 | 0.9847 | Phenotypic and genetic characteristics of vancomycin-resistant Enterococcus faecium. This study was based on 43 vancomycin-resistant Enterococcus faecium (VREfm) strains collected from clinical specimens. Susceptibility testing and resistance gene amplification revealed that these strains had multidrug resistance and all belonged to the VanA phenotype. Furthermore, there were seven ST types, and all belonged to the clonal complex (CC17); ST17 and ST78 were the main ST types. In particular, ST1392 and ST1394 are novel ST types first identified in this research. Genome analysis of SY1, LY19 and LY22 showed that tet(O)and tet(K) were the genes responsible for tetracycline resistance; acc(6')-Ie-aph(2')-Ia and aad(6) led to high-level gentamicin and high-level streptomycin resistance. At the same time, the genomic variation among the strains was large, which is of great significance for the prevention and control of the bacteria. | 2019 | 30597255 |
| 2672 | 14 | 0.9847 | Antimicrobial-Resistance and Virulence-Associated Genes of Pasteurella multocida and Mannheimia haemolytica Isolated from Polish Dairy Calves with Symptoms of Bovine Respiratory Disease. Bovine respiratory disease causes significant economic losses in cattle farming due to mortality, treatment costs, and reduced productivity. It involves viral and bacterial infections, with Pasteurella multocida and Mannheimia haemolytica key bacterial pathogens. These bacteria contribute to severe pneumonia and are often found together. Poland has one of the highest levels of antimicrobial use in food-producing animals among European Union countries. A total of 70 bacterial strains were analyzed, 48 P. multocida and 22 M. haemolytica, collected from affected calves' respiratory tracts. The bacterial species were confirmed molecularly using PCR, which was also employed to detect antimicrobial resistance and virulence-associated genes. Antimicrobial susceptibility was determined using the broth microdilution method. Antimicrobial resistance varied between the two bacterial species studied. The highest resistance in P. multocida was to chlortetracycline 79.2% (38/48) and oxytetracycline 81.3% (39/48), while M. haemolytica showed 63.6% (14/22) resistance to penicillin and tilmicosin. The highest susceptibility was found for fluoroquinolones: P. multocida demonstrated 91.7% (44/48) susceptibility to enrofloxacin and 87.5% (42/48) to danofloxacin, while 77.3% (17/22) of M. haemolytica were susceptible to both tested fluoroquinolones. The tetH and tetR genes were observed only in P. multocida, at frequencies of 20.8% (10/48) and 16.7% (8/48), respectively. Both species carried the mphE and msrE genes, though at lower frequencies. All M. haemolytica contained the lkt, gs60, and gcp genes. All P. multocida carried the sodA gene, while the hgbB and ompH genes were present in 37.5% (18/48) and 20.8% (10/48) of strains, respectively. The highest resistance was observed against the most commonly used antibiotics in the European Union, although the resistance differed between the studied bacterial species and each strain exhibited the presence of at least one virulence gene. | 2025 | 40142384 |
| 2189 | 15 | 0.9847 | High prevalence of Panton-Valentine Leucocidin (PVL) toxin carrying MRSA and multidrug resistant gram negative bacteria in late onset neonatal sepsis indicate nosocomial spread in a Pakistani tertiary care hospital. BACKGROUND: Neonatal sepsis has high incidence with significant mortality and morbidity rates in Pakistan. We investigated common etiological patterns of neonatal sepsis at a tertiary care setup. METHODS: 90 pus and blood, gram negative and gram positive bacterial isolates were analyzed for virulence and antibiotic resistance gene profiling using PCR and disc diffusion methods. RESULTS: Staphylococcus aureus showed strong association with neonatal sepsis (43 %) followed by Citrobacter freundii (21 %), Pseudomonas aeruginosa (13 %), Escherichia coli (15 %) and Salmonella enterica (8 %). Molecular typing of E. coli isolates depicted high prevalence of the virulent F and B2 phylogroups, with 4 hypervirulent phylogroup G isolates. 76.9 % S. aureus isolates showed presence of Luk-PV, encoding for Panton-valentine leucocidin (PVL) toxin with majority also carrying MecA gene and classified as methicillin resistant S. aureus (MRSA). ecpA, papC, fimH and traT virulence genes were detected in E. coli and Salmonella isolates. 47 % Citrobacter freundii isolates carried the shiga like toxin SltII B. Antimicrobial resistance profiling depicted common resistance to cephalosporins, beta lactams and fluoroquinolones. CONCLUSION: Presence of PVL carrying MRSA and multidrug resistant gram negative bacteria, all isolated from late onset sepsis neonates indicate a predominant nosocomial transmission pattern which may complicate management of the disease in NICU setups. | 2023 | 36621204 |
| 2367 | 16 | 0.9847 | Vancomycin resistant Streptococcus equi subsp. equi isolated from equines suffering from respiratory manifestation in Egypt. BACKGROUND AND AIM: Upper respiratory tract infections are common in horses and can be caused by a variety of pathogens, mainly Streptococcus equi subsp. equi, which are a significant equine pathogen causing major health issues as well as financial losses to the equine industry. This study aimed to determine the prevalence of Streptococcal bacteria in equines in Egypt, and characterize vancomycin-resistant S. equi subsp. equi phenotypically and genotypically. MATERIALS AND METHODS: S. equi subsp. equi was isolated from internal nares of horses. All strains were confirmed by polymerase chain reaction-based detection of Streptococcus genus-specific 16S rRNA, sodA and seeI genes. Antibiotic susceptibility was determined phenotypically using the disk diffusion method. Genotypic detection of antibiotic resistance genes was performed by analyzing as b-lactamase resistance (blaZ), tetracycline resistance (tetK), vancomycin resistance (vanA), and chloramphenicol resistance (fexA). RESULTS: Eight streptococcal isolates were confirmed as S. equi subsp. equi. The genotypic characterization of antibiotic resistance showed resistance to vanA and tetK, with a frequency of 87.5% and 12.5%, respectively, while the frequency of sensitivity was 100% for blaz gene and fexA gene. CONCLUSION: In this study, we assessed vancomycin-resistant S. equi subsp. equi from equines suffering from respiratory manifestation in Egypt. | 2021 | 34475702 |
| 1323 | 17 | 0.9847 | Detection of antibiotic resistant enterococci and Escherichia coli in free range Iberian Lynx (Lynx pardinus). Thirty fecal samples from wild specimens of Iberian lynx were collected and analyzed for Enterococcus spp. (27 isolates) and Escherichia coli (18 isolates) recovery. The 45 isolates obtained were tested for antimicrobial resistance, molecular mechanisms of resistance, and presence of virulence genes. Among the enterococci, Enterococcus faecium and Enterococcus hirae were the most prevalent species (11 isolates each), followed by Enterococcus faecalis (5 isolates). High percentages of resistance to tetracycline and erythromycin (33% and 30%, respectively) were detected among enterococcal isolates. The tet(M) and/or tet(L), erm(B), aac(6')-Ie-aph(2″)-Ia, ant(6)-Ia, or aph(3')-IIIa genes were detected among resistant enterococci. Virulence genes were detected in one E. faecalis isolate (cpd, cylB, and cylL) and one E. hirae isolate (cylL). High percentages of resistance were detected in E. coli isolates to tetracycline (33%), streptomycin (28%), nalidixic acid (28%), and sulfamethoxazole-trimethoprim (SXT, 22%). Additionally, the blaTEM, tet(A), aadA, cmlA, and different combinations of sul genes were detected among most ampicillin, tetracycline, streptomycin, chloramphenicol and SXT-resistant isolates, respectively. Two isolates contained a class 1 integron with the gene cassette arrays dfrA1 + aadA1 and dfrA12 + aadA2. The E. coli isolates were ascribed to phylo-groups A (n=5); B1 (n=4); B2 (n=6), and D (n=3), with the virulence gene fimA present in all E. coli isolates. This study found resistance genes in wild specimens of Iberian lynx. Thus, it is important to notice that multiresistant bacteria have reached species as rare and completely non-synanthropic as the Iberian lynx. Furthermore, the susceptibility of this endangered species to bacterial infection may be affected by the presence of these virulence and resistance genes. | 2013 | 23588135 |
| 1112 | 18 | 0.9846 | Molecular Analysis of Antimicrobial Resistance among Enterobacteriaceae Isolated from Diarrhoeic Calves in Egypt. The present study was designed to investigate the presence of genes that conferred resistance to antimicrobials among Enterobacteriaceae that were isolated from diarrhoeic calves. A total of 120 faecal samples were collected from diarrhoeic calves that were raised in Kafr El-Sheikh governorate, Egypt. The samples were screened for Enterobacteriaceae. A total of 149 isolates of bacteria were recovered and identified; Escherichia coli was found to be the most overwhelming species, followed by Citrobacter diversus, Shigella spp., Serratia spp., Providencia spp., Enterobacter spp., Klebsiella pneumoniae, Proteus spp., Klebsiella oxytoca, and Morganella morganii. All isolates were tested for susceptibility to 12 antimicrobials; resistant and intermediately resistant strains were screened by conventional polymerase chain reaction for the presence of antimicrobial resistance genes. Of the 149 isolates, 37 (24.8%) exhibited multidrug resistant phenotypes. The most prevalent multidrug resistant species were E. coli, C. diversus, Serratia spp., K. pneumoniae, Shigella spp., Providencia spp., and K. oxytoca. Class 1 integrons were detected in 28 (18.8%) isolates. All isolates were negative for class 2 integrons. The bla(TEM) gene was identified in 37 (24.8%) isolates, whereas no isolates carried the bla(CTX-M) gene(.) The florfenicol gene (floR) was detected in two bacterial isolates (1.3%). The findings of this study reveal that calves may act as potential reservoirs of multidrug resistant bacteria that can be easily transmitted to humans. | 2021 | 34201226 |
| 5871 | 19 | 0.9846 | Plasmid-mediated florfenicol resistance in Pasteurella trehalosi. OBJECTIVES: A florfenicol-resistant Pasteurella trehalosi isolate from a calf was investigated for the presence and the location of the gene floR. METHODS: The P. trehalosi isolate 13698 was investigated for its in vitro susceptibility to antimicrobial agents and its plasmid content. A 14.9 kb plasmid, designated pCCK13698, was identified by transformation into Pasteurella multocida to mediate resistance to florfenicol, chloramphenicol and sulphonamides. The plasmid was sequenced completely and analysed for its structure and organization. RESULTS: Plasmid pCCK13698 exhibited extended similarity to plasmid pHS-Rec from Haemophilus parasuis including the region carrying the parA, repB, rec and int genes. Moreover, it revealed similarities to plasmid RSF1010 in the parts covering the mobC and repA-repC genes and to plasmid pMVSCS1 in the parts covering the sul2-catA3-strA gene cluster. Moreover, the floR gene area corresponded to that of transposon TnfloR. In addition, two complete insertion sequences were detected that were highly similar to IS1593 from Mannheimia haemolytica and IS26 from Enterobacteriaceae. Several potential recombination sites were identified that might explain the development of plasmid pCCK13698 by recombination events. CONCLUSIONS: The results of this study showed that in the bovine pathogen P. trehalosi, floR-mediated resistance to chloramphenicol and florfenicol was associated with a plasmid, which also carried functionally active genes for resistance to sulphonamides (sul2) and chloramphenicol (catA3). This is to the best of our knowledge the first report of resistance genes in P. trehalosi and only the second report of the presence of a florfenicol-resistance gene in target bacteria of the family Pasteurellaceae. | 2006 | 16670108 |