# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 803 | 0 | 0.9803 | Nucleotide sequences and genetic analysis of hydrogen oxidation (hox) genes in Azotobacter vinelandii. Azotobacter vinelandii contains a heterodimeric, membrane-bound [NiFe]hydrogenase capable of catalyzing the reversible oxidation of H2. The beta and alpha subunits of the enzyme are encoded by the structural genes hoxK and hoxG, respectively, which appear to form part of an operon that contains at least one further potential gene (open reading frame 3 [ORF3]). In this study, determination of the nucleotide sequence of a region of 2,344 bp downstream of ORF3 revealed four additional closely spaced or overlapping ORFs. These ORFs, ORF4 through ORF7, potentially encode polypeptides with predicted masses of 22.8, 11.4, 16.3, and 31 kDa, respectively. Mutagenesis of the chromosome of A. vinelandii in the area sequenced was carried out by introduction of antibiotic resistance gene cassettes. Disruption of hoxK and hoxG by a kanamycin resistance gene abolished whole-cell hydrogenase activity coupled to O2 and led to loss of the hydrogenase alpha subunit. Insertional mutagenesis of ORF3 through ORF7 with a promoterless lacZ-Kmr cassette established that the region is transcriptionally active and involved in H2 oxidation. We propose to call ORF3 through ORF7 hoxZ, hoxM, hoxL, hoxO, and hoxQ, respectively. The predicted hox gene products resemble those encoded by genes from hydrogenase-related operons in other bacteria, including Escherichia coli and Alcaligenes eutrophus. | 1992 | 1624446 |
| 6082 | 1 | 0.9787 | Complete genome sequence of the probiotic candidate strain Lacticaseibacillus rhamnosus B3421 isolated from Panax ginseng C. A. Meyer in South Korea. OBJECTIVES: Lacticaseibacillus rhamnosus is a widely recognized probiotic bacteria with therapeutic applications in human and animal health. The L. rhamnosus B3421 strain, isolated from Panax ginseng, has been reported to be associated with antioxidant and anti-inflammatory properties, supporting its functional potential. We sequenced and analyzed the genome of L. rhamnosus B3421 to evaluate its probiotic potential for human healthcare and animal applications, focusing on genomic features related to safety and functionality. DATA DESCRIPTION: In this study, we isolated L. rhamnosus B3421 from Panax ginseng C. A. Meyer (Ginseng) and performed whole-genome sequencing. The genome of L. rhamnosus B3421 consists of 3,000,051 base pairs (bp) with a guanine + cytosine (G + C) content of 46.70%. It encodes 59 transfer RNAs, 15 ribosomal RNAs, and 2,807 coding sequences (CDSs). Of these CDSs, 99.13% (2,758 proteins) were assigned to functional categories in the Clusters of Orthologous Group (COGs) classification system, while 49 proteins remained uncharacterized. Our genome analysis identified no antibiotic resistance (ABR) or antimicrobial resistance (AMR) genes, indicating that L. rhamnosus B3421 is a safe probiotic bacterium with minimal risk of contributing to the horizontal transfer of antibiotic resistance within the gut microbiome. Additionally, the genome contains genes associated with the ggmotif (PF10439), Enterocin X chain beta, and Carnocin CP52, as identified through BAGEL4 analysis, along with 24 other genes related to reductase or peroxidase activities. These genes may confer competitive advantages against pathogenic bacteria and oxidative stress. Our findings highlight the probiotic potential of L. rhamnosus B3421 and its prospective applications in promoting human and animal health. | 2025 | 40877785 |
| 6135 | 2 | 0.9784 | Complete genome sequence of Bifidobacterium animalis subsp. lactis KLDS 2.0603, a probiotic strain with digestive tract resistance and adhesion to the intestinal epithelial cells. Bifidobacterium animalis subsp. lactis KLDS 2.0603 (abbreviated as KLDS 2.0603) is a probiotic strain isolated from the feces of an adult human. Previous studies showed that KLDS 2.0603 has a high resistance to simulated digestive tract conditions and a high ability to adhere to intestinal epithelial cells (Caco-2). These two characteristics are essential requirements for the selection of probiotic bacteria. To explore the stress resistance mechanism to the digestive tract environment and the adhesive proteins of this strain, in this paper, we reported the complete genome sequence of KLDS 2.0603, which contains 19,469bp and encodes 1614 coding sequences(CDSs), 15 rRNA genes, 52 tRNA genes with 1678 open reading frames. | 2016 | 26795356 |
| 6139 | 3 | 0.9779 | Complete genome and two plasmids sequences of Lactiplantibacillus plantarum L55 for probiotic potentials. In this study, we report the complete genome sequence of Lactiplantibacillus plantarum L55, a probiotic strain of lactic acid bacteria isolated from kimchi. The genome consists of one circular chromosome (2,077,416 base pair [bp]) with a guanine cytosine (GC) content of 44.5%, and two circular plasmid sequences (54,267 and 19,592 bp, respectively). We also conducted a comprehensive analysis of the genome, which identified the presence of functional genes, genomic islands, and antibiotic-resistance genes. The genome sequence data presented in this study provide insights into the genetic basis of L. plantarum L55, which could be beneficial for the future development of probiotic applications. | 2023 | 38616876 |
| 6134 | 4 | 0.9777 | Complete genome and gene expression analyses of Asaia bogorensis reveal unique responses to culture with mammalian cells as a potential opportunistic human pathogen. Asaia bogorensis, a member of acetic acid bacteria (AAB), is an aerobic bacterium isolated from flowers and fruits, as well as an opportunistic pathogen that causes human peritonitis and bacteraemia. Here, we determined the complete genomic sequence of the As. bogorensis type strain NBRC 16594, and conducted comparative analyses of gene expression under different conditions of co-culture with mammalian cells and standard AAB culture. The genome of As. bogorensis contained 2,758 protein-coding genes within a circular chromosome of 3,198,265 bp. There were two complete operons encoding cytochrome bo3-type ubiquinol terminal oxidases: cyoABCD-1 and cyoABCD-2. The cyoABCD-1 operon was phylogenetically common to AAB genomes, whereas the cyoABCD-2 operon belonged to a lineage distinctive from the cyoABCD-1 operon. Interestingly, cyoABCD-1 was less expressed under co-culture conditions than under the AAB culture conditions, whereas the converse was true for cyoABCD-2. Asaia bogorensis shared pathogenesis-related genes with another pathogenic AAB, Granulibacter bethesdensis, including a gene coding pathogen-specific large bacterial adhesin and additional genes for the inhibition of oxidation and antibiotic resistance. Expression alteration of the respiratory chain and unique hypothetical genes may be key traits that enable the bacterium to survive under the co-culture conditions. | 2015 | 26358298 |
| 527 | 5 | 0.9774 | Characterization of the bagremycin biosynthetic gene cluster in Streptomyces sp. Tü 4128. Bagremycin A and bagremycin B isolated from Streptomyces sp. Tü 4128 have activities against Gram-positive bacteria, fungi and also have a weak antitumor activity, which make them have great potential for development of novel antibiotics. Here, we report a draft genome 8,424,112 bp in length of S. sp. Tü 4128 by Illumina Hiseq2000, and identify the bagremycins biosynthetic gene cluster (BGC) by bioinformatics analysis. The putative bagremycins BGC includes 16 open reading frames (ORFs) with the functions of biosynthesis, resistance and regulation. Disruptions of relative genes and HPLC analysis of bagremycins production demonstrated that not all the genes within the BGC are responsible for the biosynthesis of bagremycins. In addition, the biosynthetic pathways of bagremycins are proposed for deeper inquiries into their intriguing biosynthetic mechanism. | 2019 | 30526412 |
| 5213 | 6 | 0.9772 | Draft genome sequences of Limosilactobacillus fermentum IJAL 01 335, isolated from a traditional cereal fermented dough. Limosilactobacillus fermentum IJAL 01 335 was isolated from mawè, a spontaneously fermented cereal dough from Benin. The 1.83 Mb draft genome sequence (52.37% GC) comprises 154 contigs, 1,836 coding sequences, and 23 predicted antibiotic resistance genes, providing insights into its genetic features and potential application in food fermentation. | 2025 | 41170963 |
| 822 | 7 | 0.9772 | Exoglucanase-encoding genes from three Wickerhamomyces anomalus killer strains isolated from olive brine. Wickerhamomyces anomalus killer strains are important for fighting pathogenic yeasts and for controlling harmful yeasts and bacteria in the food industry. Targeted disruption of key genes in β-glucan synthesis of a sensitive Saccharomyces cerevisiae strain conferred resistance to the toxins of W. anomalus strains BS91, BCA15 and BCU24 isolated from olive brine. Competitive inhibition of the killing activities by laminarin and pustulan refer to β-1,3- and β-1,6-glucans as the main primary toxin targets. The extracellular exoglucanase-encoding genes WaEXG1 and WaEXG2 from the three strains were sequenced and were found to display noticeable similarities to those from known potent W. anomalus killer strains. | 2013 | 23148020 |
| 362 | 8 | 0.9772 | Complete Genome Sequences of Highly Arsenite-Resistant Bacteria Brevibacterium sp. Strain CS2 and Micrococcus luteus AS2. The complete genome sequences of two highly arsenite-resistant Actinomycetales isolates are presented. Both genomes are G+C rich and consist of a single chromosome containing homologs of known arsenite resistance genes. | 2019 | 31371538 |
| 6118 | 9 | 0.9770 | Integrated genomics and transcriptomics reveal the extreme heavy metal tolerance and adsorption potentiality of Staphylococcus equorum. In this study, we successfully isolated 11 species of cadmium-tolerant bacterium from Pu-erh rhizosphere soil, of which Staphylococcus equorum PU1 showed the highest cadmium tolerance, with a minimum inhibitory concentration (MIC) value of 500 mg/L. The cadmium removal efficiency of PU1 in 400 mg/L cadmium medium reached 58.7 %. Based on the Nanopore PromethION and Illumina NovaSeq platforms, we successfully obtained the complete PU1 genome with a size of 2,705,540 bp, which encoded 2729 genes. We further detected 82 and 44 indel mutations in the PU1 genome compared with the KS1039 and KM1031 genomes from the database. Transcriptional analysis showed that the expression of 11 genes in PU1 increased with increasing cadmium concentrations (from 0 to 200, then to 400 mg/L), which encoded cadmium resistance, cadmium transport, and mercury resistance genes. In addition, some genes showed differential expression patterns with changes in cadmium concentration, including quinone oxidoreductase-like protein, ferrous iron transport protein, and flavohemoprotein. Gene Ontology (GO) functions, including oxidation reduction process and oxidoreductase activity functions, and KEGG pathways, including glycolysis/gluconeogenesis and biosynthesis of secondary metals, were also considered closely related to the extreme cadmium tolerance of PU1. This study provides novel insight into the cadmium tolerance mechanism of bacteria. | 2023 | 36592848 |
| 6146 | 10 | 0.9768 | Arsenic resistance genes of As-resistant purple nonsulfur bacteria isolated from As-contaminated sites for bioremediation application. This study aimed to identify arsenic resistant mechanisms in As-resistant purple nonsulfur bacteria (PNSB) by screening them for presence of As-resistance genes and related enzymes. Resistance to As(III) and As(V) of four As-resistant PNSB determined in terms of median inhibition concentration (IC(50) values) were in the order of strains Rhodopseudomonas palustris C1 > R. palustris AB3 > Rubrivivax benzoatilyticus C31 > R. palustris L28 which corresponded to the presence of As-resistance genes in these bacteria. The strain C1 showed all As-marker genes; arsC, arsM, aioA, and acr3, while aioA was not detected in strain AB3. Strains C31 and L28 had only Arsenite-transporter gene, acr3. Translation of all these detected gene sequences of strain C1 to amino acid sequences showed that these proteins have vicinal cysteine; Cys126, Cys105, and Cys178 of Acr3, ArsC, AioA, respectively. Tertiary structure of proteins Acr3, ArsC, AioA, and ArsM showed strain C1 exhibits the high activities of arsenite oxidase and arsenate reductase enzymes that are encoded by aioA and arsC genes, respectively. Moreover, strain C1 with arsM gene produced volatile-methylated As-compounds; monomethylarsonic acid (MMA), dimethylarsenic acid (DMA), and arsenobetaine (AsB) in the presence of either As(III) or As(V). In conclusion, the strain C1 has great potential for its application in bioremediation of As-contaminated sites. | 2017 | 28054716 |
| 6077 | 11 | 0.9767 | Brytella acorum gen. nov., sp. nov., a novel acetic acid bacterium from sour beverages. Polyphasic taxonomic and comparative genomic analyses revealed that a series of lambic beer isolates including strain LMG 32668(T) and the kombucha isolate LMG 32879 represent a novel species among the acetic acid bacteria, with Acidomonas methanolica as the nearest phylogenomic neighbor with a valid name. Overall genomic relatedness indices and phylogenomic and physiological analyses revealed that this novel species was best classified in a novel genus for which we propose the name Brytella acorum gen. nov., sp. nov., with LMG 32668(T) (=CECT 30723(T)) as the type strain. The B. acorum genomes encode a complete but modified tricarboxylic acid cycle, and complete pentose phosphate, pyruvate oxidation and gluconeogenesis pathways. The absence of 6-phosphofructokinase which rendered the glycolysis pathway non-functional, and an energy metabolism that included both aerobic respiration and oxidative fermentation are typical metabolic characteristics of acetic acid bacteria. Neither genome encodes nitrogen fixation or nitrate reduction genes, but both genomes encode genes for the biosynthesis of a broad range of amino acids. Antibiotic resistance genes or virulence factors are absent. | 2023 | 37429096 |
| 823 | 12 | 0.9767 | Characterization of the prtA and prtB genes of Erwinia chrysanthemi EC16. Two tandem metalloprotease-encoding structural genes, prtA and prtB, were sequenced from Erwinia chrysanthemi EC16. These were highly homologous to previously reported genes from the same bacteria, as well as to three other metalloprotease-encoding genes from enteric bacteria. The three tandem prt structural genes from strain EC16 were closely linked to a cluster of genes previously found to be essential for extracellular secretion of the metalloproteases. | 1993 | 8224883 |
| 6138 | 13 | 0.9766 | Draft genome of five Cupriavidus plantarum strains: agave, maize and sorghum plant-associated bacteria with resistance to metals. Five strains of Cupriavidus plantarum, a metal-resistant, plant-associated bacterium, were selected for genome sequencing through the Genomic Encyclopedia of Bacteria and Archaea (GEBA) Phase IV project at the Joint Genome Institute (JGI) of the U.S. Department of Energy (DOE). The genome of the strains was in the size range of 6.2-6.4 Mbp and encoded 5605-5834 proteins; 16.9-23.7% of these genes could not be assigned to a COG-associated functional category. The G + C content was 65.83-65.99%, and the genomes encoded 59-67 stable RNAs. The strains were resistant in vitro to arsenite, arsenate, cobalt, chromium, copper, nickel and zinc, and their genomes possessed the resistance genes for these metals. The genomes also encoded the biosynthesis of potential antimicrobial compounds, such as terpenes, phosphonates, bacteriocins, betalactones, nonribosomal peptides, phenazine and siderophores, as well as the biosynthesis of cellulose and enzymes such as chitinase and trehalase. The average nucleotide identity (ANI) and DNA-DNA in silico hybridization of the genomes confirmed that C. plantarum is a single species. Moreover, the strains cluster within a single group upon multilocus sequence analyses with eight genes and a phylogenomic analyses. Noteworthy, the ability of the species to tolerate high concentrations of different metals might prove useful for bioremediation of naturally contaminated environments. | 2020 | 32405446 |
| 6149 | 14 | 0.9765 | Characterization and whole-genome sequencing of an extreme arsenic-tolerant Citrobacter freundii SRS1 strain isolated from Savar area in Bangladesh. Citrobacter freundii SRS1, gram-negative bacteria, were isolated from Savar, Bangladesh. The strain could tolerate up to 80 mmol L(-1) sodium arsenite, 400 mmol L(-1) sodium arsenate, 5 mmol L(-1) manganese sulfate, 3 mmol L(-1) lead nitrate, 2.5 mmol L(-1) cobalt chloride, 2.5 mmol L(-1) cadmium acetate, and 2.5 mmol L(-1) chromium chloride. The whole-genome sequencing revealed that the genome size of C. freundii SRS1 is estimated to be 5.4 Mb long, and the G + C content is 51.7%. The genome of C. freundii SRS1 contains arsA, arsB, arsC, arsD, arsH, arsR, and acr3 genes for arsenic resistance; czcA, czcD, cbiN, and cbiM genes for cobalt resistance; chrA and chrB genes for chromium resistance; mntH, sitA, sitB, sitC, and sitD genes for manganese resistance; and zntA gene for lead and cadmium resistance. This novel acr3 gene has never previously been reported in any C. freundii strain except SRS1. A set of 130 completely sequenced strains of C. freundii was selected for phylogenomic analysis. The phylogenetic tree showed that the SRS1 strain is closely related to the C. freundii 62 strain. Further analyses of the genes involved in metal and metalloid resistance might facilitate identifying the mechanisms and pathways involved in high metal resistance in the C. freundii SRS1 strain. | 2023 | 36332226 |
| 5189 | 15 | 0.9764 | Genomic analysis of halophilic bacterium, Lentibacillus sp. CBA3610, derived from human feces. BACKGROUND: Lentibacillus species are gram variable aerobic bacteria that live primarily in halophilic environments. Previous reports have shown that bacteria belonging to this species are primarily isolated from salty environments or food. We isolated a bacterial strain CBA3610, identified as a novel species of the genus Lentibacillus, from a human fecal sample. In this report, the whole genome sequence of Lentibacillus sp. CBA3610 is presented, and genomic analyses are performed. RESULTS: Complete genome sequence of strain CBA3610 was obtained through PacBio RSII and Illumina HiSeq platforms. The size of genome is 4,035,571 bp and genes estimated to be 4714 coding DNA sequences and 64 tRNA and 17 rRNA were identified. The phylogenetic analysis confirmed that it belongs to the genus Lentibacillus. In addition, there were genes related to antibiotic resistance and virulence, and genes predicted as CRISPR and prophage were also identified. Genes related to osmotic stress were found according to the characteristics of halophilic bacterium. Genomic differences from other Lentibacillus species were also confirmed through comparative genomic analysis. CONCLUSIONS: Strain CBA3610 is predicted to be a novel candidate species of Lentibacillus through phylogenetic analysis and comparative genomic analysis with other species in the same genus. This strain has antibiotic resistance gene and pathogenic genes. In future, the information derived from the results of several genomic analyses of this strain is thought to be helpful in identifying the relationship between halophilic bacteria and human gut microbiota. | 2021 | 34162403 |
| 6088 | 16 | 0.9764 | Complete Genome of Achromobacter xylosoxidans, a Nitrogen-Fixing Bacteria from the Rhizosphere of Cowpea (Vigna unguiculata [L.] Walp) Tolerant to Cucumber Mosaic Virus Infection. Achromobacter xylosoxidans is one of the nitrogen-fixing bacteria associated with cowpea rhizosphere across Africa. Although its role in improving soil fertility and inducing systemic resistance in plants against pathogens has been documented, there is limited information on its complete genomic characteristics from cowpea roots. Here, we report the complete genome sequence of A. xylosoxidans strain DDA01 isolated from the topsoil of a field where cowpea plants tolerant to cucumber mosaic virus (CMV) were grown in Ibadan, Nigeria. The genome of DDA01 was sequenced via Illumina MiSeq and contained 6,930,067 nucleotides with 67.55% G + C content, 73 RNAs, 59 tRNAs, and 6421 protein-coding genes, including those associated with nitrogen fixation, phosphate solubilization, Indole3-acetic acid production, and siderophore activity. Eleven genetic clusters for secondary metabolites, including alcaligin, were identified. The potential of DDA01 as a plant growth-promoting bacteria with genetic capabilities to enhance soil fertility for resilience against CMV infection in cowpea is discussed. To our knowledge, this is the first complete genome of diazotrophic bacteria obtained from cowpea rhizosphere in sub-Saharan Africa, with potential implications for improved soil fertility, plant disease resistance, and food security. | 2024 | 39278894 |
| 6084 | 17 | 0.9764 | Characterization and identification of Pseudomonas sp. AW4, an arsenic-resistant and plant growth-promoting bacteria isolated from the soybean (Glycine max L.) rhizosphere. Pseudomonas sp. AW4 is a highly arsenic (As) resistant bacterium with plant growth promoting properties, originally isolated from the soybean (Glycine max L.) rhizosphere. In order to safely use this isolate in diverse bioformulations, its characterization needs to be completed and a reliable identification must be provided. In the present work, we analyzed the morpho-physiological, biochemical and genomic characteristics of Pseudomonas sp. AW4. Identification of the isolate varied according to the parameters analyzed, mainly biochemical and physiological tests or individual genes and phylogenetic analyses. In this regard, we performed massive sequencing of its genome, in order to consistently complete its characterization and identification. Pseudomonas sp. AW4 formed a monophyletic clade with P. urmiensis SWRI10, presenting 3.08 % of unique genes against this reference isolate. More than 70 % of AW4 genes were also shared with P. oryziphila strain 1257 NZ and with P. reidholzensis strain CCOS 865. The search for genes related to As resistance evidenced the presence of the operon arsHRBC. Taken together, results of the present work allow identification of this bacterium as Pseudomonas urmiensis AW4 and open up a number of opportunities to study this strain and understand the mechanisms of arsenic resistance and plant growth promotion. | 2025 | 39647648 |
| 6081 | 18 | 0.9764 | In vitro probiotic characteristics and whole-genome sequence analysis of lactic acid bacteria isolated from monkey faeces. This study aimed to isolate lactic acid bacteria from monkey faeces and evaluate their safety and probiotic properties through a combination of in vitro assays and complete genomic sequencing. The results revealed that two Limosilactobacillus reuteri strains (LDHa and LSHe) exhibited promising probiotic attributes: no hemolytic activity, remarkable antibacterial activity against intestinal pathogens, high bile salt tolerance (77.46% survival rate for LDHa at 0.3% bile salt concentration), excellent gastrointestinal resistance (survival rate > 40%), and favorable surface characteristics (63.92-66.00% auto-aggregation; 91.33-93.80% hydrophobicity). The whole genome sequencing results revealed that strain LDHa has a total length of 2,031,794 bp with a GC content of 39.02% and contains (Strompfová et al. 2014) coding genes. The LSHe strain has a total length of 2,031,507 bp with a GC content of 39.02% and contains 1954 coding genes. Genomic analysis revealed that both strains possess four CRISPR sequences and one secondary metabolic gene cluster, with functional annotations from the EGGNOG, KEGG, and CAZy databases demonstrating genome stability; the absence of horizontally transferable antibiotic resistance genes; the enrichment of metabolic pathway-related genes, and probiotic-associated functional potential including antimicrobial, anti-inflammatory, immunomodulatory, and antitumor activities. This study demonstrated that L. reuteri LDHa and LSHe exhibit favorable safety profiles and probiotic potential at both physiological and genomic levels, positioning them as promising candidates for probiotic formulations in captive primate populations. | 2025 | 40852645 |
| 6087 | 19 | 0.9763 | Draft genome of Raoultella planticola, a high lead resistance bacterium from industrial wastewater. Isolation of heavy metals-resistant bacteria from their original habitat is a crucial step in bioremediation. Six lead (Pb) resistant bacterial strains were isolated and identified utilizing 16S rRNA to be Enterobacter ludwigii FACU 4, Shigella flexneri FACU, Microbacterium paraoxydans FACU, Klebsiella pneumoniae subsp. pneumonia FACU, Raoultella planticola FACU 3 and Staphylococcus xylosus FACU. It was determined that all these strains had their Minimum inhibitory concentration (MIC) to be 2500 ppm except R. planticola FACU 3 has a higher maximum tolerance concentration (MTC) up to 2700 ppm. We evaluated the survival of all six strains on lead stress, the efficiency of biosorption and lead uptake. It was found that R. planticola FACU 3 is the highest MTC and S. xylosus FACU was the lowest MTC in this evaluation. Therefore, transmission electron microscopy (TEM) confirmed the difference between the morphological responses of these two strains to lead stress. These findings led to explore more about the genome of R. planticola FACU 3 using illumine Miseq technology. Draft genome sequence analysis revealed the genome size of 5,648,460 bp and G + C content 55.8% and identified 5526 CDS, 75 tRNA and 4 rRNA. Sequencing technology facilitated the identification of about 47 genes related to resistance to many heavy metals including lead, arsenic, zinc, mercury, nickel, silver and chromium of R. planticola FACU 3 strain. Moreover, genome sequencing identified plant growth-promoting genes (PGPGs) including indole acetic acid (IAA) production, phosphate solubilization, phenazine production, trehalose metabolism and 4-hydroxybenzoate production genes and a lot of antibiotic-resistant genes. | 2023 | 36715862 |