GROUPING - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
200700.9880Novel ISCR1-linked resistance genes found in multidrug-resistant Gram-negative bacteria in southern China. Non-duplicate multidrug-resistant (MDR) Gram-negative bacteria (n=1329) isolated from southern China between January 2008 and December 2009 were investigated for the presence of ISCR1 as well as characterisation of ISCR1-linked resistance genes. Of 433 ISCR1-positive strains, 151 appeared to carry ISCR1-linked resistance genes. Seven different ISCR1-linked resistance gene arrays were identified by restriction fragment length polymorphism (RFLP) and DNA sequencing analysis. Many of these arrays are reported in some species for the first time. A total of 12 genes, including a novel ABC transporter (GenBank accession no. GU944725), qnrA1, qnrB2, qnrB6, bla(DHA-1), ampR, bla(CTX-M-9), bla(PER-1), insB, sapA-like peptide transport periplasmic protein, putative glutathione S-transferase and short-chain dehydrogenase/reductase, were detected. This study was the first to employ PCR-RFLP using HinfI and RsaI to analyse ISCR1-linked genes. ISCR1 was widely disseminated among MDR Gram-negative bacteria and was in close association with quinolone resistance and β-lactamase genes (class A and class C) in southern China.201222890194
150510.9878New insights on mcr-1-harboring plasmids from human clinical Escherichia coli isolates. Mobile colistin resistance (mcr) genes were described recently in Gram-negative bacteria including carbapenem-resistant Enterobacterales. There are ten mcr genes described in different Gram-negative bacteria, however, Escherichia coli harboring mcr-1 gene is by far the most frequent combination. In Argentina, mcr-1 gene was characterized only on plasmids belonging to IncI2 group. The aim of this work was to get new insights of mcr-1-harboring plasmids from E. coli. Eight E. coli isolates from a larger collection of 192 clinical E. coli isolates carrying the mcr-1 gene were sequenced using next generation technologies. Three isolates belonged to ST131 high-risk clone, and five to single ST, ST38, ST46, ST226, ST224, and ST405. Eight diverse mcr-1-harboring plasmids were analyzed: IncI2 (1), IncX4 (3), IncHI2/2A (3) and a hybrid IncFIA/HI1A/HI1B (1) plasmid. Plasmids belonging to the IncI2 (n = 1) and IncX4 (n = 3) groups showed high similarity with previously described plasmids. Two IncHI2/HI2A plasmids, showed high identity between them, while the third, showed several differences including additional resistance genes like tet(A) and floR. One IncFIA/H1A/H1B hybrid plasmid was characterized, highly similar to pSRC27-H, a prototype plasmid lacking mcr genes. mcr-1.5 variant was found in four plasmids with three different Inc groups: IncI2, IncHI2/HI2A and the hybrid FIA/HI1A/HI1B plasmid. mcr-1.5 variant is almost exclusively described in our country and with a high frequency. In addition, six E. coli isolates carried three allelic variants codifying for CTX-M-type extended-spectrum-β-lactamases: blaCTX-M-2 (3), blaCTX-M-65 (2), and blaCTX-M-14 (1). It is the first description of mcr-1 harboring plasmids different to IncI2 group in our country. These results represents new insights about mcr-1 harboring plasmids recovered from E. coli human samples from Argentina, showing different plasmid backbones and resistance gene combinations.202438408071
300820.9878Sequence of conjugative plasmid pIP1206 mediating resistance to aminoglycosides by 16S rRNA methylation and to hydrophilic fluoroquinolones by efflux. Self-transferable IncFI plasmid pIP1206, isolated from an Escherichia coli clinical isolate, carries two new resistance determinants: qepA, which confers resistance to hydrophylic fluoroquinolones by efflux, and rmtB, which specifies a 16S rRNA methylase conferring high-level aminoglycoside resistance. Analysis of the 168,113-bp sequence (51% G+C) revealed that pIP1206 was composed of several subregions separated by copies of insertion sequences. Of 151 open reading frames, 56 (37%) were also present in pRSB107, isolated from a bacterium in a sewage treatment plant. pIP1206 contained four replication regions (RepFIA, RepFIB, and two partial RepFII regions) and a transfer region 91% identical with that of pAPEC-O1-ColBM, a plasmid isolated from an avian pathogenic E. coli. A putative oriT region was found upstream from the transfer region. The antibiotic resistance genes tet(A), catA1, bla(TEM-1), rmtB, and qepA were clustered in a 33.5-kb fragment delineated by two IS26 elements that also carried a class 1 integron, including the sulI, qacEDelta1, aad4, and dfrA17 genes and Tn10, Tn21, and Tn3-like transposons. The plasmid also possessed a raffinose operon, an arginine deiminase pathway, a putative iron acquisition gene cluster, an S-methylmethionine metabolism operon, two virulence-associated genes, and a type I DNA restriction-modification (R-M) system. Three toxin/antitoxin systems and the R-M system ensured stabilization of the plasmid in the host bacteria. These data suggest that the mosaic structure of pIP1206 could have resulted from recombination between pRSB107 and a pAPEC-O1-ColBM-like plasmid, combined with structural rearrangements associated with acquisition of additional DNA by recombination and of mobile genetic elements by transposition.200818458128
149430.9877Characterization of a Novel Chromosomal Class C β-Lactamase, YOC-1, and Comparative Genomics Analysis of a Multidrug Resistance Plasmid in Yokenella regensburgei W13. Yokenella regensburgei, a member of the family Enterobacteriaceae, is usually isolated from environmental samples and generally resistant to early generations of cephalosporins. To characterize the resistance mechanism of Y. regensburgei strain W13 isolated from the sewage of an animal farm, whole genome sequencing, comparative genomics analysis and molecular cloning were performed. The results showed that a novel chromosomally encoded class C β-lactamase gene with the ability to confer resistance to β-lactam antibiotics, designated bla (YOC) (-) (1), was identified in the genome of Y. regensburgei W13. Kinetic analysis revealed that the β-lactamase YOC-1 has a broad spectrum of substrates, including penicillins, cefazolin, cefoxitin and cefotaxime. The two functionally characterized β-lactamases with the highest amino acid identities to YOC-1 were CDA-1 (71.69%) and CMY-2 (70.65%). The genetic context of the bla (YOC) (-) (1) -ampR-encoding region was unique compared with the sequences in the NCBI nucleotide database. The plasmid pRYW13-125 of Y. regensburgei W13 harbored 11 resistance genes (bla (OXA) (-) (10), bla (LAP) (-) (2), dfrA14, tetA, tetR, cmlA5, floR, sul2, ant(3″)-IIa, arr-2 and qnrS1) within an ∼34 kb multidrug resistance region; these genes were all related to mobile genetic elements. The multidrug resistance region of pYRW13-125 shared the highest identities with those of two plasmids from clinical Klebsiella pneumoniae isolates, indicating the possibility of horizontal transfer of these resistance genes between bacteria of various origins.202032973731
121540.9877The role of the plasmid-mediated fluoroquinolone resistance genes as resistance mechanisms in pediatric infections due to Enterobacterales. INTRODUCTION: Fluoroquinolones (FQs) are not commonly prescribed in children, yet the increasing incidence of multidrug-resistant (MDR) Enterobacterales (Ent) infections in this population often reveals FQ resistance. We sought to define the role of FQ resistance in the epidemiology of MDR Ent in children, with an overall goal to devise treatment and prevention strategies. METHODS: A case-control study of children (0-18 years) at three Chicago hospitals was performed. Cases had infections by FQ-susceptible, β-lactamase-producing (bla) Ent harboring a non- or low-level expression of PMFQR genes (PMFQS Ent). Controls had FQR infections due to bla Ent with expressed PMFQR genes (PMFQR Ent). We sought bla genes by PCR or DNA (BD Max Check-Points assay(®)) and PMFQR genes by PCR. We performed rep-PCR, MLST, and E. coli phylogenetic grouping. Whole genome sequencing was additionally performed on PMFQS Ent positive isolates. Demographics, comorbidities, and device, antibiotic, and healthcare exposures were evaluated. Predictors of infection were assessed. RESULTS: Of 170 β-lactamase-producing Ent isolates, 85 (50%) were FQS; 23 (27%) had PMFQR genes (PMFQS cases). Eighty-five (50%) were FQR; 53 (62%) had PMFQR genes (PMFQR controls). The median age for children with PMFQS Ent and PMFQR Ent was 4.3 and 6.2 years, respectively (p = NS). Of 23 PMFQS Ent, 56% were Klebsiella spp., and of 53 PMFQR Ent, 76% were E. coli. The most common bla and PMFQR genes detected in PMFQS Ent were bla (SHV ESBL) (44%) and oqxAB (57%), and the corresponding genes detected in PMFQR Ent were bla (CTX-M-1-group ESBL) (79%) and aac(6')-Ib-cr (83%). Whole genome sequencing of PMFQS Ent revealed the additional presence of mcr-9, a transferable polymyxin resistance gene, in 47% of isolates, along with multiple plasmids and mobile genetic elements propagating drug resistance. Multivariable regression analysis showed that children with PMFQS Ent infections were more likely to have hospital onset infection (OR 5.7, 95% CI 1.6-22) and isolates containing multiple bla genes (OR 3.8, 95% CI 1.1-14.5). The presence of invasive devices mediated the effects of healthcare setting in the final model. Differences in demographics, comorbidities, or antibiotic use were not found. CONCLUSIONS: Paradoxically, PMFQS Ent infections were often hospital onset and PMFQR Ent infections were community onset. PMFQS Ent commonly co-harbored multiple bla and PMFQR genes, and additional silent, yet transferrable antibiotic resistance genes such as mcr-9, affecting therapeutic options and suggesting the need to address infection prevention strategies to control spread. Control of PMFQS Ent infections will require validating community and healthcare-based sources and risk factors associated with acquisition.202337900312
149250.9874Characterization of the tet(M)-bearing transposon Tn7125 of Escherichia coli strain A13 isolated from an intensive pig farm located in Henan province, China. BACKGROUND: Transposons carrying tet(M) in Gram-positive bacteria have been reported extensively, while there is a paucity of data on the transmission characteristics of tet(M) in Gram-negative bacteria. Therefore, the aim of this study was to investigate the genetic characteristics of the tet(M)-bearing transposon Tn7125, and to clarify the transmission mechanism of the plasmids pTA13-1 and pTA13-3 in Escherichia coli strain A13. METHODS: Plasmids from strain A13 and a corresponding transconjugant were determined by whole genome sequencing and analyzed using bioinformatics tools. The plasmids pTA13-1 and pTA13-3 of the transconjugant TA13 were characterized by S1-pulse-field gel electrophoresis, Southern hybridization, stability experiments, and direct competition assays. RESULTS: The conjugated IncF2:A6:B20 plasmid pTA13-1 co-transferred with the 41-kb plasmid pTA13-3, which carried no resistance genes; plasmid pTA13-2, which harbored the replication initiator PO111; and the IncX4 plasmid pTA13-4, which harbored the antibiotic resistance gene mcr-1. The novel IS26-bracked composite transposon Tn7125 was located on plasmid pTA13-1, which mainly consists of three resistance modules: IS26-ctp-lp-tet(M)-hp-IS406tnp, qac-aadA1-cmlA1-aadA2-DUF1010-dfrA12, and ∆ISVSa3-VirD-floR-LysR-ISVSa3. The plasmid pTA13-1 was highly stable in E. coli strain J53 with no fitness cost to the host or disadvantage in growth competition. CONCLUSION: Evolution of co-integrated transposons, such as Tn7125, may convey antibiotic resistance to a wide spectrum of hosts via the plasmids pTA13-1 and pTA13-3, which acts as an adaptable and mobile multidrug resistance reservoir to accelerate dissemination of other genes by co-selection, thereby posing a potentially serious barrier to clinical treatment regimens.202540639501
303660.9871Complete nucleotide sequences of 84.5- and 3.2-kb plasmids in the multi-antibiotic resistant Salmonella enterica serovar Typhimurium U302 strain G8430. The multi-antibiotic resistant (MR) Salmonella enterica serovar Typhimurium phage type U302 strain G8430 exhibits the penta-resistant ACSSuT-phenotype (ampicillin, chloramphenicol, streptomycin, sulfonamides and tetracycline), and is also resistant to carbenicillin, erythromycin, kanamycin, and gentamicin. Two plasmids, 3.2- and 84.5-kb in size, carrying antibiotic resistance genes were isolated from this strain, and the nucleotide sequences were determined and analyzed. The 3.2-kb plasmid, pU302S, belongs to the ColE1 family and carries the aph(3')-I gene (Kan(R)). The 84.5-kb plasmid, pU302L, is an F-like plasmid and contains 14 complete IS elements and multiple resistance genes including aac3, aph(3')-I, sulII, tetA/R, strA/B, bla(TEM-1), mph, and the mer operon. Sequence analyses of pU302L revealed extensive homology to various plasmids or transposons, including F, R100, pHCM1, pO157, and pCTX-M3 plasmids and TnSF1 transposon, in regions involved in plasmid replication/maintenance functions and/or in antibiotic resistance gene clusters. Though similar to the conjugative plasmids F and R100 in the plasmid replication regions, pU302L does not contain oriT and the tra genes necessary for conjugal transfer. This mosaic pattern of sequence similarities suggests that pU302L acquired the resistance genes from a variety of enteric bacteria and underscores the importance of a further understanding of horizontal gene transfer among the enteric bacteria.200716828159
152970.9871Emergence and Characterization of a Novel IncP-6 Plasmid Harboring bla (KPC-2) and qnrS2 Genes in Aeromonas taiwanensis Isolates. The dissemination of Klebsiella pneumoniae carbapenemases (KPCs) among Gram-negative bacteria is an important threat to global health. However, KPC-producing bacteria from environmental samples are rarely reported. This study aimed to elucidate the underlying resistance mechanisms of three carbapenem-resistant Aeromonas taiwanensis isolates recovered from river sediment samples. Pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS) analysis indicated a close evolutionary relationship among A. taiwanensis isolates. S1-PFGE, Southern blot and conjugation assays confirmed the presence of bla (KPC-) (2) and qnrS2 genes on a non-conjugative plasmid in these isolates. Plasmid analysis further showed that pKPC-1713 is an IncP-6 plasmid with a length of 53,205 bp, which can be transformed into DH5α strain and mediated carbapenems and quinolones resistance. The plasmid backbone of p1713-KPC demonstrated 99% sequence identity to that of IncP-6-type plasmid pKPC-cd17 from Aeromonas spp. and IncP-6-type plasmid: 1 from Citrobacter freundii at 74% coverage. A 14,808 bp insertion sequence was observed between merT gene and hypothetical protein in p1713-KPC, which include the quinolone resistance qnrS2 gene. Emergence of plasmid-borned bla (KPC) and qnrS2 genes from A. taiwanensis isolates highlights their possible dissemination into the environment. Therefore, potential detection of such plasmids from clinical isolates should be closely monitored.201931572337
245380.9870Prevalence and molecular determinants of colistin resistance among commensal Enterobacteriaceae isolated from poultry in northwest of Iran. BACKGROUND: The emergence of colistin-resistant Enterobacteriaceae from human and animal sources is a public health concern as this antibiotic is considered to be the last line therapeutic option for infections caused by multidrug-resistant Gram-negative bacteria. Here we aimed to determine the prevalence of colistin resistance, among enterobacteria isolated from poultry and the possible underlying colistin resistance mechanisms. METHODS: A collection of 944 cloacal samples were obtained from poultry and screened for colistin resistance. To uncover the molecular mechanism behind colistin resistance, the presence of plasmid encoded colistin resistance genes mcr-1, mcr-2, mcr-3 and mcr-4 was examined by PCR. The nucleotide sequences of the mgrB, pmrA, pmrB, phoP, phoQ, crrA and crrB genes were determined. The genetic relatedness of the colistin resistant (ColR) isolates was evaluated by Multilocus sequence typing. Three ColR mutants were generated in vitro by repetitive drug exposure. RESULTS: Overall from 931 enteric bacteria isolated from poultry samples obtained from 131 farms, nine ColR bacteria (0.96%) with high level colistin resistance (MICs ≥ 64 mg/L) were detected all being identified as K. pneumoniae. The 9 ColR bacteria originated from different farms and belonged to 7 distinct Sequence types including ST11 (22.2%) and ST726 (22.2%) being the most prevalent STs followed by ST37, ST74, ST485, ST525 and novel sequence type 3380 (11.1% each). mcr-type genes were not detected in any isolate. In 88.8% of the isolates (n = 8), MgrB was inactivated by Insertion of IS elements (IS1-like, IS3-like, IS5-like families, positions + 75, + 113, + 117, + 135) and nonsense mutations at codons 8, 16, 30. All ColR isolates harboured wild type PmrA, PhoP, PhoQ or polymorphic variants of PmrB. Sequence analysis of the CrrB revealed a familiar S195N and 4 novel I27V, T150R, F303S and K325R substitutions. PmrB T93N substitution and mgrB locus deletion were identified in two laboratory induced ColR mutants and one mutant lacked alteration in the studied loci. In one ColR isolate with wild type MgrB an A83V substitution was detected in CrrA. CONCLUSION: It is concluded from our results that colistin resistance in the studied avian K. pneumoniae isolates was mostly linked to alterations identified within the mgrB gene.201930728861
150690.9870Detection of Five mcr-9-Carrying Enterobacterales Isolates in Four Czech Hospitals. The aim of this study was to report the characterization of the first mcr-positive Enterobacterales isolated from Czech hospitals. In 2019, one Citrobacter freundii and four Enterobacter isolates were recovered from Czech hospitals. The production of carbapenemases was examined by a matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) imipenem hydrolysis assay. Additionally, bacteria were screened for the presence of carbapenemase-encoding genes and plasmid-mediated colistin resistance genes by PCR. To define the genetic units carrying mcr genes, the genomic DNAs of mcr-carrying clinical isolates were sequenced on the PacBio Sequel I platform. Results showed that all isolates carried bla(VIM)- and mcr-like genes. Analysis of whole-genome sequencing (WGS) data revealed that all isolates carried mcr-9-like alleles. Furthermore, the three sequence type 106 (ST106) Enterobacter hormaechei isolates harbored the bla(VIM-1) gene, while the ST764 E. hormaechei and ST95 C. freundii included bla(VIM-4) Analysis of plasmid sequences showed that, in all isolates, mcr-9 was carried on IncHI2 plasmids. Additionally, at least one multidrug resistance (MDR) region was identified in each mcr-9-carrying IncHI2 plasmid. The bla(VIM-4) gene was found in the MDR regions of p48880_MCR_VIM and p51929_MCR_VIM. In the three remaining isolates, bla(VIM-1) was localized on plasmids (∼55 kb) exhibiting repA-like sequences 99% identical to the respective gene of pKPC-CAV1193. In conclusion, to the best of our knowledge, these 5 isolates were the first mcr-9-positive bacteria of clinical origin identified in the Czech Republic. Additionally, the carriage of the bla(VIM-1) on pKPC-CAV1193-like plasmids is described for the first time. Thus, our findings underline the ongoing evolution of mobile elements implicated in the dissemination of clinically important resistance determinants.IMPORTANCE Infections caused by carbapenemase-producing bacteria have led to the revival of polymyxins as the "last-resort" antibiotic. Since 2016, several reports describing the presence of plasmid-mediated colistin resistance genes, mcr, in different host species and geographic areas were published. Here, we report the first detection of Enterobacterales carrying mcr-9-like alleles isolated from Czech hospitals in 2019. Furthermore, the three ST106 Enterobacter hormaechei isolates harbored bla(VIM-1), while the ST764 E. hormaechei and ST95 Citrobacter freundii isolates included bla(VIM-4) Analysis of WGS data showed that, in all isolates, mcr-9 was carried on IncHI2 plasmids. bla(VIM-4) was found in the MDR regions of IncHI2 plasmids, while bla(VIM-1) was localized on pKPC-CAV1193-like plasmids, described here for the first time. These findings underline the ongoing evolution of mobile elements implicated in dissemination of clinically important resistance determinants. Thus, WGS characterization of MDR bacteria is crucial to unravel the mechanisms involved in dissemination of resistance mechanisms.202033298573
1523100.9869The characterization of an IncN-IncR fusion plasmid co-harboring bla(TEM-40), bla(KPC-2), and bla(IMP-4) derived from ST1393 Klebsiella pneumoniae. Plasmids, as important genetic elements apart from chromosomes, often carry multiple resistance genes and various mobile genetic elements, enabling them to acquire more exogenous genes and confer additional resistance phenotypes to bacteria. Various carbapenem resistance genes are often located on IncN plasmids, and several reports have linked fusion plasmids to IncN plasmids. Therefore, this study aims to explore the emergence, molecular structure characteristics, and resistance features mediated by IncN fusion plasmids carrying multiple carbapenem resistance genes. In this study, species identification was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS). Polymerase chain reaction (PCR) was employed to detect the presence of carbapenem resistance genes in the strains. PCR-based replicon typing (PBRT) was used to identify IncN plasmids. Plasmids were analyzed through S1-nuclease pulsed-field gel electrophoresis (S1-PFGE), Southern blotting, conjugation experiments, and stability tests. Whole-genome sequencing (WGS) and antimicrobial susceptibility testing (AST) were conducted to characterize the target strains. Four strains containing IncN plasmids were identified: two Klebsiella pneumoniae, one Escherichia coli, and one Enterobacter cloacae, all harboring carbapenem resistance genes. Among them, two IncN plasmids (pFAHZZU7605-KPC-IMP and pFAHZZU7865-IMP) contained blaIMP-4 and exhibited similar molecular structure characteristics. Notably, the pFAHZZU7605-KPC-IMP plasmid harbored both IncN and IncR replicons. We hypothesize that the pFAHZZU7605-KPC-IMP fusion plasmid resulted from the recombination of a pFAHZZU7865-IMP-like plasmid and an IncR-like plasmid. Further analysis of the plasmid's genetic elements revealed that insertion sequences ISKpn19 and ISKpn27 played crucial roles in the plasmid recombination and fusion process. In clinical settings, plasmids carrying different resistance genes can undergo fusion, mediated by genetic elements, thereby expanding the resistance spectrum of host bacteria. Hence, it is essential to enhance the monitoring and research of transposable elements to control the spread of multidrug-resistant bacteria.202439496788
1721110.9869Convergence of MCR-8.2 and Chromosome-Mediated Resistance to Colistin and Tigecycline in an NDM-5-Producing ST656 Klebsiella pneumoniae Isolate From a Lung Transplant Patient in China. We characterized the first NDM-5 and MCR-8.2 co-harboring ST656 Klebsiella pneumoniae clinical isolate, combining with chromosomal gene-mediated resistance to colistin and tigecycline. The K. pneumoniae KP32558 was isolated from the bronchoalveolar lavage fluid from a lung transplant patient. Complete genome sequences were obtained through Illumina HiSeq sequencing and nanopore sequencing. The acquired resistance genes and mutations in chromosome-encoded genes associated with colistin and tigecycline resistance were analyzed. Comparative genomic analysis was conducted between mcr-8.2-carrying plasmids. The K. pneumoniae KP32558 was identified as a pan-drug resistant bacteria, belonging to ST656, and harbored plasmid-encoded bla(NDM-5) and mcr-8.2 genes. The bla(NDM-5) gene was located on an IncX3 type plasmid. The mcr-8.2 gene was located on a conjugative plasmid pKP32558-2-mcr8, which had a common ancestor with another two mcr-8.2-carrying plasmids pMCR8_020135 and pMCR8_095845. The MIC of KP32558 for colistin was 256 mg/L. The mcr-8.2 gene and mutations in the two-component system, pmrA and crrB, and the regulator mgrB, had a synergistic effect on the high-level colistin resistance. The truncation in the acrR gene, related to tigecycline resistance, was also identified. K. pneumoniae has evolved a variety of complex resistance mechanisms to the last-resort antimicrobials, close surveillance is urgently needed to monitor the prevalence of this clone.202235899054
1528120.9869First Report of Coexistence of bla (SFO-1) and bla (NDM-1) β-Lactamase Genes as Well as Colistin Resistance Gene mcr-9 in a Transferrable Plasmid of a Clinical Isolate of Enterobacter hormaechei. Many antimicrobial resistance genes usually located on transferable plasmids are responsible for multiple antimicrobial resistance among multidrug-resistant (MDR) Gram-negative bacteria. The aim of this study is to characterize a carbapenemase-producing Enterobacter hormaechei 1575 isolate from the blood sample in a tertiary hospital in Wuhan, Hubei Province, China. Antimicrobial susceptibility test showed that 1575 was an MDR isolate. The whole genome sequencing (WGS) and comparative genomics were used to deeply analyze the molecular information of the 1575 and to explore the location and structure of antibiotic resistance genes. The three key resistance genes (bla (SFO-1), bla (NDM-1), and mcr-9) were verified by PCR, and the amplicons were subsequently sequenced. Moreover, the conjugation assay was also performed to determine the transferability of those resistance genes. Plasmid files were determined by the S1 nuclease pulsed-field gel electrophoresis (S1-PFGE). WGS revealed that p1575-1 plasmid was a conjugative plasmid that possessed the rare coexistence of bla (SFO-1), bla (NDM-1), and mcr-9 genes and complete conjugative systems. And p1575-1 belonged to the plasmid incompatibility group IncHI2 and multilocus sequence typing ST102. Meanwhile, the pMLST type of p1575-1 was IncHI2-ST1. Conjugation assay proved that the MDR p1575-1 plasmid could be transferred to other recipients. S1-PFGE confirmed the location of plasmid with molecular weight of 342,447 bp. All these three resistant genes were flanked by various mobile elements, indicating that the bla (SFO-1), bla (NDM-1), and mcr-9 could be transferred not only by the p1575-1 plasmid but also by these mobile elements. Taken together, we report for the first time the coexistence of bla (SFO-1), bla (NDM-1), and mcr-9 on a transferable plasmid in a MDR clinical isolate E. hormaechei, which indicates the possibility of horizontal transfer of antibiotic resistance genes.202134220761
5872130.9869Characterization of the plasmids harbouring the florfenicol resistance gene floR in Glaesserella parasuis and Actinobacillus indolicus. OBJECTIVES: The aim of this study was to characterize the floR-carrying plasmids originating from Glaesserella parasuis and Actinobacillus indolicus isolated from pigs with respiratory disease in China. METHODS: A total of 125 G. parasuis and 28 A. indolicus strains collected between 2009 and 2022 were screened for florfenicol resistance. Characterization of floR-positive isolates and plasmids were determined by antimicrobial susceptibility testing, serotyping, multilocus sequence typing (MLST), conjugation and transformation assays, whole-genome sequencing (WGS), and phylogenetic analysis. RESULTS: One A. indolicus and six G. parasuis were identified as positive for floR. The six G. parasuis were assigned to four different serovars, including serovars 6, 7, 9, and unknown. In addition to strain XP11, six floR genes were located on plasmids. The six floR-bearing plasmids could be transformed into Pasteurella multocida and divided into two different types, including ∼5000 bp and ∼6000 bp plasmids. The ∼5000 bp plasmids consisting of rep, lysR, mobB, and floR genes, exhibited high similarity among Pasteurellaceae bacteria. Furthermore, the ∼6000 bp plasmids, consisting of rep, lysR, mobC, mobA/L, and floR genes, showed high similarity between G. parasuis and Actinobacillus Spp. Notably, WGS results showed that the floR modules of the two types of plasmids could be transferred and integrated into the diverse Pasteurellaceae- origined plasmids. CONCLUSION: This study firstly reported the characterization of floR-carrying plasmids from A. indolicus and a non-virulent serovar of G. parasuis in pigs in China and elucidated the transmission mechanism of the floR resistance gene among the Pasteurellaceae family.202337726088
1720140.9868Elucidation of molecular mechanism for colistin resistance among Gram-negative isolates from tertiary care hospitals. Antimicrobial resistance is a growing concern of global public health. The emergence of colistin-resistance among carbapenem-resistant (CPR) Gram-negative bacteria causing fear of pan-resistance, treatment failure, and high mortality across the globe. AIM: To determine the genotypic colistin-resistance mechanisms among colistin-resistant (CR)Gram-negative clinical isolates along with genomic insight into hypermucoviscous(hv)-CR-Klebsiella pneumoniae. METHODS: Phenotypic colistin-resistance via broth-microdilution method. PCR-based detection of plasmid-mediated colistin resistance genes(mcr-1,2,3). Characterization of selected hvCR-K. pneumoniae via Whole-genome sequencing. RESULTS: Phenotypic colistin-resistance was 28% among CPR-Gram-negative isolates of which 90% of CR-isolates displayed MDR profile with overall low plasmid-mediated colistin resistance (mcr-2 = 9.4%;mcr-3 = 6%). Although K. pneumoniae isolates showed the highest phenotypic colistin-resistance (51%) however, relatively low plasmid-mediated gene-carriage (mcr-2 = 11.5%;mcr-3 = 3.4%) pointed toward other mechanisms of colistin-resistance. mcr-negative CR-K. pneumoniae displaying hv-phenotype were subjected to WGS. In-silico analysis detected 7-novel mutations in lipid-A modification genes includes eptA(I38V; V50L; A135P), opgE(M53L; T486A; G236S), and arnD(S164P) in addition to several non-synonymous mutations in lipid-A modification genes conferring resistance to colistin. Insertion of 6.6-kb region harboring putative-PEA-encoding gene(yjgX) was detected for the first time in K. pneumoniae (hvCRKP4771). In-silico analysis further confirmed the acquisition of not only MDR determinants but several hypervirulent-determinants displaying a convergent phenotype. CONCLUSION: overall high prevalence of phenotypic colistin resistance but low mcr-gene carriage suggested complex chromosomal mediated resistance mechanism especially in K. pneumoniae isolates. The presence of novel mutations in lipid-A modification genes and the acquisition of putative-PEA-encoding gene by hvCR-K. pneumoniae points toward the role of chromosomal determinants conferring resistance to colistin in the absence of mcr-genes.202235058128
3012150.9868Characterization of the IncA/C plasmid pSCEC2 from Escherichia coli of swine origin that harbours the multiresistance gene cfr. OBJECTIVES: To determine the complete nucleotide sequence of the multidrug resistance plasmid pSCEC2, isolated from a porcine Escherichia coli strain, and to analyse it with particular reference to the cfr gene region. METHODS: Plasmid pSCEC2 was purified from its E. coli J53 transconjugant and then sequenced using the 454 GS-FLX System. After draft assembly, predicted gaps were closed by PCR with subsequent sequencing of the amplicons. RESULTS: Plasmid pSCEC2 is 135 615 bp in size and contains 200 open reading frames for proteins of ≥100 amino acids. Analysis of the sequence of pSCEC2 revealed two resistance gene segments. The 4.4 kb cfr-containing segment is flanked by two IS256 elements in the same orientation, which are believed to be involved in the dissemination of the rRNA methylase gene cfr. The other segment harbours the resistance genes floR, tet(A)-tetR, strA/strB and sul2, which have previously been found on other IncA/C plasmids. Except for these two resistance gene regions, the pSCEC2 backbone displayed >99% nucleotide sequence identity to that of other IncA/C family plasmids isolated in France, Chile and the USA. CONCLUSIONS: The cfr gene was identified on an IncA/C plasmid, which is well known for its broad host range and transfer and maintenance properties. The location on such a plasmid will further accelerate the dissemination of cfr and co-located resistance genes among different Gram-negative bacteria. The genetic context of cfr on plasmid pSCEC2 underlines the complexity of cfr transfer events and confirms the role that insertion sequences play in the spread of cfr.201424013193
1768160.9868Complete nucleotide sequence of the pCTX-M3 plasmid and its involvement in spread of the extended-spectrum beta-lactamase gene blaCTX-M-3. Here we report the nucleotide sequence of pCTX-M3, a highly conjugative plasmid that is responsible for the extensive spread of the gene coding for the CTX-M-3 extended-spectrum beta-lactamase in clinical populations of the family Enterobacteriaceae in Poland. The plasmid belongs to the IncL/M incompatibility group, is 89,468 bp in size, and carries 103 putative genes. Besides bla(CTX-M-3), it also bears the bla(TEM-1), aacC2, and armA genes, as well as integronic aadA2, dfrA12, and sul1, which altogether confer resistance to the majority of beta-lactams and aminoglycosides and to trimethoprim-sulfamethoxazole. The conjugal transfer genes are organized in two blocks, tra and trb, separated by a spacer sequence where almost all antibiotic resistance genes and multiple mobile genetic elements are located. Only bla(CTX-M-3), accompanied by an ISEcp1 element, is placed separately, in a DNA fragment previously identified as a fragment of the Kluyvera ascorbata chromosome. On the basis of sequence analysis, we speculate that pCTX-M3 might have arisen from plasmid pEL60 from plant pathogen Erwinia amylovora by acquiring mobile elements with resistance genes. This suggests that plasmids of environmental bacterial strains could be the source of those plasmids now observed in bacteria pathogenic for humans.200717698626
1493170.9867Coexistence of blaKPC-2 and blaNDM-1 in one IncHI5 plasmid confers transferable carbapenem resistance from a clinical isolate of Klebsiella michiganensis in China. OBJECTIVES: This study firstly identified an IncHI5 plasmid pK254-KPC_NDM co-carrying two different class carbapenemase genes blaKPC-2 and blaNDM-1 in Klebsiella michiganensis K254. METHODS: The strain K254 was sequenced by high-throughput genome sequencing. A detailed genomic and phenotypic characterization of pK254-KPC_NDM was performed. RESULTS: pK254-KPC_NDM displayed the conserve IncHI5 backbone and carried a resistant accessory region: Tn1696-related transposon Tn7414 containing blaKPC-2 and blaNDM-1. A sequence comparison was applied to a collection of four Tn1696-related transposons (Tn7414-Tn7417) harbouring carbapenemase genes. For all these four transposons, the blaNDM-1 was carried by Tn125 derivatives within three different mobile genetic elements. Tn7414 further acquired another carbapenemase gene, blaKPC-2, because of the integration of the local blaKPC-2 genetic environment from Tn6296, resulting in the high-level carbapenem resistance of K. michiganensis K254. The conjugal transfer and plasmid stability experiments confirmed that pK254-KPC_NDM could be transferred intercellularly and keep the stable vertical inheritance in different bacteria, which would contribute to the further dissemination of multiple carbapenemase genes and enhance the adaption and survival of K. michiganensis under complex and diverse antimicrobial selection pressures. CONCLUSION: This study was the first to report the K. michiganensis isolate coharbouring blaKPC-2 and blaNDM-1 in the Tn1696-related transposon in IncHI5 plasmid. The emergence of novel transposons simultaneously carrying multiple carbapenemase genes might contribute to the further dissemination of high-level carbapenem resistance in the isolates of the hospital settings and pose new challenges for the treatment of nosocomial infection.202337714378
2005180.9867Chromosomal 16S Ribosomal RNA Methyltransferase RmtE1 in Escherichia coli Sequence Type 448. We identified rmtE1, an uncommon 16S ribosomal methyltransferase gene, in an aminoglycoside- and cephalosporin-resistant Escherichia coli sequence type 448 clinical strain co-harboring bla(CMY-2). Long-read sequencing revealed insertion of a 101,257-bp fragment carrying both resistance genes to the chromosome. Our findings underscore E. coli sequence type 448 as a potential high-risk multidrug-resistant clone.201728418308
1081190.9867Chromosome-Borne CTX-M-65 Extended-Spectrum β-Lactamase-Producing Salmonella enterica Serovar Infantis, Taiwan. A CTX-M-65‒producing Salmonella enterica serovar Infantis clone, probably originating in Latin America and initially reported in the United States, has emerged in Taiwan. Chicken meat is the most likely primary carrier. Four of the 9 drug resistance genes have integrated into the chromosome: bla(CTX-M-65), tet(A), sul1, and aadA1.202337486207