GREAT - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
653800.9991High concentration and high dose of disinfectants and antibiotics used during the COVID-19 pandemic threaten human health. The issue of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has created enormous threat to global health. In an effort to contain the spread of COVID-19, a huge amount of disinfectants and antibiotics have been utilized on public health. Accordingly, the concentration of disinfectants and antibiotics is increasing rapidly in various environments, including wastewater, surface waters, soils and sediments. The aims of this study were to analyze the potential ecological environment impacts of disinfectants and antibiotics by summarizing their utilization, environmental occurrence, distribution and toxicity. The paper highlights the promoting effects of disinfectants and antibiotics on antibiotic resistance genes (ARGs) and even antibiotic resistant bacteria (ARB). The scientific evidences indicate that the high concentration and high dose of disinfectants and antibiotics promote the evolution toward antimicrobial resistance through horizontal gene transformation and vertical gene transformation, which threaten human health. Further concerns should be focused more on the enrichment, bioaccumulation and biomagnification of disinfectants, antibiotics, antibiotic resistance genes (ARGs) and even antibiotic resistant bacteria (ARB) in human bodies.202133532166
668810.9991Antibiotic resistant bacteria: A bibliometric review of literature. Antibiotic-resistant bacteria (ARB) are a serious threat to the health of people and the ecological environment. With this problem becoming more and more serious, more countries made research on the ARB, and the research number has been sharply increased particularly over the past decade. Therefore, it is quite necessary to globally retrace relevant researches on the ARB published from 2010 to 2020. This will help researchers to understand the current research situation, research trends and research hotspots in this field. This paper uses bibliometrics to examine publications in the field of ARB from 2010 to 2020 that were retrieved from the Web of Science (WOS). Our study performed a statistical analysis of the countries, institutions, journals, authors, research areas, author keywords, Essential Science Indicators (ESI) highly cited papers, and ESI hotspots papers to provide an overview of the ARB field as well as research trends, research hotspots, and future research directions in the field. The results showed that the number of related studies is increasing year by year; the USA is most published in the field of ARB; China is the most active in this field in the recent years; the Chinese Acad Sci published the most articles; Sci. Total Environ. published the greatest number of articles; CM Manaia has the most contributions; Environmental Sciences and Ecology is the most popular research area; and "antibiotic resistance," "antibiotics," and "antibiotic resistance genes" were the most frequently occurring author keywords. A citation analysis showed that aquatic environment-related antibiotic resistance is a key research area in this field, while antimicrobial nanomaterial-related research is a recent popular topic.202236466520
430120.9991Patterns of antimicrobial resistance observed in the Middle East: Environmental and health care retrospectives. Antimicrobial resistance is one of the biggest worldwide challenging problems that associates with high morbidity and mortality rates. The resistance of bacteria to various antibiotic classes results in difficulties in the treatment of infectious diseases caused by those bacteria. This paper highlights and provides a critical overview of observational and experimental studies investigating the presence of antibiotic resistant bacteria in different environments in Middle East countries and the mechanisms by which bacteria acquire and spread resistance. The data of this research considered the published papers within the last ten years (2010-2020) and was carried out using PubMed. A total of 66 articles were selected in this review. This review covered studies done on antibiotic resistant bacteria found in a wide range of environments including foods, animals, groundwater, aquatic environments as well as industrial and hospital wastewater. They acquire and achieve their resistance through several mechanisms such as antibiotic resistant genes, efflux pumps and enzymatic reactions. However, the dissemination and spread of antibiotic resistant bacteria is affected by several factors like anthropogenic, domestic, inappropriate use of antibiotics and the expulsion of wastewater containing antibiotic residues to the environments. Therefore, it is important to increase the awareness regarding these activities and their effect on the environment and eventually on health.202032559543
664230.9991A Review of Current Bacterial Resistance to Antibiotics in Food Animals. The overuse of antibiotics in food animals has led to the development of bacterial resistance and the widespread of resistant bacteria in the world. Antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) in food animals are currently considered emerging contaminants, which are a serious threat to public health globally. The current situation of ARB and ARGs from food animal farms, manure, and the wastewater was firstly covered in this review. Potential risks to public health were also highlighted, as well as strategies (including novel technologies, alternatives, and administration) to fight against bacterial resistance. This review can provide an avenue for further research, development, and application of novel antibacterial agents to reduce the adverse effects of antibiotic resistance in food animal farms.202235633728
671140.9991Evolution and implementation of One Health to control the dissemination of antibiotic-resistant bacteria and resistance genes: A review. Antibiotic resistance is a serious threat to humanity and its environment. Aberrant usage of antibiotics in the human, animal, and environmental sectors, as well as the dissemination of resistant bacteria and resistance genes among these sectors and globally, are all contributing factors. In humans, antibiotics are generally used to treat infections and prevent illnesses. Antibiotic usage in food-producing animals has lately emerged as a major public health concern. These medicines are currently being utilized to prevent and treat infectious diseases and also for its growth-promoting qualities. These methods have resulted in the induction and spread of antibiotic resistant infections from animals to humans. Antibiotics can be introduced into the environment from a variety of sources, including human wastes, veterinary wastes, and livestock husbandry waste. The soil has been recognized as a reservoir of ABR genes, not only because of the presence of a wide and varied range of bacteria capable of producing natural antibiotics but also for the usage of natural manure on crop fields, which may contain ABR genes or antibiotics. Fears about the human health hazards of ABR related to environmental antibiotic residues include the possible threat of modifying the human microbiota and promoting the rise and selection of resistant bacteria, and the possible danger of generating a selection pressure on the environmental microflora resulting in environmental antibiotic resistance. Because of the connectivity of these sectors, antibiotic use, antibiotic residue persistence, and the existence of antibiotic-resistant bacteria in human-animal-environment habitats are all linked to the One Health triangle. The pillars of support including rigorous ABR surveillance among different sectors individually and in combination, and at national and international level, overcoming laboratory resource challenges, and core plan and action execution should be strictly implemented to combat and contain ABR under one health approach. Implementing One Health could help to avoid the emergence and dissemination of antibiotic resistance while also promoting a healthier One World. This review aims to emphasize antibiotic resistance and its regulatory approaches from the perspective of One Health by highlighting the interconnectedness and multi-sectoral nature of the human, animal, and environmental health or ill-health facets.202236726644
655250.9991Antimicrobial Resistance in Rivers: A Review of the Genes Detected and New Challenges. River ecosystems are very important parts of the water cycle and an excellent habitat, food, and drinking water source for many organisms, including humans. Antibiotics are emerging contaminants which can enter rivers from various sources. Several antibiotics and their related antibiotic resistance genes (ARGs) have been detected in these ecosystems by various research programs and could constitute a substantial problem. The presence of antibiotics and other resistance cofactors can boost the development of ARGs in the chromosomes or mobile genetic elements of natural bacteria in rivers. The ARGs in environmental bacteria can also be transferred to clinically important pathogens. However, antibiotics and their resistance genes are both not currently monitored by national or international authorities responsible for controlling the quality of water bodies. For example, they are not included in the contaminant list in the European Water Framework Directive or in the US list of Water-Quality Benchmarks for Contaminants. Although ARGs are naturally present in the environment, very few studies have focused on non-impacted rivers to assess the background ARG levels in rivers, which could provide some useful indications for future environmental regulation and legislation. The present study reviews the antibiotics and associated ARGs most commonly measured and detected in rivers, including the primary analysis tools used for their assessment. In addition, other factors that could enhance antibiotic resistance, such as the effects of chemical mixtures, the effects of climate change, and the potential effects of the coronavirus disease 2019 pandemic, are discussed. Environ Toxicol Chem 2022;41:687-714. © 2022 SETAC.202235191071
652360.9991Antibiotic resistant genes in the environment-exploring surveillance methods and sustainable remediation strategies of antibiotics and ARGs. Antibiotic Resistant Genes (ARGs) are an emerging environmental health threat due to the potential change in the human microbiome and selection for the emergence of antibiotic resistant bacteria. The rise of antibiotic resistant bacteria has caused a global health burden. The WHO (world health organization) predicts a rise in deaths due to antibiotic resistant infections. Since bacteria can acquire ARGs through horizontal transmission, it is important to assess the dissemination of antibioticresistant genes from anthropogenic sources. There are several sources of antibiotics, antibiotic resistant bacteria and genes in the environment. These include wastewater treatment plants, landfill leachate, agricultural, animal industrial sources and estuaries. The use of antibiotics is a worldwide practice that has resulted in the evolution of resistance to antibiotics. Our review provides a more comprehensive look into multiple sources of ARG's and antibiotics rather than one. Moreover, we focus on effective surveillance methods of ARGs and antibiotics and sustainable abiotic and biotic remediation strategies for removal and reduction of antibiotics and ARGs from both terrestrial and aquatic environments. Further, we consider the impact on public health as this problem cannot be addressed without a global transdisciplinary effort.202236037921
653970.9990An alternative material for an effective treatment technique proposal in the light of bibliometric profile of global scientific research on antibiotic resistance and Escherichia coli. Antibiotic resistance is considered by the countries to be a global health issue and a huge threat to public health. The reduction of resistant microorganisms from water/wastewater is of importance in environmental sciences since they are resistant in the aquatic environment. In this study, a bibliometric analysis of literature from the field of environmental science in water ecosystems from 2015 to 2019 was carried out using the keywords "Antibiotic Resistance (AR)" and "Escherichia coli". Furthermore, using the keywords of "Fresh Water," "Sea Water," and "Waste Water," 155, 52, and 57 studies were discovered, respectively. It is found that 217 studies of the total 2115 studies investigated on AR are mostly performed in the "Waste Water" by considering human health. Given the studies, an up-to-date solution should be proposed since the release of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) from wastewater treatment plants needs to be mitigated. For this reason, it is obvious that working on micro and macro ecosystems will increase the probability of solutions in antibiotic resistance. A discussion of removal techniques for coliform bacteria, particularly antibiotic resistant Escherichia coli, was presented. One of the unique values of this study is to offer an innovative solution that removing them by metal-organic frameworks (MOFs) are emerging crystalline hybrid materials. MOFs are used for environmental, biological, and food antimicrobial substances efficiently. Therefore, we can give inspiration to the future studies of antimicrobial resistance removal via adsorption using MOFs as adsorbents. Graphical Abstract.202033079229
651480.9990Review of antibiotic-resistant bacteria and antibiotic resistance genes within the one health framework. Background: The interdisciplinary One Health (OH) approach recognizes that human, animal, and environmental health are all interconnected. Its ultimate goal is to promote optimal health for all through the exploration of these relationships. Antibiotic resistance (AR) is a public health challenge that has been primarily addressed within the context of human health and clinical settings. However, it has become increasingly evident that antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) that confer resistance are transmitted and circulated within humans, animals, and the environment. Therefore, to effectively address this issue, antibiotic resistance must also be considered an environmental and livestock/wildlife problem. Objective: This review was carried out to provide a broad overview of the existence of ARB and ARGs in One Health settings. Methods: Relevant studies that placed emphasis on ARB and ARGs were reviewed and key findings were accessed that illustrate the importance of One Health as a measure to tackle growing public and environmental threats. Results: In this review, we delve into the complex interplay of the three components of OH in relation to ARB and ARGs. Antibiotics used in animal husbandry and plants to promote growth, treat, and prevent infectious diseases lead to the development of antibiotic-resistant bacteria in animals. These bacteria are transmitted from animals to humans through food and environmental exposure. The environment plays a critical role in the circulation and persistence of antibiotic-resistant bacteria and genes, posing a significant threat to human and animal health. This article also highlights how ARGs are spread in the environment through the transfer of genetic material between bacteria. This transfer can occur naturally or through human activities such as the use of antibiotics in agriculture and waste management practices. Conclusion: It is important to integrate the One Health approach into the public health system to effectively tackle the emergence and spread of ARB and genes that code for resistance to different antibiotics.202438371518
668790.9990Antibiotic Resistance in Aquaculture: Challenges, Trends Analysis, and Alternative Approaches. Antibiotic resistance in aquaculture has emerged as a global crisis, representing a serious threat to the health of aquatic animals, environment, and human. The extensive use of antibiotics in aquaculture has led to rapid development of resistant bacterial strains, resulting in environmental contamination and the dissemination of resistant genes. Understanding of the research trends, key contributors, and thematic evolution of this field is essential for guiding future studies and policy interventions. The study aimed to conduct a bibliometric analysis of research on antibiotic resistance development in aquaculture, identifying key areas of research, leading contributors, emerging challenges, and alternative solutions. Data were extracted from the Web of Science (WoS) database covering the period from 2000 to 2025. A systematic search strategy was employed, utilizing terms including "antibiotic resistance" AND "bacteria," AND "aquaculture". Relevant publications were extracted from the WoS using these keywords. R-tool was then used to analyze the obtained metadata including keywords, citation patterns, and co-authored country. The analysis revealed a remarkable increase in publications over the past 25 years, with key contributions from China, India, and the USA. The most significant articles focused on the presence of multidrug resistant bacteria in the aquatic environments and, antibiotic-resistant genes, and horizontal gene transfer. Probiotics are the alternative solution to overcome the antibiotic resistance and enhance aquaculture sustainability. Future research should focus on the interdisciplinary collaboration, novel antimicrobial alternatives, and global monitoring approaches.202540558188
6641100.9990Environmental antibiotics and resistance genes as emerging contaminants: Methods of detection and bioremediation. In developing countries, the use of antibiotics has helped to reduce the mortality rate by minimizing the deaths caused by pathogenic infections, but the costs of antibiotic contamination remain a major concern. Antibiotics are released into the environment, creating a complicated environmental problem. Antibiotics are used in human, livestock and agriculture, contributing to its escalation in the environment. Environmental antibiotics pose a range of risks and have significant effects on human and animal health. Nevertheless, this is the result of the development of antibiotic-resistant and multi-drug-resistant bacteria. In the area of health care, animal husbandry and crop processing, the imprudent use of antibiotic drugs produces antibiotic-resistant bacteria. This threat is the deepest in the developing world, with an estimated 700,000 people suffering from antibiotic-resistant infections each year. The study explores how bacteria use a wide variety of antibiotic resistance mechanism and how these approaches have an impact on the environment and on our health. The paper focuses on the processes by which antibiotics degrade, the health effects of these emerging contaminants, and the tolerance of bacteria to antibiotics.202134841318
4196110.9990Emergence and spread of antibiotic-resistant foodborne pathogens from farm to table. Antibiotics have been overused and misused for preventive and therapeutic purposes. Specifically, antibiotics are frequently used as growth promoters for improving productivity and performance of food-producing animals such as pigs, cattle, and poultry. The increasing use of antibiotics has been of great concern worldwide due to the emergence of antibiotic resistant bacteria. Food-producing animals are considered reservoirs for antibiotic resistance genes (ARGs) and residual antibiotics that transfer from the farm through the table. The accumulation of residual antibiotics can lead to additional antibiotic resistance in bacteria. Therefore, this review evaluates the risk of carriage and spread of antibiotic resistance through food chain and the potential impact of antibiotic use in food-producing animals on food safety. This review also includes in-depth discussion of promising antibiotic alternatives such as vaccines, immune modulators, phytochemicals, antimicrobial peptides, probiotics, and bacteriophages.202236065433
3978120.9990Contribution of wastewater to antimicrobial resistance: A review article. OBJECTIVES: Antimicrobial resistance (AMR) is a global challenge that has raised concern globally, owing to its detrimental effects on the health and economy of countries. The ever-growing threat of AMR and sources of AMR are still being investigated. Wastewater plays an important role as a habitat for bacteria and an environment conducive to gene transfer. The primary aim of this review was to highlight the contribution of wastewater to AMR. METHODS: Evidence of AMR in wastewater was drawn from literature published in the last 10 years, from 2012 to 2022. RESULTS: Wastewater from agricultural practices, pharmaceutical manufacturing plants, and hospital effluents was established to promote AMR. Furthermore, stress factors such as the presence of antibiotics, heavy metals, pH, and temperature initiate and propagate AMR in bacteria living in wastewater. AMR in bacteria from wastewater was established to be either natural or acquired. Wastewater treatment techniques such as membrane filtration, coagulation, adsorption, and advanced oxidation processes have been used to remove resistant bacteria with varying success levels. CONCLUSION: Wastewater is a major contributor to AMR, and an understanding of its role in AMR is necessary to find a lasting solution. In this regard, the spread of AMR in wastewater should be considered a threat that requires a strategy to stop further damage.202337285914
6712130.9990Current Trends in Approaches to Prevent and Control Antimicrobial Resistance in Aquatic Veterinary Medicine. The growth of aquaculture production in recent years has revealed multiple challenges, including the rise of antimicrobial resistance (AMR) in aquatic animal production, which is currently attracting significant attention from multiple one-health stakeholders. While antibiotics have played a major role in the treatment of bacterial infections for almost a century, a major consequence of their use is the increase in AMR, including the emergence of AMR in aquaculture. The AMR phenomenon creates a situation where antibiotic use in one system (e.g., aquaculture) may impact another system (e.g., terrestrial-human). Non-prudent use of antibiotics in aquaculture and animal farming increases the risk of AMR emergence, since bacteria harboring antibiotic resistance genes can cross between compartments such as wastewater or other effluents to aquatic environments, including intensive aquaculture. Transferable antimicrobial resistance gene (AMG) elements (plasmids, transposons, integrons, etc.) have already been detected in varying degrees from pathogenic bacteria that are often causing infections in farmed fish (Aeromonas, Vibrio, Streptococcus, Pseudomonas, Edwardsiella, etc.). This review of current veterinary approaches for the prevention and control of AMR emergence in aquaculture focuses on the feasibility of alternatives to antimicrobials and supplemental treatment applications during on-farm bacterial disease control and prevention. The use of vaccines, bacteriophages, biosurfactants, probiotics, bacteriocins, and antimicrobial peptides is discussed.202540732727
6515140.9990Environmental antimicrobial resistance and its drivers: a potential threat to public health. Imprudent and overuse of clinically relevant antibiotics in agriculture, veterinary and medical sectors contribute to the global epidemic increase in antimicrobial resistance (AMR). There is a growing concern among researchers and stakeholders that the environment acts as an AMR reservoir and plays a key role in the dissemination of antimicrobial resistance genes (ARGs). Various drivers are contributing factors to the spread of antibiotic-resistant bacteria and their ARGs either directly through antimicrobial drug use in health care, agriculture/livestock and the environment or antibiotic residues released from various domestic settings. Resistant micro-organisms and their resistance genes enter the soil, air, water and sediments through various routes or hotspots such as hospital wastewater, agricultural waste or wastewater treatment plants. Global mitigation strategies primarily involve the identification of high-risk environments that are responsible for the evolution and spread of resistance. Subsequently, AMR transmission is affected by the standards of infection control, sanitation, access to clean water, access to assured quality antimicrobials and diagnostics, travel and migration. This review provides a brief description of AMR as a global concern and the possible contribution of different environmental drivers to the transmission of antibiotic-resistant bacteria or ARGs through various mechanisms. We also aim to highlight the key knowledge gaps that hinder environmental regulators and mitigation strategies in delivering environmental protection against AMR.202134454098
6709150.9990Molluscs-A ticking microbial bomb. Bivalve shellfish consumption (ark shells, clams, cockles, and oysters) has increased over the last decades. Following this trend, infectious disease outbreaks associated with their consumption have been reported more frequently. Molluscs are a diverse group of organisms found wild and farmed. They are common on our tables, but unfortunately, despite their great taste, they can also pose a threat as a potential vector for numerous species of pathogenic microorganisms. Clams, in particular, might be filled with pathogens because of their filter-feeding diet. This specific way of feeding favors the accumulation of excessive amounts of pathogenic microorganisms like Vibrio spp., including Vibrio cholerae and V. parahaemolyticus, Pseudomonas aeruginosa, Escherichia coli, Arcobacter spp., and fecal coliforms, and intestinal enterococci. The problems of pathogen dissemination and disease outbreaks caused by exogenous bacteria in many geographical regions quickly became an unwanted effect of globalized food supply chains, global climate change, and natural pathogen transmission dynamics. Moreover, some pathogens like Shewanella spp., with high zoonotic potential, are spreading worldwide along with food transport. These bacteria, contained in food, are also responsible for the potential transmission of antibiotic-resistance genes to species belonging to the human microbiota. Finally, they end up in wastewater, thus colonizing new areas, which enables them to introduce new antibiotic-resistance genes (ARG) into the environment and extend the existing spectrum of ARGs already present in local biomes. Foodborne pathogens require modern methods of detection. Similarly, detecting ARGs is necessary to prevent resistance dissemination in new environments, thus preventing future outbreaks, which could threaten associated consumers and workers in the food processing industry.202236699600
6612160.9990Carbapenem Resistance among Marine Bacteria-An Emerging Threat to the Global Health Sector. The emergence of antibiotic resistance among pathogenic microorganisms is a major issue for global public health, as it results in acute or chronic infections, debilitating diseases, and mortality. Of particular concern is the rapid and common spread of carbapenem resistance in healthcare settings. Carbapenems are a class of critical antibiotics reserved for treatment against multidrug-resistant microorganisms, and resistance to this antibiotic may result in limited treatment against infections. In addition to in clinical facilities, carbapenem resistance has also been identified in aquatic niches, including marine environments. Various carbapenem-resistant genes (CRGs) have been detected in different marine settings, with the majority of the genes incorporated in mobile genetic elements, i.e., transposons or plasmids, which may contribute to efficient genetic transfer. This review highlights the potential of the marine environment as a reservoir for carbapenem resistance and provides a general overview of CRG transmission among marine microbes.202134683467
3983170.9990Antibiotic resistance genes in bacteria: Occurrence, spread, and control. The production and use of antibiotics are becoming increasingly common worldwide, and the problem of antibiotic resistance is increasing alarmingly. Drug-resistant infections threaten human life and health and impose a heavy burden on the global economy. The origin and molecular basis of bacterial resistance is the presence of antibiotic resistance genes (ARGs). Investigations on ARGs mostly focus on the environments in which antibiotics are frequently used, such as hospitals and farms. This literature review summarizes the current knowledge of the occurrence of antibiotic-resistant bacteria in nonclinical environments, such as air, aircraft wastewater, migratory bird feces, and sea areas in-depth, which have rarely been involved in previous studies. Furthermore, the mechanism of action of plasmid and phage during horizontal gene transfer was analyzed, and the transmission mechanism of ARGs was summarized. This review highlights the new mechanisms that enhance antibiotic resistance and the evolutionary background of multidrug resistance; in addition, some promising points for controlling or reducing the occurrence and spread of antimicrobial resistance are also proposed.202134651331
4187180.9990Human health consequences of use of antimicrobial agents in aquaculture. Intensive use of antimicrobial agents in aquaculture provides a selective pressure creating reservoirs of drug-resistant bacteria and transferable resistance genes in fish pathogens and other bacteria in the aquatic environment. From these reservoirs, resistance genes may disseminate by horizontal gene transfer and reach human pathogens, or drug-resistant pathogens from the aquatic environment may reach humans directly. Horizontal gene transfer may occur in the aquaculture environment, in the food chain, or in the human intestinal tract. Among the antimicrobial agents commonly used in aquaculture, several are classified by the World Health Organisation as critically important for use in humans. Occurrence of resistance to these antimicrobial agents in human pathogens severely limits the therapeutic options in human infections. Considering the rapid growth and importance of aquaculture industry in many regions of the world and the widespread, intensive, and often unregulated use of antimicrobial agents in this area of animal production, efforts are needed to prevent development and spread of antimicrobial resistance in aquaculture to reduce the risk to human health.200919772389
6706190.9990Antimicrobial Resistance Development Pathways in Surface Waters and Public Health Implications. Human health is threatened by antibiotic-resistant bacteria and their related infections, which cause thousands of human deaths every year worldwide. Surface waters are vulnerable to human activities and natural processes that facilitate the emergence and spread of antibiotic-resistant bacteria in the environment. This study evaluated the pathways and drivers of antimicrobial resistance (AR) in surface waters. We analyzed antibiotic resistance healthcare-associated infection (HAI) data reported to the CDC's National Healthcare Safety Network to determine the number of antimicrobial-resistant pathogens and their isolates detected in healthcare facilities. Ten pathogens and their isolates associated with HAIs tested resistant to the selected antibiotics, indicating the role of healthcare facilities in antimicrobial resistance in the environment. The analyzed data and literature research revealed that healthcare facilities, wastewater, agricultural settings, food, and wildlife populations serve as the major vehicles for AR in surface waters. Antibiotic residues, heavy metals, natural processes, and climate change were identified as the drivers of antimicrobial resistance in the aquatic environment. Food and animal handlers have a higher risk of exposure to resistant pathogens through ingestion and direct contact compared with the general population. The AR threat to public health may grow as pathogens in aquatic systems adjust to antibiotic residues, contaminants, and climate change effects. The unnecessary use of antibiotics increases the risk of AR, and the public should be encouraged to practice antibiotic stewardship to decrease the risk.202235740227