GRADE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
374200.9905Lipophilic teicoplanin pseudoaglycon derivatives are active against vancomycin- and teicoplanin-resistant enterococci. A selection of nine derivatives of teicoplanin pseudoaglycon were tested in vitro against clinical vancomycin-resistant Enterococcus strains possessing vanA, vanB or both genes. The bacteria were characterized by PCR for the identification of their resistance genes. The tested compounds contain lipoic acid, different carbohydrates and aryl groups as lipophilic moieties. About one-third of the teicoplanin-resistant strains were shown to be susceptible to one or more of the glycopeptide derivatives.201728144040
374410.9901Vancomycin resistance VanS/VanR two-component systems. Vancomycin is a member of the glycopeptide class of antibiotics. Vancomycin resistance (van) gene clusters are found in human pathogens such as Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus, glycopeptide-producing actinomycetes such as Amycolotopsis orientalis, Actinoplanes teichomyceticus and Streptomyces toyocaensis and the nonglycopeptide producing actinomycete Streptomyces coelicolor. Expression of the van genes is activated by the VanS/VanR two-component system in response to extracellular glycopeptide antibiotic. Two major types of inducible vancomycin resistance are found in pathogenic bacteria; VanA strains are resistant to vancomycin itself and also to the lipidated glycopeptide teicoplanin, while VanB strains are resistant to vancomycin but sensitive to teicoplanin. Here we discuss the enzymes the van genes encode, the range of different VanS/VanR two-component systems, the biochemistry of VanS/VanR, the nature of the effector ligand(s) recognised by VanS and the evolution of the van cluster.200818792691
374820.9897Vancomycin resistance in Gram-positive bacteria other than Enterococcus spp. This is a review article on vancomycin resistance on gram positive bacteria other than enterococci. Epidemiology of varying resistance, its clinical relevance and therapeutic options in infections caused by vancomycin resistant Listeria spp., Corynebacteria, streptococci and staphylocci are discussed.200010720798
886030.9895Antibiotic in myrrh from Commiphora molmol preferentially kills nongrowing bacteria. AIM: To demonstrate that myrrh oil preferentially kills nongrowing bacteria and causes no resistance development. METHOD: Growth inhibition was determined on regular plates or plates without nutrients, which were later overlaid with soft agar containing nutrients to continue growth. Killing experiments were done in broth and in buffer without nutrients. RESULTS: Bacterial cells were inhibited preferentially in the absence of nutrients or when growth was halted by a bacteriostatic antibiotic. After five passages in myrrh oil, surviving colonies showed no resistance to the antibiotic. CONCLUSION: Myrrh oil has the potential to be a commercially viable antibiotic that kills persister cells and causes no resistance development. This is a rare example of an antibiotic that can preferentially kill nongrowing bacteria.202032257371
480540.9895Effects of ionophores on Enterococcus faecalis and E. faecium growth in pure and mixed ruminal culture. Enterococcus faecalis and E. faecium are gram-positive human pathogens that can live in the gastrointestinal tract of food animals. Vancomycin-resistant enterococci are an increasing threat to humans as a nosocomial infection, as well as a reservoir of antibiotic resistance genes. Ionophores are feed-grade antimicrobials that are widely used to enhance the ruminal fermentation efficiency via inhibiting gram-positive bacteria by dissipating ion and proton gradients. Some bacteria can become resistant to ionophores, and this has prompted concerns about whether ionophore resistance can enhance antibiotic resistance in intestinal bacteria. Since enterococci are normal members of the ruminant intestinal tract and function as an antibiotic resistance reservoir, the present study investigated whether treatment with the most commonly used ionophores affected the growth of enterococci, and whether ionophore-resistant enterococci developed. Ionophores do inhibit the growth of enterococci in pure culture, but in our study did not alter populations in mixed ruminal bacterial culture. Ionophore-resistant isolates were not isolated during this study from pure or mixed cultures. Our results indicate that the role of ionophores in the dissemination of antibiotic resistance genes through the intestinal Enterococcus spp. appears to be limited.200818370609
55450.9894VanZ Reduces the Binding of Lipoglycopeptide Antibiotics to Staphylococcus aureus and Streptococcus pneumoniae Cells. vanZ, a member of the VanA glycopeptide resistance gene cluster, confers resistance to lipoglycopeptide antibiotics independent of cell wall precursor modification by the vanHAX genes. Orthologs of vanZ are present in the genomes of many clinically relevant bacteria, including Enterococcus faecium and Streptococcus pneumoniae; however, vanZ genes are absent in Staphylococcus aureus. Here, we show that the expression of enterococcal vanZ paralogs in S. aureus increases the minimal inhibitory concentrations of lipoglycopeptide antibiotics teicoplanin, dalbavancin, oritavancin and new teicoplanin pseudoaglycone derivatives. The reduction in the binding of fluorescently labeled teicoplanin to the cells suggests the mechanism of VanZ-mediated resistance. In addition, using a genomic vanZ gene knockout mutant of S. pneumoniae, we have shown that the ability of VanZ proteins to compromise the activity of lipoglycopeptide antibiotics by reducing their binding is a more general feature of VanZ-superfamily proteins.202032318043
24060.9894Resistance of rumen bacteria murein to bovine gastric lysozyme. BACKGROUND: Lysozymes, enzymes mostly associated with defence against bacterial infections, are mureinolytic. Ruminants have evolved a gastric c type lysozyme as a digestive enzyme, and profit from digestion of foregut bacteria, after most dietary components, including protein, have been fermented in the rumen. In this work we characterized the biological activities of bovine gastric secretions against membranes, purified murein and bacteria. RESULTS: Bovine gastric extract (BGE) was active against both G+ and G- bacteria, but the effect against Gram- bacteria was not due to the lysozyme, since purified BGL had only activity against Gram+ bacteria. We were unable to find small pore forming peptides in the BGE, and found that the inhibition of Gram negative bacteria by BGE was due to an artefact caused by acetate. We report for first time the activity of bovine gastric lysozyme (BG lysozyme) against pure bacterial cultures, and the specific resistance of some rumen Gram positive strains to BGL. CONCLUSIONS: Some Gram+ rumen bacteria showed resistance to abomasum lysozyme. We discuss the implications of this finding in the light of possible practical applications of such a stable antimicrobial peptide.200415137912
12170.9894Old and New Glycopeptide Antibiotics: Action and Resistance. Glycopeptides are considered antibiotics of last resort for the treatment of life-threatening infections caused by relevant Gram-positive human pathogens, such as Staphylococcus aureus, Enterococcus spp. and Clostridium difficile. The emergence of glycopeptide-resistant clinical isolates, first among enterococci and then in staphylococci, has prompted research for second generation glycopeptides and a flurry of activity aimed at understanding resistance mechanisms and their evolution. Glycopeptides are glycosylated non-ribosomal peptides produced by a diverse group of soil actinomycetes. They target Gram-positive bacteria by binding to the acyl-D-alanyl-D-alanine (D-Ala-D-Ala) terminus of the growing peptidoglycan on the outer surface of the cytoplasmatic membrane. Glycopeptide-resistant organisms avoid such a fate by replacing the D-Ala-D-Ala terminus with D-alanyl-D-lactate (D-Ala-D-Lac) or D-alanyl-D-serine (D-Ala-D-Ser), thus markedly reducing antibiotic affinity for the cellular target. Resistance has manifested itself in enterococci and staphylococci largely through the expression of genes (named van) encoding proteins that reprogram cell wall biosynthesis and, thus, evade the action of the antibiotic. These resistance mechanisms were most likely co-opted from the glycopeptide producing actinomycetes, which use them to avoid suicide during antibiotic production, rather than being orchestrated by pathogen bacteria upon continued treatment. van-like gene clusters, similar to those described in enterococci, were in fact identified in many glycopeptide-producing actinomycetes, such as Actinoplanes teichomyceticus, which produces teicoplanin, and Streptomyces toyocaensis, which produces the A47934 glycopeptide. In this paper, we describe the natural and semi-synthetic glycopeptide antibiotics currently used as last resort drugs for Gram-positive infections and compare the van gene-based strategies of glycopeptide resistance among the pathogens and the producing actinomycetes. Particular attention is given to the strategy of immunity recently described in Nonomuraea sp. ATCC 39727. Nonomuraea sp. ATCC 39727 is the producer of A40926, which is the natural precursor of the second generation semi-synthetic glycopeptide dalbavancin, very recently approved for acute bacterial skin and skin structure infections. A thorough understanding of glycopeptide immunity in this producing microorganism may be particularly relevant to predict and eventually control the evolution of resistance that might arise following introduction of dalbavancin and other second generation glycopeptides into clinics.201427025757
818380.9894Modification of arthropod vector competence via symbiotic bacteria. Some of the world's most devastating diseases are transmitted by arthropod vectors. Attempts to control these arthropods are currently being challenged by the widespread appearance of insecticide resistance. It is therefore desirable to develop alternative strategies to complement existing methods of vector control. In this review, Charles Beard, Scott O'Neill, Robert Tesh, Frank Richards and Serap Aksoy present an approach for introducing foreign genes into insects in order to confer refractoriness to vector populations, ie. the inability to transmit disease-causing agents. This approach aims to express foreign anti-parasitic or anti-viral gene products in symbiotic bacteria harbored by insects. The potential use of naturally occurring symbiont-based mechanisms in the spread of such refractory phenotypes is also discussed.199315463748
61290.9893Pathways and roles of wall teichoic acid glycosylation in Staphylococcus aureus. The thick peptidoglycan layers of Gram-positive bacteria are connected to polyanionic glycopolymers called wall teichoic acids (WTA). Pathogens such as Staphylococcus aureus, Listeria monocytogenes, or Enterococcus faecalis produce WTA with diverse, usually strain-specific structure. Extensive studies on S. aureus WTA mutants revealed important functions of WTA in cell division, growth, morphogenesis, resistance to antimicrobials, and interaction with host or phages. While most of the S. aureus WTA-biosynthetic genes have been identified it remained unclear for long how and why S. aureus glycosylates WTA with α- or β-linked N-acetylglucosamine (GlcNAc). Only recently the discovery of two WTA glycosyltransferases, TarM and TarS, yielded fundamental insights into the roles of S. aureus WTA glycosylation. Mutants lacking WTA GlcNAc are resistant towards most of the S. aureus phages and, surprisingly, TarS-mediated WTA β-O-GlcNAc modification is essential for β-lactam resistance in methicillin-resistant S. aureus. Notably, S. aureus WTA GlcNAc residues are major antigens and activate the complement system contributing to opsonophagocytosis. WTA glycosylation with a variety of sugars and corresponding glycosyltransferases were also identified in other Gram-positive bacteria, which paves the way for detailed investigations on the diverse roles of WTA modification with sugar residues.201424365646
4435100.9893Bacterial resistance to the cyclic glycopeptides. Cyclic-glycopeptide antibiotics, such as vancomycin and teicoplanin, have been almost uniformly active against pathogenic Gram-positive bacteria since their discovery in the 1950s. Resistance is now emerging among enterococci and staphylococci by acquisition of novel genes or by mutation, respectively. The mechanism of resistance for enterococci appears to be synthesis of an altered cell-wall precursor with lower affinity for the antibiotics.19947850206
4812110.9893Production of the Bsa lantibiotic by community-acquired Staphylococcus aureus strains. Lantibiotics are antimicrobial peptides that have been the focus of much attention in recent years with a view to clinical, veterinary, and food applications. Although many lantibiotics are produced by food-grade bacteria or bacteria generally regarded as safe, some lantibiotics are produced by pathogens and, rather than contributing to food safety and/or health, add to the virulence potential of the producing strains. Indeed, genome sequencing has revealed the presence of genes apparently encoding a lantibiotic, designated Bsa (bacteriocin of Staphylococcus aureus), among clinical isolates of S. aureus and those associated with community-acquired methicillin-resistant S. aureus (MRSA) infections in particular. Here, we establish for the first time, through a combination of reverse genetics, mass spectrometry, and mutagenesis, that these genes encode a functional lantibiotic. We also reveal that Bsa is identical to the previously identified bacteriocin staphylococcin Au-26, produced by an S. aureus strain of vaginal origin. Our examination of MRSA isolates that produce the Panton-Valentine leukocidin demonstrates that many community-acquired S. aureus strains, and representatives of ST8 and ST80 in particular, are producers of Bsa. While possession of Bsa immunity genes does not significantly enhance resistance to the related lantibiotic gallidermin, the broad antimicrobial spectrum of Bsa strongly indicates that production of this bacteriocin confers a competitive ecological advantage on community-acquired S. aureus.201020023032
213120.9893The thymidylate kinase genes from Mycobacterium tuberculosis and methicillin-resistant Staphylococcus aureus confer 3'-azido-3'-deoxythymidine resistance to Escherichia coli. The case number of invasive multidrug-resistant bacteria cultured from both hospital and community acquired infections is increasing at an alarming rate. Identifying the mechanisms bacteria use to escape the current antimicrobial treatments is essential to containing potential outbreaks and developing new antimicrobial therapies. Many bacteria naturally encode nonessential resistance genes on their chromosome enabling their survival and/or persistence in the presence of antibiotics using enzymes and efflux pumps. This study investigates the ability of an evolutionarily conserved essential gene to provide resistance against antimicrobial compounds. An Escherichia coli chromosomally encoded thymidylate kinase (tmk) conditional lethal strain was developed to investigate tmk alleles from relevant nosocomial pathogens. The thymidylate kinase conditional lethal strain harboring a plasmid with a tmk gene from Mycobacterium tuberculosis, methicillin-resistant Staphylococcus aureus (MRSA), or Pseudomonas aeruginosa downstream of an inducible promoter was examined for survival against increasing concentrations of 3'-azido-3'-deoxythymidine (AZT). The results indicate that M. tuberculosis and MRSA thymidylate kinases are deficient in cellular activity toward AZT monophosphate.201425310917
9223130.9893De novo evolution of antibiotic resistance to Oct-TriA(1). The rise of antimicrobial resistance as a global health concern has led to a strong interest in compounds able to inhibit the growth of bacteria without detectable levels of resistance evolution. A number of these compounds have been reported in recent years, including the tridecaptins, a small family of lipopeptides typified by the synthetic analogue octyl-tridecaptin A(1). Hypothesizing that prior reports of negligible resistance evolution have been due in part to limitations in the laboratory evolution systems used, we have attempted to select for resistant mutants using a soft agar gradient evolution (SAGE) system developed by our lab. Following optimization of the media conditions by incorporation of the anti-synaeresis agent xanthan gum into the agar matrix, we successfully evolved high-level resistance to both octyl-tridecaptin A(1) as well as the challenging lipopeptide antibiotic polymyxin B. Decreased tridecaptin susceptibility was linked to mutations in outer membrane proteins ompC, lptD and mlaA, with the effect of these genes confirmed through a mix of allelic replacement and knockout studies. Overall, this work demonstrates the robust evolutionary potential of bacteria, even in the face of challenging antimicrobial agents.202539832423
4790140.9892Combating vancomycin resistance in bacteria: targeting the D-ala-D-ala dipeptidase VanX. In the past 20 years, vancomycin and other glycopeptide antibiotics have been administered to patients with Streptococcal and Staphylococcal infections that were resistant to all other antibiotics or to patients who were allergic to penicillins and cephalosporins. After extensive use of vancomycin and other glycopeptide antibiotics in humans, several strains of Enterococcus have developed high-level vancomycin resistance (collectively called VRE, vancomycin-resistant Enterococcus), and this resistance phenotype has spread to other organisms. The spread of vancomycin resistance to other pathogens and, potentially, to bacterial strains on the CDC's bioterrorism watch list is a major biomedical concern. Bacteria most often become resistant to vancomycin by acquiring a transposon containing genes that encode for a number of proteins, five of which are essential for the high-level resistance phenotype. The five essential gene products are called VanR, VanS, VanH, VanA, and VanX. Previous studies have shown that the inactivation of VanX results in an organism that is sensitive to vancomycin and that VanX is an excellent inhibitor target. In this review the known inhibitors and structural and mechanistic properties of VanX will be discussed. These data will be used to offer suggestions for novel, rationally-designed or -redesigned inhibitors, which could potentially be used in combination with existing glycopeptide antibiotics as a treatment for vancomycin-resistant bacterial infections.200616789876
562150.9892Macrolones target bacterial ribosomes and DNA gyrase and can evade resistance mechanisms. Growing resistance toward ribosome-targeting macrolide antibiotics has limited their clinical utility and urged the search for superior compounds. Macrolones are synthetic macrolide derivatives with a quinolone side chain, structurally similar to DNA topoisomerase-targeting fluoroquinolones. While macrolones show enhanced activity, their modes of action have remained unknown. Here, we present the first structures of ribosome-bound macrolones, showing that the macrolide part occupies the macrolide-binding site in the ribosomal exit tunnel, whereas the quinolone moiety establishes new interactions with the tunnel. Macrolones efficiently inhibit both the ribosome and DNA topoisomerase in vitro. However, in the cell, they target either the ribosome or DNA gyrase or concurrently both of them. In contrast to macrolide or fluoroquinolone antibiotics alone, dual-targeting macrolones are less prone to select resistant bacteria carrying target-site mutations or to activate inducible macrolide resistance genes. Furthermore, because some macrolones engage Erm-modified ribosomes, they retain activity even against strains with constitutive erm resistance genes.202439039256
9010160.9892Recovering the susceptibility of antibiotic-resistant bacteria using photooxidative damage. Multidrug-resistant bacteria are one of the most serious threats to infection control. Few new antibiotics have been developed; however, the lack of an effective new mechanism of their action has worsened the situation. Photodynamic inactivation (PDI) can break antimicrobial resistance, since it potentiates the effect of antibiotics, and induces oxidative stress in microorganisms through the interaction of light with a photosensitizer. This paper addresses the application of PDI for increasing bacterial susceptibility to antibiotics and helping in bacterial persistence and virulence. The effect of photodynamic action on resistant bacteria collected from patients and bacteria cells with induced resistance in the laboratory was investigated. Staphylococcus aureus resistance breakdown levels for each antibiotic (amoxicillin, erythromycin, and gentamicin) from the photodynamic effect (10 µM curcumin, 10 J/cm(2)) and its maintenance in descendant microorganisms were demonstrated within five cycles after PDI application. PDI showed an innovative feature for modifying the degree of bacterial sensitivity to antibiotics according to dosages, thus reducing resistance and persistence of microorganisms from standard and clinical strains. We hypothesize a reduction in the degree of antimicrobial resistance through photooxidative action combats antibiotic failures.202337729197
4789170.9892Antimicrobial resistance gene delivery in animal feeds. Avoparcin, a glycopeptide antimicrobial agent related to vancomycin, has been used extensively as a growth promoter in animal feeds for more than 2 decades, and evidence has shown that such use contributed to the development of vancomycin-resistant enterococci. A cluster that includes three genes, vanH, vanA, and vanX, is required for high-level resistance to glycopeptides. In the vancomycin producer Amycolatopsis orientalis C329.2, homologs of these genes are present, suggesting an origin for the cluster. We found substantial bacterial DNA contamination in animal feed-grade avoparcin. Furthermore, nucleotide sequences related to the cluster vanHAX are present in this DNA, suggesting that the prolonged use of avoparcin in agriculture led to the uptake of glycopeptide resistance genes by animal commensal bacteria, which were subsequently transferred to humans.200415200859
6363180.9892The effect of tetronasin and monensin on fermentation, microbial numbers and the development of ionophore-resistant bacteria in the rumen. The Gram-negative rumen bacteria Fibrobacter succinogenes S85, Prevotella ruminicola M384 and Veillonella parvula L59 were grown in media containing successively increasing concentrations of the ionophores, monensin and tetronasin. All three species became more resistant to the ionophore with which they were grown. Increased resistance to one ionophore caused increased resistance to the other, and cross-resistance to another ionophore--lasalocid--and an antibiotic--avoparcin. Recovery of tetronasin-resistant bacteria from the rumen of monensin-fed sheep increased and vice versa, indicating that similar cross-resistance occurred in vivo.19938407673
616190.9892Identification of lipoteichoic acid as a ligand for draper in the phagocytosis of Staphylococcus aureus by Drosophila hemocytes. Phagocytosis is central to cellular immunity against bacterial infections. As in mammals, both opsonin-dependent and -independent mechanisms of phagocytosis seemingly exist in Drosophila. Although candidate Drosophila receptors for phagocytosis have been reported, how they recognize bacteria, either directly or indirectly, remains to be elucidated. We searched for the Staphylococcus aureus genes required for phagocytosis by Drosophila hemocytes in a screening of mutant strains with defects in the structure of the cell wall. The genes identified included ltaS, which encodes an enzyme responsible for the synthesis of lipoteichoic acid. ltaS-dependent phagocytosis of S. aureus required the receptor Draper but not Eater or Nimrod C1, and Draper-lacking flies showed reduced resistance to a septic infection of S. aureus without a change in a humoral immune response. Finally, lipoteichoic acid bound to the extracellular region of Draper. We propose that lipoteichoic acid serves as a ligand for Draper in the phagocytosis of S. aureus by Drosophila hemocytes and that the phagocytic elimination of invading bacteria is required for flies to survive the infection.200919890048