GORILLAS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
173900.8881Antimicrobial-resistant Enterobacteriaceae from humans and wildlife in Dzanga-Sangha Protected Area, Central African Republic. Antimicrobial resistance is a worldwide concern of public health. Unfortunately, resistant bacteria are spreading to all ecosystems, including the strictly protected ones. We investigated antimicrobial resistance in gastrointestinal Enterobacteriaceae of wild mammals and people living within Dzangha-Sangha Protected Areas, Central African Republic, with an emphasis on extended-spectrum β-lactamase (ESBL) and plasmid-mediated quinolone resistance (PMQR) genes. We compare resistance genes found in microbiota of humans, gorillas habituated and unhabituated to humans and other wildlife. In gorillas, we additionally investigate the presence of ESBL resistant isolates after treatment by ceftiofur. We found a considerable prevalence of multiresistant Enterobacteriaceae isolates with ESBL and PMQR genes in humans (10% and 31%, respectively). Among wildlife the most significant findings were CTX-M-15-producing Klebsiella pneumoniae in a habituated gorilla and a multiresistant Escherichia coli isolate with gene qepA in an unhabituated gorilla. Other isolates from wildlife were mostly represented by qnrB-harboring Citrobacter spp. The relatedness of resistant E. coli was investigated in a PFGE-based dendrogram; isolates from gorillas showed less than 80% similarity to each other and less than 80% similarity to human isolates. No ESBL-producing isolates were found in animals treated by ceftiofur. Although we did not detect any bacterial clone common to wildlife and humans, we detected an intersection in the spectrum of resistance genes found in humans and gorillas, represented by blaCTX-M-15 and qepA.201424636162
138610.8848ESBL/pAmpC-producing Enterobacterales in common leopard geckos (Eublepharis macularius) and central bearded dragons (Pogona vitticeps) from Portugal. Common leopard geckos (Eublepharis macularius) and central bearded dragon (Pogona vitticeps) are widely kept as pets but can harbor pathogenic bacteria, including antimicrobial-resistant (AMR) bacteria. This study aimed to research the frequency of β-lactamase-producing Enterobacterales in these two reptile species. A total of 132 samples were collected from the oral and cloacal cavities of healthy common leopard geckos and central bearded dragons in the Lisbon area, Portugal. Antimicrobial resistance was assessed for third-generation cephalosporin (3GC)-resistant Enterobacterales. The results revealed that 3GC-resistant Enterobacterales were observed in 17.9% (n = 14/78) of the reptiles. The most commonly identified species were: Citrobacter freundii and Klebsiella aerogenes. Furthermore, some isolates produced extended-spectrum β-lactamases (ESBLs) and AmpC β-lactamases (AmpC) encoding genes such as bla (CMY-2), bla (CTX-M-15,) and bla (TEM-1). These findings emphasize the potential role of these reptiles in the spread of AMR bacteria, particularly in urban settings where human- animal interactions are frequent. Given the zoonotic risks, this study emphasizes the importance of continued surveillance and responsible antimicrobial use in both veterinary and human medicine to mitigate the spread of AMR bacteria.202540370835
139120.8814Faecal carriage of extended-spectrum β-lactamase-producing and AmpC β-lactamase-producing bacteria among Danish army recruits. During May and June 2008, 84 Danish army recruits were tested for faecal carriage of extended-spectrum β-lactamase (ESBL)-producing and AmpC β-lactamase-producing bacteria. Three ESBL-producing (CTX-M-14a) Escherichia coli isolates, two AmpC-producing (CMY-2) E. coli isolates and one AmpC-producing (CMY-34) Citrobacter freundii isolate were detected. Two of the CTX-M-14a E. coli isolates had similar pulsed-field gel electrophoresis and multilocus sequence typing profiles, indicating the same origin or transmission between the two army recruits. The bla(CTX-M-14a) genes were transferable to an E. coli recipient. These commensal bacteria therefore constitute a reservoir of resistance genes that can be transferred to other pathogenic bacteria in the intestine.201120718802
141330.8800Occurrence of Carbapenemases, Extended-Spectrum Beta-Lactamases and AmpCs among Beta-Lactamase-Producing Gram-Negative Bacteria from Clinical Sources in Accra, Ghana. Beta-lactamase (β-lactamase)-producing Gram-negative bacteria (GNB) are of public health concern due to their resistance to routine antimicrobials. We investigated the antimicrobial resistance and occurrence of carbapenemases, extended-spectrum β-lactamases (ESBLs) and AmpCs among GNB from clinical sources. GNB were identified using matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDITOF-MS). Antimicrobial susceptibility testing was performed via Kirby-Bauer disk diffusion and a microscan autoSCAN system. β-lactamase genes were determined via multiplex polymerase chain reactions. Of the 181 archived GNB analyzed, Escherichia coli and Klebsiella pneumoniae constituted 46% (n = 83) and 17% (n = 30), respectively. Resistance to ampicillin (51%), third-generation cephalosporins (21%), and ertapenem (21%) was observed among the isolates, with 44% being multi-drug resistant (MDR). β-lactamase genes such as AmpCs ((bla(FOX-M) (64%) and bla(DHA-M) and bla(EDC-M) (27%)), ESBLs ((bla(CTX-M) (81%), other β-lactamase genes bla(TEM) (73%) and bla(SHV) (27%)) and carbapenemase ((bla(OXA-)(48) (60%) and bla(NDM) and bla(KPC) (40%)) were also detected. One K. pneumoniae co-harbored AmpC (bla(FOX-M) and bla(EBC-M)) and carbapenemase (bla(KPC) and bla(OXA-)(48)) genes. bla(OXA-)(48) gene was detected in one carbapenem-resistant Acinetobacter baumannii. Overall, isolates were resistant to a wide range of antimicrobials including last-line treatment options. This underpins the need for continuous surveillance for effective management of infections caused by these pathogens in our settings.202337370334
139240.8791High prevalence of bla(CTX-M-15) type extended-spectrum beta-lactamases in Gambian hooded vultures (Necrosyrtes monachus): A threatened species with substantial human interaction. One hundred fecal samples from hooded vultures in the Gambia (Banjul area) were investigated for the presence of bacteria with extended-spectrum cephalosporin- (ESBL/AmpC), carbapenemases, and colistin resistance. No Enterobacteriales carrying carbapenemases or resistance against colistin were detected. Fifty-four ESBL-producing Escherichia coli and five ESBL-producing Klebsiella pneumoniae isolates were identified in 52 of the samples, of which 52 E. coli and 4 K. pneumoniae yielded passed sequencing results. Fifty of the E. coli had ESBL phenotype and genotype harboring bla(CTX-M) genes, of which 88.5% (n = 46) were the bla(CTX-M-15) gene, commonly found on the African continent. Furthermore, the genetic context around bla(CTX-M-15) was similar between isolates, being colocalized with ISKpn19. In contrast, cgMLST analysis of the E. coli harboring ESBL genes revealed a genetic distribution over a large fraction of the currently known existing E. coli populations in the Gambia. Hooded vultures in the Gambia thus have a high ESBL E. coli-prevalence (>50%) with low diversity regarding key resistance genes. Furthermore, given the urban presence and frequent interactions between hooded vultures and humans, data from this study implies hooded vultures as potential vectors contributing to the further dissemination of antibiotic-resistance genes.202337186228
138550.8789GENOMIC CHARACTERIZATION OF MULTIDRUG-RESISTANT EXTENDED-SPECTRUM β-LACTAMASE-PRODUCING ESCHERICHIA COLI AND KLEBSIELLA PNEUMONIAE FROM CHIMPANZEES (PAN TROGLODYTES) FROM WILD AND SANCTUARY LOCATIONS IN UGANDA. Farm and wild animals may serve as reservoirs of antimicrobial-resistant bacteria of human health relevance. We investigated the occurrence and genomic characteristics of extended spectrum β-lactamase (ESBL)-producing bacteria in Ugandan chimpanzees (Pan troglodytes) residing in two environments with or without close contact to humans. The ESBL-producing Escherichia coli and Klebsiella pneumoniae were isolated from fecal material of chimpanzees from Budongo Forest and Ngamba Island Chimpanzee Sanctuary in Uganda and were more commonly isolated from chimpanzees in Ngamba Island Chimpanzee Sanctuary, where animals have close contact with humans. Selected ESBL isolates (E. coli n=9, K. pneumoniae n=7) were analyzed by whole-genome sequencing to determine the presence of resistance genes, as well as sequence type and virulence potential; the blaCTX-M-15 gene was present in all strains. Additionally, the ESBL genes blaSHV-11 and blaSHV-12 were found in strains in the study. All strains were found to be multidrug resistant. The E. coli strains belonged to four sequence types (ST2852, ST215, ST405, and ST315) and the K. pneumoniae strains to two sequence types (ST1540 and ST597). Virulence genes did not indicate that strains were of common E. coli pathotype, but strains with the same sequence types as isolated in the current study have previously been reported from clinical cases in Africa. The findings indicate that chimpanzees in close contact with humans may carry ESBL bacteria at higher frequency than those in the wild, indicating a potential anthropogenic transmission.202235255126
94260.8789Occurrence of multidrug resistant Gram-negative bacteria and resistance genes in semi-aquatic wildlife - Trachemys scripta, Neovison vison and Lutra lutra - as sentinels of environmental health. Emergence of antimicrobial resistance (AMR) in bacterial pathogens has been recognized as a major public health concern worldwide. In the present study, antimicrobial resistant Gram-negative bacteria (AMRGNB) and AMR genes were assessed in semi-aquatic wild animals from a highly populated and intensive farming region of Spain, Catalonia. Cloacal/rectal swab samples were collected from 241 animals coming from invasive species Trachemys scripta (n = 91) and Neovison vison (n = 131), and endangered-protected species Lutra lutra (n = 19). Accordingly, 133 (55.2%) isolates were identified as AMRGNB. Escherichia coli and Pseudomonas fluorescens were among the bacteria most frequently isolated in all animal species, but other nosocomial agents such as Klebsiella pneumoniae, Salmonella spp. or Citrobacter freundii, were also prevalent. The phenotypic susceptibility testing showed the highest resistance to β-lactams (91%). Molecular analysis showed 25.3% of turtles (15.4% ESBL/Ampc genes), 21% of Eurasian otters (10.5% ESBL/Ampc genes) and 14.5% of American minks (8.4% ESBL/Ampc genes) were positive to AMR genes. The genotyping frequency was tetM (20.6%), blaCMY-2 (13%), ermB (6.1%), blaCMY-1 (4.6%), blaCTX-M-15 (3.1%) and mcr-4 (0.8%). Turtles had a larger prevalence of AMRGNB and AMR genes than mustelids, but American mink carried mcr-4 colistin-resistance gene. Moreover, cluster analysis of AMR gene distribution revealed that an ESBL/AmpC cluster in a highly populated area comprising big metropolitan regions, and another tetM/emrB cluster in an expended area with highly intensive livestock production. Although the mcr-4 positive case was not included in those clusters, that case was found in a county with a high pig farm density. In conclusion, semi-aquatic wild animals are a good sentinel for environmental contamination with AMRGNB and AMR genes. Therefore, One Health Approach is urgently needed in highly populated regions, and with intensive livestock production like Catalonia.202235341839
174070.8782MDR Escherichia coli carrying CTX-M-24 (IncF[F-:A1:B32]) and KPC-2 (IncX3/IncU) plasmids isolated from community-acquired urinary trainfection in Brazil. Acquired antibiotic resistance in bacteria has become an important worldwide challenge. Currently, several bacteria, including Escherichia coli, have multidrug resistance profiles. Genes such as bla CTX-M-24 and bla KPC-2 (carbapenemase) are widespread. This research letter reports about a genomic surveillance study where multidrug-resistant E. coli containing CTX-M-24(IncF [F-:A1:B32]) and KPC-2(IncX3/IncU) plasmids were obtained from community- acquired urinary tract infection in Brazil.202236228665
95680.8779Detection of Extended-Spectrum Beta-Lactamase-Producing and Carbapenem-Resistant Bacteria from Mink Feces and Feed in the United States. Antibiotic-resistant infections caused by extended-spectrum β-lactamases (ESBLs) and carbapenemases are increasing worldwide. Bacteria resistant to extended-spectrum cephalosporins and last resort carbapenems have been reported from food animals and their environments. Other concentrated nonfood-producing animals such as mink farming can be a reservoir of bacteria resistant to these critically important antibiotics. The objective of this study was to determine the prevalence of ESBL-producing bacteria and carbapenem-resistant (CR) bacteria from mink fecal (n = 42) and feed (n = 8) samples obtained from a commercial mink farm in the United States. The most prevalent ESBL-producing bacteria identified from the fecal samples were Escherichia coli (93%), Klebsiella pneumoniae (76%), and Proteus species (88%). E. coli (100%) and K. pneumoniae (75%) were also the most prevalent ESBL-producing bacteria identified from feed samples. All ESBL E. coli isolates were resistant to penicillin and most cephem beta-lactam antibiotics. Among the ESBL E. coli isolates, co-resistance was observed to ciprofloxacin (33%) and gentamicin (28%) indicating multidrug resistance. ESBL E. coli isolates predominantly carried bla(CTX-M-14) and bla(CTX-M-15) genes. Although all feed K. pneumoniae isolates carried bla(CTX-M-9), all fecal K. pneumoniae isolates carried bla(SHV). CR Pseudomonas species (7%), Hafnia alvei (24%), and Myroides odoratimimus (9.5%) were detected from fecal samples. H. alvei (37.5%) was the only CR bacteria detected from the feed samples. All CR isolates were polymerase chain reaction negative for the tested carbapenemases that are commonly reported, which may indicate intrinsic rather than acquired resistance. This study indicates that mink production can be a reservoir for bacteria resistant to the highest priority critically important antibiotics for human health.202133978469
95790.8778Occurrence, Typing, and Resistance Genes of ESBL/AmpC-Producing Enterobacterales in Fresh Vegetables Purchased in Central Israel. Beta-lactam resistance can lead to increased mortality, higher healthcare expenses, and limited therapeutic options. The primary mechanism of beta-lactam resistance is the production of extended-spectrum beta-lactamases (ESBL) and AmpC beta-lactamases. The spread of beta-lactamase-producing Enterobacterales via the food chain may create a resistance reservoir. The aims of this study were to determine the prevalence of ESBL/AmpC-producing Enterobacterales in vegetables, to examine the association between EBSL/AmpC-producing bacteria and types of vegetables, packaging, and markets, and to investigate the genetic features of ESBL-producing isolates. The antibiotic susceptibilities were determined using VITEK. Phenotypic ESBL/AmpC production was confirmed using disk diffusion. ESBL-producing isolates were subjected to Fourier-transform infrared (FT-IR) spectroscopy and to whole genome sequencing using Oxford Nanopore sequencing technology. Of the 301 vegetable samples, 20 (6.6%) were positive for ESBL producers (16 Klebsiella pneumoniae and 4 Escherichia coli), and 63 (20.9%) were positive for AmpC producers (56 Enterobacter cloacae complex, 4 Enterobacter aerogenes/cancerogenus, and 3 Pantoea spp., Aeromonas hydrophila, and Citrobacter braakii). The blaCTX-M and blaSHV genes were most common among ESBL-producing isolates. The beta-lactamase genes of the ESBL producers were mainly carried on plasmids. Multilocus sequence typing and FT-IR typing revealed high diversity among the ESBL producers. AmpC producers were significantly more common in leafy greens and ESBL producers were significantly less common in climbing vegetables. The presence of ESBL/AmpC-producing Enterobacterales in raw vegetables may contribute to the dissemination of resistance genes in the community.202337887229
1387100.8774Whole-Genome Characterisation of ESBL-Producing E. coli Isolated from Drinking Water and Dog Faeces from Rural Andean Households in Peru. E. coli that produce extended-spectrum β-lactamases (ESBLs) are major multidrug-resistant bacteria. In Peru, only a few reports have characterised the whole genome of ESBL enterobacteria. We aimed to confirm the identity and antimicrobial resistance (AMR) profile of two ESBL isolates from dog faeces and drinking water of rural Andean households and determine serotype, phylogroup, sequence type (ST)/clonal complex (CC), pathogenicity, virulence genes, ESBL genes, and their plasmids. To confirm the identity and AMR profiles, we used the VITEK(®)2 system. Whole-genome sequencing (WGS) and bioinformatics analysis were performed subsequently. Both isolates were identified as E. coli, with serotypes -:H46 and O9:H10, phylogroups E and A, and ST/CC 5259/- and 227/10, respectively. The isolates were ESBL-producing, carbapenem-resistant, and not harbouring carbapenemase-encoding genes. Isolate 1143 ST5259 harboured the astA gene, encoding the EAST(1) heat-stable toxin. Both genomes carried ESBL genes (bla(EC-15), bla(CTX-M-8), and bla(CTX-M-55)). Nine plasmids were detected, namely IncR, IncFIC(FII), IncI, IncFIB(AP001918), Col(pHAD28), IncFII, IncFII(pHN7A8), IncI1, and IncFIB(AP001918). Finding these potentially pathogenic bacteria is worrisome given their sources and highlights the importance of One-Health research efforts in remote Andean communities.202235625336
1229110.8772Detection of multi-drug resistance and AmpC β-lactamase/extended-spectrum β-lactamase genes in bacterial isolates of loggerhead sea turtles (Caretta caretta) from the Mediterranean Sea. Sea turtles are useful sentinels to monitor the dissemination of antimicrobial resistance (AMR) in the marine coastal ecosystems. Forty Gram negative bacteria were isolated from wounds of 52 injured Caretta caretta, living in the Mediterranean Sea. Bacteria were identified using 16S rRNA gene sequencing and tested for susceptibility to 15 antibiotics. In addition, NGS amplicon sequencing was performed to detect the presence of AmpC β-lactamase genes (bla(AmpC)) and extended-spectrum β-lactamase (ESBL) genes (bla(CTX-M,)bla(SHV,)bla(TEM)). Seventy-five percent of the isolates (30/40 isolates) exhibited multidrug resistance (MDR) phenotypes and 32.5% (13/40 isolates) were confirmed to be positive for at least one gene. The variants of ESBLs genes were bla(CTX-M-3,)bla(TEM-236) and bla(SHV-12). Variants of the bla(AmpC)β-lactamase gene i.e., bla(ACT-24), bla(ACT-2), bla(ACT-17), bla(DHA-4) and bla(CMY-37), were also detected. In addition, 4 isolates were found simultaneously harboring CTX and AmpC genes while 2 strains harbored 3 genes (bla(ACT-2+TEM-236+SHV-12), and bla(CTX-M-3+ACT-24+TEM-236)).202133513540
1091120.8770Co-harboring of cephalosporin (bla)/colistin (mcr) resistance genes among Enterobacteriaceae from flies in Thailand. The spreading of antimicrobial-resistant Enterobacteriaceae, especially those co-harboring plasmid-mediated cephalosporin (bla) and colistin (mcr) resistance genes, is becoming increasingly problematic. As a vector, flies carry antimicrobial-resistant bacteria (ARB) into human and livestock habitats. To investigate ARB in flies, we collected 235 flies from 27 sites (18 urban areas, five pig farms and four chicken farms) in Thailand during 2013-2015. Cefotaxime-resistant Enterobacteriaceae (CtxRE) and bla-positive CtxRE were isolated from 70 (29.8%) and 48 (20.4%) flies, respectively. In 93 bla-positive CtxRE isolates that included Escherichia coli, Enterobacter spp., and Klebsiella pneumoniae from 48 flies, the most frequent bla gene was TEM (n = 62), followed by CTX-M-55 (n = 31), CTX-M-14 (n = 26), CMY-2 (n = 24) and SHV (n = 10), and 58 isolates harbored multiple types of these genes. In addition, we detected the mcr-1 (n = 1) and mcr-3 (n = 19) genes in bla-positive CtxRE isolates from 16 flies. In conjugation experiments, 10 mcr-3- and bla-positive isolates exhibited co-transfer of mcr-3 and blaTEM-1 genes. These results suggest that a relatively high proportion of flies in Thailand carries cephalosporin-resistant Enterobacteriaceae harboring co-transmissible cephalosporin and colistin resistance genes.201830010911
1743130.8770International clones of extended-spectrum β-lactamase (CTX-M)-producing Escherichia coli in peri-urban wild animals, Brazil. CTX-M-type extended-spectrum β-lactamase (ESBL)-producing Escherichia coli clones have been increasingly reported worldwide. In this regard, although discussions of transmission routes of these bacteria are in evidence, molecular data are lacking to elucidate the epidemiological impacts of ESBL producers in wild animals. In this study, we have screened 90 wild animals living in a surrounding area of São Paulo, the largest metropolitan city in South America, to monitor the presence of multidrug-resistant (MDR) Gram-negative bacteria. Using a genomic approach, we have analysed eight ceftriaxone-resistant E. coli. Resistome analyses revealed that all E. coli strains carried bla(CTX-M) -type genes, prevalent in human infections, besides other clinically relevant resistance genes to aminoglycosides, β-lactams, phenicols, tetracyclines, sulphonamides, trimethoprim, fosfomycin and quinolones. Additionally, E. coli strains belonged to international sequence types (STs) ST38, ST58, ST212, ST744, ST1158 and ST1251, and carried several virulence-associated genes. Our findings suggest spread and adaptation of international clones of CTX-M-producing E. coli beyond urban settings, including wildlife from shared environments.202032239649
952140.8769Molecular Surveillance of ESBL and Carbapenemase Genes in Gram-Negative Bacterial Pathogens Isolated from Various Clinical Samples Collected from Northern Region of United Arab Emirates. The aim of this study was to explore the prevalence of ESBL and carbapenemase genes in Gram-negative bacteria isolated from various clinical samples collected from northern regions of UAE. In total 3670 clinical samples were obtained from patients attending various hospitals and clinics in the northern regions of the UAE. All the samples underwent routine bacterial culture examination, and their antibiotic sensitivity patterns mainly on beta-lactam and carbapenem resistance in Gram-negative bacteria. Molecular detection of ESBL and carbapenemase genes (bla(CTX-M), bla(TEM), bla(SHV), bla(NDM), bla(IMP), and bla(OXA-48)) was performed on them. A total of 249 MDR Gram-negative bacteria (E. coli, K. pneumoniae, P. aeruginosa, P. mirabilis and A. baumannii) were isolated. The genes bla(CTX-M), bla(TEM), and bla(SHV) were detected in all the MDR isolates. Among them, the bla(CTX-M) was predominant especially in E. coli. The bla(NDM) and bla(IMP) were detected in a few K. pneumoniae and A. baumannii. The genes combination bla(CTX-M+TEM) and bla(CTX-M+SHV), bla(CTX-M+SHV), bla(TEM+SHV), and bla(TEM+NDM) were detected mostly in K. pneumoniae and E. coli, and few A. baumannii. The gene combination bla(CTX-M+TEM+SHV) and bla(CTX-M+TEM+SHV+IMP) were also detected in few E. coli, P. aeruginosa, and A. baumannii. The current findings highlight the importance of molecular detection of ESBL and carbapenemase genes to emphasize monitoring and controlling the development of MDR bacterial pathogens.202540871384
1410150.8769A high prevalence of multi-drug resistant Gram-negative bacilli in a Nepali tertiary care hospital and associated widespread distribution of Extended-Spectrum Beta-Lactamase (ESBL) and carbapenemase-encoding genes. BACKGROUND: Multi-drug resistance (MDR) and extensive-drug resistance (XDR) associated with extended-spectrum beta-lactamases (ESBLs) and carbapenemases in Gram-negative bacteria are global public health concerns. Data on circulating antimicrobial resistance (AMR) genes in Gram-negative bacteria and their correlation with MDR and ESBL phenotypes from Nepal is scarce. METHODS: A retrospective study was performed investigating the distribution of ESBL and carbapenemase genes and their potential association with ESBL and MDR phenotypes in E. coli, Klebsiella spp., Enterobacter spp. and Acinetobacter spp. isolated in a major tertiary hospital in Kathmandu, Nepal, between 2012 and 2018. RESULTS: During this period, the hospital isolated 719 E. coli, 532 Klebsiella spp., 520 Enterobacter spp. and 382 Acinetobacter spp.; 1955/2153 (90.1%) of isolates were MDR and half (1080/2153) were ESBL producers. Upon PCR amplification, bla(TEM) (1281/1771; 72%), bla(CTXM-1) (930/1771; 53%) and bla(CTXM-8) (419/1771; 24%) were the most prevalent ESBL genes in the enteric bacilli. Bla(OXA) and bla(OXA-51) were the most common bla(OXA) family genes in the enteric bacilli (918/1771; 25%) and Acinetobacter spp. (218/382; 57%) respectively. Sixteen percent (342/2153) of all isolates and 20% (357/1771) of enteric bacilli harboured bla(NDM-1) and bla(KPC) carbapenemase genes respectively. Of enteric bacilli, Enterobacter spp. was the most frequently positive for bla(KPC) gene (201/337; 60%). The presence of each bla(CTX-M) and bla(OXA) were significantly associated with non-susceptibility to third generation cephalosporins (OR 14.7, p < 0.001 and OR 2.3, p < 0.05, respectively).The presence of each bla(TEM), bla(CTXM) and bla(OXA) family genes were significantly associated with ESBL positivity (OR 2.96, p < 0.001; OR 14.2, p < 0.001 and OR 1.3, p < 0.05 respectively) and being MDR (OR 1.96, p < 0.001; OR 5.9, p < 0.001 and OR 2.3, p < 0.001 respectively). CONCLUSIONS: This study documents an alarming level of AMR with high prevalence of MDR ESBL- and carbapenemase-positive ESKAPE microorganisms in our clinical setting. These data suggest a scenario where the clinical management of infected patients is increasingly difficult and requires the use of last-resort antimicrobials, which in turn is likely to intensify the magnitude of global AMR crisis.202033087115
1101160.8768New insights into resistance to colistin and third-generation cephalosporins of Escherichia coli in poultry, Portugal: Novel bla(CTX-M-166) and bla(ESAC) genes. The increasing incidence of intestinal colonization with extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae and Gram negative organisms that has been observed in food animals such as poultry, cattle and pigs, are suggestive that animals, food and environment are potential sources of ESBL-producing bacteria. Hence, the aim of this study was to characterized commensal E. coli obtained from healthy broiler and turkey flocks at slaughter for the presence of penicillinases-, ESBL-, extended-spectrum AmpC (ESAC)-, plasmid-mediated quinolone resistance- and MCR-encoding genes. Study of clonal relatedness showed genetic diversity among CTX-M-type, SHV-12 and TEM-52 producing isolates with human isolates of the same type, was also assessed. We detected that eleven (5.4%, 11/202) and forty-five (2.2%, 45/185) E. coli isolates from broilers and turkeys, respectively, carried bla(ESBL) or bla(ESAC) genes and two isolates from turkeys carried mcr-1 gene. A new variant bla(CTX-M-166) was reported in a multidrug resistant isolate from a broiler flock. Overall, we detected a diversity of resistance mechanisms among E. coli from food-producing animals, all of them with high importance at a public health level.201729031106
1096170.8767Investigation of urban birds as source of β-lactamase-producing Gram-negative bacteria in Marseille city, France. BACKGROUND: We investigate here the presence of multidrug-resistant bacteria isolated from stool samples of yellow-legged gulls and chickens (n = 136) in urban parks and beaches of Marseille, France. Bacterial isolation was performed on selective media, including MacConkey agar with ceftriaxone and LBJMR medium. Antibiotic resistance genes, including extended-spectrum β-lactamases (ESBL) (i.e. bla(CTX-M), bla(TEM) and bla(SHV)), carbapenemases (bla(KPC), bla(VIM), bla(NDM), bla(OXA-23), bla(OXA-24), bla(OXA-48) and bla(OXA-58)) and colistin resistance genes (mcr-1 to mcr-5) were screened by real-time PCR and standard PCR and sequenced when found. RESULTS: Of the 136 stools samples collected, seven ESBL-producing Gram-negative bacteria (BGN) and 12 colistin-resistant Enterobacteriaceae were isolated. Among them, five ESBL-producing Escherichia coli and eight colistin-resistant Hafnia alvei strains were identified. Four bla(TEM-1) genes were detected in yellow-legged gulls and chickens. Three CTX-M-15 genes were detected in yellow-legged gulls and pigeons, and one CTX-M-1 in a yellow-legged gull. No mcr-1 to mcr-5 gene were detected in colistin-resistant isolates. Genotyping of E. coli strains revealed four different sequence types already described in humans and animals and one new sequence type. CONCLUSIONS: Urban birds, which are believed to have no contact with antibiotics appear as potential source of ESBL genes. Our findings highlight the important role of urban birds in the proliferation of multidrug-resistant bacteria and also the possible zoonotic transmission of such bacteria from wild birds to humans.201931672159
1414180.8767Prevalence and antimicrobial susceptibility of extended-spectrum beta-lactamase-producing bacteria in intensive care units of Sanandaj general hospitals (Kurdistan, Iran). This study focused on analyzing the spread of extended-spectrum beta-lactamase (ESBL) enzymes among Gram-negative bacteria at intensive care units (ICUs). Between January 2007 and January 2008, 301 consecutive clinical isolates of Gram-negative type were isolated. Of these, 66 strains were collected from patients in ICUs in two major hospitals in Sanandaj (Kurdistan, Iran). The isolates were identified, tested for antimicrobial susceptibility, and analyzed for the presence of ESBL using the double-disk synergy test. Isolates with a positive ESBL phenotype were subjected to PCR for SHV, TEM, OXA and CTX-M beta-lactamase gene families. Sixty-six Gram-negative bacteria were isolated from clinical samples of 66 ICU patients. These isolates included 16 Escherichia coli, 28 Enterobacter spp., 5 Pseudomonas spp., 10 Klebsiella pneumoniae, 3 Serratia marcescens and 1 Stenotrophomonas maltophilia. Twenty-three (34.85%) of these isolates were ESBL producing. The ESBL genes detected were SHV, TEM, OXA-1, OXA-2 and CTX-M. The results show the presence of ESBL genes among Gram-negative bacteria in the ICU setting of Sanandaj's hospitals. There is a need to institute a strict hospital infection control policy and regular surveillance of bacterial resistance to antimicrobial agents.200919521074
1389190.8762Whole-Genome Sequencing of Gram-Negative Bacteria Isolated From Bovine Mastitis and Raw Milk: The First Emergence of Colistin mcr-10 and Fosfomycin fosA5 Resistance Genes in Klebsiella pneumoniae in Middle East. Antimicrobial resistance is a major concern in the dairy industry. This study investigated the prevalence, antimicrobial resistance phenotypes, and genome sequencing of Gram-negative bacteria isolated from clinical (n = 350) and subclinical (n = 95) bovine mastitis, and raw unpasteurized milk (n = 125). Klebsiella pneumoniae, Aeromonas hydrophila, Enterobacter cloacae (100% each), Escherichia coli (87.78%), and Proteus mirabilis (69.7%) were the most prevalent multidrug-resistant (MDR) species. Extensive drug-resistance (XDR) phenotype was found in P. mirabilis (30.30%) and E. coli (3.33%) isolates. Ten isolates (four E. coli, three Klebsiella species and three P. mirabilis) that displayed the highest multiple antibiotic resistance (MAR) indices (0.54-0.83), were exposed to whole-genome sequencing (WGS). Two multilocus sequence types (MLST): ST2165 and ST7624 were identified among the sequenced E. coli isolates. Three E. coli isolates (two from clinical mastitis and one from raw milk) belonging to ST2165 showed similar profile of plasmid replicon types: IncFIA, IncFIB, IncFII, and IncQ1 with an exception to an isolate that contained IncR, whereas E. coli ST7624 showed a different plasmid profile including IncHI2, IncHI2A, IncI1α, and IncFII replicon types. ResFinder findings revealed the presence of plasmid-mediated colistin mcr-10 and fosfomycin fosA5 resistance genes in a K. pneumoniae (K1) isolate from bovine milk. Sequence analysis of the reconstructed mcr-10 plasmid from WGS of K1 isolate, showed that mcr-10 gene was bracketed by xerC and insertion sequence IS26 on an IncFIB plasmid. Phylogenetic analysis revealed that K1 isolate existed in a clade including mcr-10-harboring isolates from human and environment with different STs and countries [United Kingdom (ST788), Australia (ST323), Malawi (ST2144), Myanmar (ST705), and Laos (ST2355)]. This study reports the first emergence of K. pneumoniae co-harboring mcr-10 and fosA5 genes from bovine milk in the Middle East, which constitutes a public health threat and heralds the penetration of the last-resort antibiotics. Hence, prudent use of antibiotics in both humans and animals and antimicrobial surveillance plans are urgently required.202134956131