# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2446 | 0 | 0.9705 | Low selection of topoisomerase mutants from strains of Escherichia coli harbouring plasmid-borne qnr genes. OBJECTIVES: To investigate mutations in the type II topoisomerase genes in quinolone-resistant mutants selected from bacteria harbouring plasmid-borne qnr genes. METHODS: Mutants were selected by nalidixic acid, ciprofloxacin and moxifloxacin from two Escherichia coli reference strains and corresponding transconjugants harbouring qnrA1, qnrA3, qnrB2 or qnrS1 genes. RESULTS: The proportion of resistant mutants selected by the three quinolones was, respectively, in the same range for qnr-positive transconjugants and reference strains. Only 20% (65/329) of the mutants selected from the transconjugants showed a gyrase mutation, whereas 79% (94/119) of those from the reference strains without a qnr gene did (P < 0.0001). At four times the MIC of the selector quinolone, gyrA mutants represented 49% and 95% of the mutants selected with nalidixic acid, 4% and 94% with ciprofloxacin and 0% and 54% with moxifloxacin for qnr-positive transconjugants and reference strains, respectively. Mutations within gyrA were distributed at codon 87 (D87G, H, N or Y) and at codon 83 (S83L) with three novel mutations (gyrA Ser83stop, gyrA Asp82Asn and gyrB insertion of Glu at 465) and three rare mutations (gyrA Gly81Asp, gyrA Asp82Gly and gyrA Ser431Pro), mainly obtained from reference strains after moxifloxacin selection. Strikingly, none of the mutants selected by moxifloxacin from qnr-positive transconjugants harboured a mutation in the topoisomerase genes. CONCLUSIONS: Topoisomerase mutants are rarely selected by ciprofloxacin and moxifloxacin from strains harbouring qnr. This suggests that the quinolone resistance-determining region domains are protected from quinolones by the Qnr protein and consequently other mechanisms are developed to acquire a further step of fluoroquinolone resistance. | 2008 | 18325893 |
| 2475 | 1 | 0.9701 | Examination of single and multiple mutations involved in resistance to quinolones in Staphylococcus aureus by a combination of PCR and denaturing high-performance liquid chromatography (DHPLC). Detection of DNA sequence variation is fundamental to the identification of the genomic basis of phenotypic variability. Denaturing high-performance liquid chromatography (DHPLC) is a novel technique that has been used to detect mutations in human DNA. We report on the first study to use this technique as a tool to detect mutations in genes encoding antibiotic resistance in bacteria. Three methicillin-sensitive and three methicillin-resistant clinical Staphylococcus aureus isolates, susceptible to ciprofloxacin (MIC | 2002 | 12407120 |
| 5221 | 2 | 0.9700 | Molecular cloning of the DNA gyrase genes from Methylovorus sp. strain SS1 and the mechanism of intrinsic quinolone resistance in methylotrophic bacteria. The genes encoding the DNA gyrase A (GyrA) and B subunits (GyrB) of Methylovorus sp. strain SS1 were cloned and sequenced. gyrA and gyrB coded for proteins of 846 and 799 amino acids with calculated molecular weights of 94,328 and 88,714, respectively, and complemented Escherichia coli gyrA and gyrB temperature sensitive (ts) mutants. To analyze the role of type II topoisomerases in the intrinsic quinolone resistance of methylotrophic bacteria, the sequences of the quinolone resistance-determining regions (QRDRs) in the A subunit of DNA gyrase and the C subunit (ParC) of topoisomerase IV (Topo IV) of Methylovorus sp. strain SS1, Methylobacterium extorquens AM1 NCIB 9133, Methylobacillus sp, strain SK1 DSM 8269, and Methylophilus methylotrophus NCIB 10515 were determined. The deduced amino acid sequences of the QRDRs of the ParCs in the four methylotrophic bacteria were identical to that of E. coli ParC. The sequences of the QRDR in GyrA were also identical to those in E. coli GyrA except for the amino acids at positions 83, 87, or 95. The Ser83 to Thr substitution in Methylovorus sp. strain SS1, and the Ser83 to Leu and Asp87 to Asn substitutions in the three other methylotrophs, agreed well with the minimal inhibitory concentrations of quinolones in the four bacteria, suggesting that these residues play a role in the intrinsic susceptibility of methylotrophic bacteria to quinolones. | 2005 | 16404155 |
| 1245 | 3 | 0.9699 | Mutation-based fluoroquinolone resistance in carbapenem-resistant Acinetobacter baumannii and Escherichia coli isolates causing catheter-related bloodstream infections. OBJECTIVE: We studied the presence of mutations in the chromosomal quinolone resistance-determining regions (QRDRs) of the fluoroquinolone targets gyrA and parC genes and detected the carbapenem resistance (CR) encoding genes among Acinetobacter baumannii and Escherichia coli isolates from catheter-related bloodstream infections (CRBSIs). METHODS: The study included 39 non-duplicate isolates of A. baumannii (14/39, 35.9%) and E. coli (25/39, 64.1%) isolated from 128 confirmed CRBSIs cases. Antimicrobial susceptibility testing was performed, followed by an evaluation of biofilm formation using the tissue culture plate method. The carbapenemase encoding genes were detected by multiplex polymerase chain reaction (PCR). The mutations in QRDRs of gyrA and parC genes were determined by singleplex PCR amplification followed by DNA sequencing and BlastN analysis in the GenBank database. DNA and the translated amino acid sequences were analyzed using the Mega7 bioinformatics tool. RESULTS: Multidrug-resistant (MDR) E. coli and A. baumannii isolates harbored CR encoding genes and combined gyrA and parC genes mutation. The specific substitutions observed in GyrA were Cys173Arg, Cys174Gly, Asp80Val, Tyr178ASP, Tyr84Gly, Glu85Lys, Ser172Leu, and Asp176Asn, while the specific substitutions observed in the ParC amino acid sequence were point mutation 62 Arg, Phe60Leu, Ils66Val, and Gln76Lys. Point mutation 62Arg was detected in two A. baumannii isolates, whereas Ser172Leu mutation was observed in two E. coli isolates. CONCLUSION: The presence of new single and multiple mutations in QRDR causes the emergence of MDR E. coli and A. baumannii infections in carbapenem-resistant Enterobacteriaceae in Egypt, requiring further investigation in Gram-negative bacteria. | 2023 | 37151743 |
| 1246 | 4 | 0.9693 | Ciprofloxacin-resistant Gram-negative isolates from a tertiary care hospital in Eastern India with novel gyrA and parC gene mutations. BACKGROUND: Expanded-spectrum quinolones (ciprofloxacin) are highly effective against gram-negative bacteria, but significant resistance to quinolones has been increasingly reported. We sought to evaluate the prevalence of gram-negative ciprofloxacin-resistant isolates (CRIs) from our hospital and their mechanism of action. METHODS: Gram-negative CRIs were identified as per standard procedures and confirmed using the Ezy MICTM Strip (HiMedia). DNA from 67 CRIs was amplified for the quinolone resistance-determining region (QRDR) and plasmid-mediated quinolone resistance genes. Thirty isolates positive for QRDR DNA were sequenced by Sanger's method to detect mutation. RESULTS: Of the isolates, 42.5% were found to be CRIs, the majority (74.42%) from inpatient departments, and E scherichia coli (64.19%) was the predominant isolate. Among the CRIs, 24.55% were ESBL producers and 35.29% were multidrug resistant. The polymerase chain reaction results showed the majority were amplified by QRDR target regions of gyrA (35.4%) while 4.61% were amplified for the plasmid-mediated fluoroquinolone resistance region of the qnrB gene. Further sequencing of QRDR-positive genes showed point mutations with amino acid changes at codons Ser83 and Asp87 in the gyrA gene and Ser80, Glu84, and Leu88 positions in the parC gene. CONCLUSION: Ciprofloxacin resistance observed in our study was mostly due to point mutations. Hence, strategies for rational use of ciprofloxacin and adherence to the dose and duration of treatment could be helpful to prevent selection and spread of mutant CRIs/strains. | 2022 | 35035040 |
| 1247 | 5 | 0.9688 | Antibiotic resistance determinants of multidrug-resistant Acinetobacter baumannii clinical isolates in Algeria. Antibiotic susceptibility testing was performed on 71 Acinetobacter baumannii clinical isolates, and presence of antibiotic resistance genes was screened for by PCR amplification and sequencing. Resistance rates were very high for aminoglycosides (22-80%), fluoroquinolones (>90%), and cephalosporins (>90%) but remained low for rifampin (2.8%) or null for colistin. Antibiotic resistance encoding genes detected were as follows: blaTEM-128 gene (74.6%), aph(3')-VI (50.7 %), aadA (63.4%), ant(2″)-I (14.1%), aac(3)-Ia (91.1%), aac(6')-Ib (4.2%), mutation Ser83Leu in gyrA (94.4%), double mutations Ser83Leu and Ser80Leu (or Ser84Leu) in gyrA and parC (69.0%), and mutation I581N in RRDR of the rpoB gene. | 2013 | 23688522 |
| 5375 | 6 | 0.9684 | Mechanism of Eravacycline Resistance in Clinical Enterococcus faecalis Isolates From China. Opportunistic infections caused by multidrug-resistant Enterococcus faecalis strains are a significant clinical challenge. Eravacycline (Erava) is a synthetic fluorocycline structurally similar to tigecycline (Tige) that exhibits robust antimicrobial activity against Gram-positive bacteria. This study investigated the in vitro antimicrobial activity and heteroresistance risk of Eravacycline (Erava) in clinical E. faecalis isolates from China along with the mechanism of Erava resistance. A total of 276 non-duplicate E. faecalis isolates were retrospectively collected from a tertiary care hospital in China. Heteroresistance to Erava and the influence of tetracycline (Tet) resistance genes on Erava susceptibility were examined. To clarify the molecular basis for Erava resistance, E. faecalis variants exhibiting Erava-induced resistance were selected under Erava pressure. The relative transcript levels of six candidate genes linked to Erava susceptibility were determined by quantitative reverse-transcription PCR, and their role in Erava resistance and heteroresistance was evaluated by in vitro overexpression experiments. We found that Erava minimum inhibitory concentrations (MICs) against clinical E. faecalis isolates ranged from ≤0.015 to 0.25 mg/l even in strains harboring Tet resistance genes. The detection frequency of Erava heteroresistance in isolates with MICs ≤ 0.06, 0.125, and 0.25 mg/l were 0.43% (1/231), 7.5% (3/40), and 0 (0/5), respectively. No mutations were detected in the 30S ribosomal subunit gene in Erava heteroresistance-derived clones, although mutations in this subunit conferred cross resistance to Tige in Erava-induced resistant E. faecalis. Overexpressing RS00630 (encoding a bone morphogenetic protein family ATP-binding cassette transporter substrate-binding protein) in E. faecalis increased the frequency of Erava and Tige heteroresistance, whereas RS12140, RS06145, and RS06880 overexpression conferred heteroresistance to Tige only. These results indicate that Erava has potent in vitro antimicrobial activity against clinical E. faecalis isolates from China and that Erava heteroresistance can be induced by RS00630 overexpression. | 2020 | 32523563 |
| 2288 | 7 | 0.9683 | Resistance of Stenotrophomonas maltophilia to Fluoroquinolones: Prevalence in a University Hospital and Possible Mechanisms. OBJECTIVE: The purpose of this study was to investigate the clinical distribution and genotyping of Stenotrophomonas maltophilia, its resistance to antimicrobial agents, and the possible mechanisms of this drug resistance. METHODS: S. maltophilia isolates were collected from clinical specimens in a university hospital in Northwestern China during the period between 2010 and 2012, and were identified to the species level with a fully automated microbiological system. Antimicrobial susceptibility testing was performed for S. maltophilia with the Kirby-Bauer disc diffusion method. The minimal inhibitory concentrations (MICs) of norfloxacin, ofloxacin, chloramphenicol, minocycline, ceftazidime, levofloxacin and ciprofloxacin against S. maltophilia were assessed using the agar dilution method, and changes in the MIC of norfloxacin, ciprofloxacin and ofloxacin were observed after the addition of reserpine, an efflux pump inhibitor. Fluoroquinolone resistance genes were detected in S. maltophilia using a polymerase chain reaction (PCR) assay, and the expression of efflux pump smeD and smeF genes was determined using a quantitative fluorescent (QF)-PCR assay. Pulsed-field gel electrophoresis (PFGE) was employed to genotype identified S. maltophilia isolates. RESULTS: A total of 426 S. maltophilia strains were isolated from the university hospital from 2010 to 2012, consisting of 10.1% of total non-fermentative bacteria. The prevalence of norfloxacin, ciprofloxacin and ofloxacin resistance was 32.4%, 21.9% and 13.2% in the 114 S. maltophilia isolates collected from 2012, respectively. Following reserpine treatment, 19 S. maltophilia isolates positive for efflux pump were identified, and high expression of smeD and smeF genes was detected in two resistant isolates. gyrA, parC, smeD, smeE and smeF genes were detected in all 114 S. maltophilia isolates, while smqnr gene was found in 25.4% of total isolates. Glu-Lys mutation (GAA-AAA) was detected at the 151th amino acid of the gyrA gene, while Gly-Arg mutation (GGC-CGC) was found at the 37th amino acid of the parC gene. However, no significant difference was observed in the prevalence of gyrA or parC mutation between fluoroquinolone-resistant and -susceptible isolates (p> 0.05). The smqnr gene showed 92% to 99% heterogenicity among the 14 S. maltophilia clinical isolates. PFGE of 29 smqnr gene-positive S. maltophilia clinical isolates revealed 25 PFGE genotypes and 28 subgenotypes. CONCLUSIONS: Monitoring the clinical distribution and antimicrobial resistance of S. maltophilia is of great significance for the clinical therapy of bacterial infections. Reserpine is effective to inhibit the active efflux of norfloxacin, ciprofloxacin and ofloxacin on S. maltophilia and reduce MIC of fluoroquinolones against the bacteria. The expression of efflux pump smeD and smeF genes correlates with the resistance of S. maltophilia to fluoroquinolones. | 2015 | 25985315 |
| 2007 | 8 | 0.9683 | Novel ISCR1-linked resistance genes found in multidrug-resistant Gram-negative bacteria in southern China. Non-duplicate multidrug-resistant (MDR) Gram-negative bacteria (n=1329) isolated from southern China between January 2008 and December 2009 were investigated for the presence of ISCR1 as well as characterisation of ISCR1-linked resistance genes. Of 433 ISCR1-positive strains, 151 appeared to carry ISCR1-linked resistance genes. Seven different ISCR1-linked resistance gene arrays were identified by restriction fragment length polymorphism (RFLP) and DNA sequencing analysis. Many of these arrays are reported in some species for the first time. A total of 12 genes, including a novel ABC transporter (GenBank accession no. GU944725), qnrA1, qnrB2, qnrB6, bla(DHA-1), ampR, bla(CTX-M-9), bla(PER-1), insB, sapA-like peptide transport periplasmic protein, putative glutathione S-transferase and short-chain dehydrogenase/reductase, were detected. This study was the first to employ PCR-RFLP using HinfI and RsaI to analyse ISCR1-linked genes. ISCR1 was widely disseminated among MDR Gram-negative bacteria and was in close association with quinolone resistance and β-lactamase genes (class A and class C) in southern China. | 2012 | 22890194 |
| 5872 | 9 | 0.9683 | Characterization of the plasmids harbouring the florfenicol resistance gene floR in Glaesserella parasuis and Actinobacillus indolicus. OBJECTIVES: The aim of this study was to characterize the floR-carrying plasmids originating from Glaesserella parasuis and Actinobacillus indolicus isolated from pigs with respiratory disease in China. METHODS: A total of 125 G. parasuis and 28 A. indolicus strains collected between 2009 and 2022 were screened for florfenicol resistance. Characterization of floR-positive isolates and plasmids were determined by antimicrobial susceptibility testing, serotyping, multilocus sequence typing (MLST), conjugation and transformation assays, whole-genome sequencing (WGS), and phylogenetic analysis. RESULTS: One A. indolicus and six G. parasuis were identified as positive for floR. The six G. parasuis were assigned to four different serovars, including serovars 6, 7, 9, and unknown. In addition to strain XP11, six floR genes were located on plasmids. The six floR-bearing plasmids could be transformed into Pasteurella multocida and divided into two different types, including ∼5000 bp and ∼6000 bp plasmids. The ∼5000 bp plasmids consisting of rep, lysR, mobB, and floR genes, exhibited high similarity among Pasteurellaceae bacteria. Furthermore, the ∼6000 bp plasmids, consisting of rep, lysR, mobC, mobA/L, and floR genes, showed high similarity between G. parasuis and Actinobacillus Spp. Notably, WGS results showed that the floR modules of the two types of plasmids could be transferred and integrated into the diverse Pasteurellaceae- origined plasmids. CONCLUSION: This study firstly reported the characterization of floR-carrying plasmids from A. indolicus and a non-virulent serovar of G. parasuis in pigs in China and elucidated the transmission mechanism of the floR resistance gene among the Pasteurellaceae family. | 2023 | 37726088 |
| 3008 | 10 | 0.9682 | Sequence of conjugative plasmid pIP1206 mediating resistance to aminoglycosides by 16S rRNA methylation and to hydrophilic fluoroquinolones by efflux. Self-transferable IncFI plasmid pIP1206, isolated from an Escherichia coli clinical isolate, carries two new resistance determinants: qepA, which confers resistance to hydrophylic fluoroquinolones by efflux, and rmtB, which specifies a 16S rRNA methylase conferring high-level aminoglycoside resistance. Analysis of the 168,113-bp sequence (51% G+C) revealed that pIP1206 was composed of several subregions separated by copies of insertion sequences. Of 151 open reading frames, 56 (37%) were also present in pRSB107, isolated from a bacterium in a sewage treatment plant. pIP1206 contained four replication regions (RepFIA, RepFIB, and two partial RepFII regions) and a transfer region 91% identical with that of pAPEC-O1-ColBM, a plasmid isolated from an avian pathogenic E. coli. A putative oriT region was found upstream from the transfer region. The antibiotic resistance genes tet(A), catA1, bla(TEM-1), rmtB, and qepA were clustered in a 33.5-kb fragment delineated by two IS26 elements that also carried a class 1 integron, including the sulI, qacEDelta1, aad4, and dfrA17 genes and Tn10, Tn21, and Tn3-like transposons. The plasmid also possessed a raffinose operon, an arginine deiminase pathway, a putative iron acquisition gene cluster, an S-methylmethionine metabolism operon, two virulence-associated genes, and a type I DNA restriction-modification (R-M) system. Three toxin/antitoxin systems and the R-M system ensured stabilization of the plasmid in the host bacteria. These data suggest that the mosaic structure of pIP1206 could have resulted from recombination between pRSB107 and a pAPEC-O1-ColBM-like plasmid, combined with structural rearrangements associated with acquisition of additional DNA by recombination and of mobile genetic elements by transposition. | 2008 | 18458128 |
| 5416 | 11 | 0.9682 | Limited predictive power of known resistance genes for phenotypic drug resistance in clinical Mycobacterium abscessus complex from Beijing in China. Mycobacterium abscessus complex (MABC) is an emerging pathogen with intrinsic multidrug resistance. Genomic sequencing technology has been widely applied to predict bacterial resistance in other bacteria, but the catalog of known resistance-determining genes to explain phenotypic resistance in the MABC is incomplete for many antibiotics. Eighty-one MABC strains were isolated from sputum samples of patients with pulmonary disease in the Beijing Chest Hospital. All isolates were tested for minimum inhibitory concentrations (MICs) to eight antibiotics and underwent whole-genome sequencing (WGS). Of the total 81 MABC isolates, six strains exhibited clarithromycin (CLM) resistance by day 3 in culture, but only one (16.7%, 1/6) contained a mutation in the rrl gene. All M. abscessus strains contained the erm (41)28T (100.0%, 49/49) polymorphism and exhibited CLM-induced resistance after 14 days in culture. Of the 61 imipenem-resistant strains, 12 (19.7%, 12/61) had mutations in the bla gene. Although there were four (4.9%) amikacin-resistant, nine (11.1%) linezolid-resistant, eight (9.9%) clofazimine-resistant, 23 (28.4%) bedaquiline-resistant, and 27 (33.3%) cefoxitin-resistant strains, no known mutations associated with resistance to these antibiotics were found. These results suggest that the explanatory power of known resistance genes for clinical MABC resistance is limited and that other unidentified genes or novel resistance mechanisms may be involved. | 2025 | 40422286 |
| 1473 | 12 | 0.9681 | Evaluation of the Unyvero i60 ITI® multiplex PCR for infected chronic leg ulcers diagnosis. OBJECTIVES: Unyvero i60 ITI multiplex PCR (mPCR) may identify a large panel of bacteria and antibiotic resistance genes. In this study, we compared results obtained by mPCR to standard bacteriology in chronic leg ulcer (CLU) infections. METHODS: A prospective study, part of the interventional-blinded randomized study "ulcerinfecte" (NCT02889926), was conducted at Saint Joseph Hospital in Paris. Fifty patients with a suspicion of infected CLU were included between February 2017 and September 2018. Conventional bacteriology and mPCR were performed simultaneously on deep skin biopsies. RESULTS: Staphylococcus aureus and Pseudomonas aeruginosa were the most detected pathogens. Regarding the global sensitivity, mPCR is not overcome to the standard culture. Anaerobes and slow growing bacteria were detected with a higher sensitivity rate by mPCR than standard culture. CONCLUSION: Unyvero i60 ITI multiplex PCR detected rapidly pathogenic bacteria in infected CLU especially anaerobes and slow growing bacteria and was particularly effective for patients previously treated with antibiotics. | 2020 | 31790779 |
| 5874 | 13 | 0.9681 | Comparative genomics analysis of Raoultella planticola S25 isolated from duck in China, with florfenicol resistance. To characterize the florfenicol resistance gene and analyze the structure of the resistance gene-related sequence of an Raoultella planticola strain S25 isolated from a duck fecal sample from a farm in South China. Molecular cloning was performed to clone the resistance genes such as mdfA, floR and so on, and the minimum inhibitory concentrations (MICs) were quantified to determine the resistance levels generated by the cloned genes and the related strains. Sequencing and comparative genomics methods were used to analyze the structure of the resistance gene-related sequence. The result showed that the genome of R. planticola S25 consists of a 5.47 Mb chromosome encoding 4962 predicted coding sequence (CDS) and a 68,566 bp plasmid, pS25-68, encoding 84 ORFs. The plasmid sharing the greatest sequence identity with the floR-carrying plasmid pS25-68 is plasmid1 in Klebsiella pneumoniae strain blaNDM-1, which was isolated from a patient in Canada. The mdfA1 gene encoded on the chromosome generated resistance to florfenicol in addition to chloramphenicol. Comparative genomic analysis of the floR-related transposon-like fragment of pS25-68 showed that an approximately 3 kb sequence encoding IS91-virD2-floR-lysR was conserved and presented in the majority of the sequences (84.5 %, 169/200) collected from the database. The results of this work demonstrated that horizontal transfer of the florfenicol resistance gene floR occurred widely between the bacteria of different species and with different origins and that additional florfenicol resistance genes may be present in the bacterial population. | 2020 | 31775114 |
| 820 | 14 | 0.9680 | Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria. A class II Tn3-type transposable element, designated Tn5393 and located on plasmid pEa34 from streptomycin-resistant strain CA11 of Erwinia amylovora, was identified by its ability to move from pEa34 to different sites in plasmids pGEM3Zf(+) and pUCD800. Nucleotide sequence analysis reveals that Tn5393 consists of 6,705 bp with 81-bp terminal inverted repeats and generates 5-bp duplications of the target DNA following insertion. Tn5393 contains open reading frames that encode a putative transposase (tnpA) and resolvase (tnpR) of 961 and 181 amino acids, respectively. The two open reading frames are separated by a putative recombination site (res) consisting of 194 bp. Two streptomycin resistance genes, strA and strB, were identified on the basis of their DNA sequence homology to streptomycin resistance genes in plasmid RSF1010. StrA is separated from tnpR by a 1.2-kb insertion element designated IS1133. The tnpA-res-tnpR region of Tn5393 was detected in Pseudomonas syringae pv. papulans Psp36 and in many other gram-negative bacteria harboring strA and strB. Except for some strains of Erwinia herbicola, these other gram-negative bacteria lacked insertion sequence IS1133. The prevalence of strA and strB could be accounted for by transposition of Tn5393 to conjugative plasmids that are then disseminated widely among gram-negative bacteria. | 1993 | 8380801 |
| 5871 | 15 | 0.9680 | Plasmid-mediated florfenicol resistance in Pasteurella trehalosi. OBJECTIVES: A florfenicol-resistant Pasteurella trehalosi isolate from a calf was investigated for the presence and the location of the gene floR. METHODS: The P. trehalosi isolate 13698 was investigated for its in vitro susceptibility to antimicrobial agents and its plasmid content. A 14.9 kb plasmid, designated pCCK13698, was identified by transformation into Pasteurella multocida to mediate resistance to florfenicol, chloramphenicol and sulphonamides. The plasmid was sequenced completely and analysed for its structure and organization. RESULTS: Plasmid pCCK13698 exhibited extended similarity to plasmid pHS-Rec from Haemophilus parasuis including the region carrying the parA, repB, rec and int genes. Moreover, it revealed similarities to plasmid RSF1010 in the parts covering the mobC and repA-repC genes and to plasmid pMVSCS1 in the parts covering the sul2-catA3-strA gene cluster. Moreover, the floR gene area corresponded to that of transposon TnfloR. In addition, two complete insertion sequences were detected that were highly similar to IS1593 from Mannheimia haemolytica and IS26 from Enterobacteriaceae. Several potential recombination sites were identified that might explain the development of plasmid pCCK13698 by recombination events. CONCLUSIONS: The results of this study showed that in the bovine pathogen P. trehalosi, floR-mediated resistance to chloramphenicol and florfenicol was associated with a plasmid, which also carried functionally active genes for resistance to sulphonamides (sul2) and chloramphenicol (catA3). This is to the best of our knowledge the first report of resistance genes in P. trehalosi and only the second report of the presence of a florfenicol-resistance gene in target bacteria of the family Pasteurellaceae. | 2006 | 16670108 |
| 1249 | 16 | 0.9680 | High-Level Resistance to Aminoglycosides due to 16S rRNA Methylation in Enterobacteriaceae Isolates. Introduction: High-level aminoglycoside resistance due to methylase genes has been reported in several countries. The purpose of this study was to investigate the diversity of the genes encoding 16S rRNA methylase and their association with resistance phenotype in Enterobacteriacae isolates. Materials and Methods: Based on sampling size formula, from February to August 2014, a total of 307 clinical Enterobacteriaceae isolates were collected from five hospitals in northwest Iran. The disk diffusion method for amikacin, gentamicin, tobramycin, kanamycin, and streptomycin, as well as the minimum inhibitory concentration (MIC) for aminoglycosides (except streptomycin), was used. Six 16S rRNA methylase genes (armA, npmA, and rmtA-D) were screened by PCR and sequencing assays. Results: In this study, 220 (71.7%) of 307 isolates were aminoglycoside resistant and 40 isolates (18.2%, 40/220) were positive for methylase genes. The frequency of armA, rmtC, npmA, rmtB, and rmtA genes was 9.5%, 4.5%, 3.6%, 2.3%, and 1%, respectively. The rmtD gene was not detected in the tested bacteria. Sixty percent of positive methylase gene isolates displayed high-level resistance (MIC ≥512 μg/mL to amikacin and kanamycin; and MIC ≥128 μg/mL to gentamicin and tobramycin). Conclusions: The prevalence of resistance to aminoglycoside in Iran is high. Furthermore, there is a statistically significant association between amikacin and kanamycin resistance with the presence of rmtC and rmtB genes. | 2019 | 31211656 |
| 3038 | 17 | 0.9679 | Biotinylated probes for epidemiological studies of drug resistance in Salmonella krefeld. A gene probe for ampicillin resistance and one for sulphonamide resistance were prepared to study the origin and the relation of multiple drug resistances in Salmonella krefeld. The resistance genes were cloned into the pACYC184 vector of Escherichia coli from a common plasmid of S. krefeld that encoded for resistance to ampicillin, chloramphenicol, kanamycin, streptomycin, sulphonamide and tetracycline resistance. Restriction map analysis and deletion analysis of a recombinant plasmid (pACSS1) showed that the gene determining ampicillin resistance was located on a 1.34 and 1.12 kb PstI fragment, and that the gene for sulphonamide resistance was located on a 0.85 kb PstI fragment. These fragments were used as probes. Their specificity was tested by colony hybridization with various bacterial species, including sensitive and resistance S. krefeld isolates. Further study indicated that the ampicillin resistance gene probe reacted with the gene for TEM-1 beta-lactamase and that the gene probe for sulphonamide resistance reacted with the gene for type II dihydropteroate synthase. The two probes were sufficiently specific to allow study of the epidemiology of resistance in S. krefeld and other enteric bacteria. | 1990 | 2190970 |
| 818 | 18 | 0.9679 | Characterization of a staphylococcal plasmid related to pUB110 and carrying two novel genes, vatC and vgbB, encoding resistance to streptogramins A and B and similar antibiotics. We isolated and sequenced a plasmid, named pIP1714 (4,978 bp), which specifies resistance to streptogramins A and B and the mixture of these compounds. pIP1714 was isolated from a Staphylococcus cohnii subsp. cohnii strain found in the environment of a hospital where pristinamycin was extensively used. Resistance to both compounds and related antibiotics is encoded by two novel, probably cotranscribed genes, (i) vatC, encoding a 212-amino-acid (aa) acetyltransferase that inactivates streptogramin A and that exhibits 58.2 to 69.8% aa identity with the Vat, VatB, and SatA proteins, and (ii) vgbB, encoding a 295-aa lactonase that inactivates streptogramin B and that shows 67% aa identity with the Vgb lactonase. pIP1714 includes a 2,985-bp fragment also found in two rolling-circle replication and mobilizable plasmids, pUB110 and pBC16, from gram-positive bacteria. In all three plasmids, the common fragment was delimited by two direct repeats of four nucleotides (GGGC) and included (i) putative genes closely related to repB, which encodes a replication protein, and to pre(mob), which encodes a protein required for conjugative mobilization and site-specific recombination, and (ii) sequences very similar to the double- and single-strand origins (dso, ssoU) and the recombination site, RSA. The antibiotic resistance genes repB and pre(mob) carried by each of these plasmids were found in the same transcriptional orientation. | 1998 | 9661023 |
| 457 | 19 | 0.9679 | Molecular characterization of the genes encoding DNA gyrase and topoisomerase IV of Listeria monocytogenes. The genes encoding subunits A and B of DNA gyrase and subunits C and E of topoisomerase IV of Listeria monocytogenes, gyrA, gyrB, parC and parE, respectively, were cloned and sequenced. Compared with the sequences of quinolone-susceptible bacteria, such as Escherichia coli and Bacillus subtilis, the quinolone resistance-determining region (QRDR) of DNA gyrase subunit A was altered; the deduced amino acid sequences revealed the substitutions Ser-84-->Thr and Asp/Glu-88-->Phe, two amino acid variations at hot spots, commonly associated with resistance to quinolones. No relevant divergences from QRDR consensus sequences were observed in GyrB or both topoisomerase IV subunits. Thus, it could be argued that the amino acid substitutions in GyrA would explain the intrinsic resistance of L. monocytogenes to nalidixic acid. In order to analyse the actual role of the GyrA alterations, a plasmid-encoded gyrA allele was mutated and transformed into L. monocytogenes. However, these heterodiploid strains were not affected in their resistance to nalidixic acid. The effects of the mutant plasmids on ciprofloxacin and sparfloxacin susceptibility were only modest. | 2002 | 12039883 |