GIT - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
605300.9844Probiotic properties of lactic acid bacteria isolated from water-buffalo mozzarella cheese. This study evaluated the probiotic properties (stability at different pH values and bile salt concentration, auto-aggregation and co-aggregation, survival in the presence of antibiotics and commercial drugs, study of β-galactosidase production, evaluation of the presence of genes encoding MapA and Mub adhesion proteins and EF-Tu elongation factor, and the presence of genes encoding virulence factor) of four LAB strains (Lactobacillus casei SJRP35, Leuconostoc citreum SJRP44, Lactobacillus delbrueckii subsp. bulgaricus SJRP57 and Leuconostoc mesenteroides subsp. mesenteroides SJRP58) which produced antimicrobial substances (antimicrobial peptides). The strains survived the simulated GIT modeled in MRS broth, whole and skim milk. In addition, auto-aggregation and the cell surface hydrophobicity of all strains were high, and various degrees of co-aggregation were observed with indicator strains. All strains presented low resistance to several antibiotics and survived in the presence of commercial drugs. Only the strain SJRP44 did not produce the β-galactosidase enzyme. Moreover, the strain SJRP57 did not show the presence of any genes encoding virulence factors; however, the strain SJRP35 presented vancomycin resistance and adhesion of collagen genes, the strain SJRP44 harbored the ornithine decarboxylase gene and the strain SJRP58 generated positive results for aggregation substance and histidine decarboxylase genes. In conclusion, the strain SJRP57 was considered the best candidate as probiotic cultures for further in vivo studies and functional food products development.201425117002
846910.9832Probiogenomic analysis of Lactiplantibacillus plantarum SPS109: A potential GABA-producing and cholesterol-lowering probiotic strain. Lactiplantibacillus plantarum SPS109, an isolated strain of lactic acid bacteria (LAB) from fermented foods, showed remarkable potential as a probiotic with dual capabilities in γ-aminobutyric acid (GABA) production and cholesterol reduction. This study employs genomic and comparative analyses to search into the strain's genetic profile, safety features, and probiotic attributes. The safety assessment reveals the absence of virulence factors and antimicrobial resistance genes, while the genome uncovers bacteriocin-related elements, including sactipeptides and a cluster for putative plantaricins, strengthening its ability to combat diverse pathogens. Pangenome analysis revealed unique bacteriocin-related genes, specifically lcnD and bcrA, distinguishing SPS109 from four other L. plantarum strains producing GABA. In addition, genomic study emphasizes SPS109 strain distinctive features, two GABA-related genes responsible for GABA production and a bile tolerance gene (cbh) crucial for cholesterol reduction. Additionally, the analysis highlights several genes of potential probiotic properties, including stress tolerance, vitamin production, and antioxidant activity. In summary, L. plantarum SPS109 emerges as a promising probiotic candidate with versatile applications in the food and beverage industries, supported by its unique genomic features and safety profile.202439044985
601620.9831Investigating human-derived lactic acid bacteria for alcohol resistance. BACKGROUND: Excessive alcohol consumption has been consistently linked to serious adverse health effects, particularly affecting the liver. One natural defense against the detrimental impacts of alcohol is provided by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH), which detoxify harmful alcohol metabolites. Recent studies have shown that certain probiotic strains, notably Lactobacillus spp., possess alcohol resistance and can produce these critical enzymes. Incorporating these probiotics into alcoholic beverages represents a pioneering approach that can potentially mitigate the negative health effects of alcohol while meeting evolving consumer preferences for functional and health-centric products. RESULTS: Five lactic acid bacteria (LAB) isolates were identified: Lactobacillus paracasei Alc1, Lacticaseibacillus rhamnosus AA, Pediococcus acidilactici Alc3, Lactobacillus paracasei Alc4, and Pediococcus acidilactici Alc5. Assessment of their alcohol tolerance, safety, adhesion ability, and immunomodulatory effects identified L. rhamnosus AA as the most promising alcohol-tolerant probiotic strain. This strain also showed high production of ADH and ALDH. Whole genome sequencing analysis revealed that the L. rhamnosus AA genome contained both the adh (encoding for ADH) and the adhE (encoding for ALDH) genes. CONCLUSIONS: L. rhamnosus AA, a novel probiotic candidate, showed notable alcohol resistance and the capability to produce enzymes essential for alcohol metabolism. This strain is a highly promising candidate for integration into commercial alcoholic beverages upon completion of comprehensive safety and functionality evaluations.202438659044
422930.9831Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Over the last 50 years, human life expectancy and quality of life have increased dramatically due to improvements in nutrition and the use of antibiotics in the fight against infectious diseases. However, the heyday of antibiotic treatment is on the wane due to the appearance and spread of resistance among harmful microorganisms. At present, there is great concern that commensal bacterial populations from food and the gastrointestinal tract (GIT) of humans and animals, such as lactic acid bacteria (LAB) and bifidobacteria, could act as a reservoir for antibiotic resistance genes. Resistances could ultimately be transferred to human pathogenic and opportunistic bacteria hampering the treatment of infections. LAB species have traditionally been used as starter cultures in the production of fermented feed and foodstuffs. Further, LAB and bifidobacteria are normal inhabitants of the GIT where they are known to exert health-promoting effects, and selected strains are currently been used as probiotics. Antibiotic resistance genes carried by LAB and bifidobacteria can be transferred to human pathogenic bacteria either during food manufacture or during passage through the GIT. The aim of this review is to address well-stated and recent knowledge on antibiotic resistance in typical LAB and bifidobacteria species. Therefore, the commonest antibiotic resistance profiles, the distinction between intrinsic and atypical resistances, and some of the genetic determinants already discovered will all be discussed.200717418306
602840.9831Isolation, Characterization, and Comparative Genomics of the Novel Potential Probiotics from Canine Feces. Lactic acid bacteria (LAB) are commonly used as probiotics; however, not all LAB strains have the same beneficial effects. To successfully use LAB as probiotics in canines, LAB species should originate from the canine intestinal tract as they display host specificity. The objective of this study was to investigate the phenotypic and genomic traits of potential probiotic LAB isolated from canine fecal samples. Twenty LAB samples were evaluated for their potential probiotic characteristics including resistance to low pH, bile salts, hydrophobicity, auto-aggregation, co-aggregation, adhesion to epithelia or mucosa, and production of inhibitory compounds. Additionally, we evaluated their safety and other beneficial effects on canine health, such as DPPH free radical scavenging, and β-galactosidase. Four strains demonstrated potential probiotic characteristics and were selected: Enterococcus hirae Pom4, Limosilactobacillus fermentum Pom5, Pediococcus pentosaceus Chi8, and Ligilactobacillus animalis FB2. Safety evaluations showed that all strains lacked hemolytic activity, could not produce biogenic amines, and did not carry any pathogenic genes. In addition, L. fermentum Pom5 and P. pentosaceus Chi8 displayed susceptibility to all antibiotics and concordant with the absence of antibiotic resistance genes. Based on their phenotypic and genomic characteristics, L. fermentum Pom5 and P. pentosaceus Chi8 were identified as potential probiotic candidates for canines.202337484003
848050.9830Ice-binding proteins from the fungus Antarctomyces psychrotrophicus possibly originate from two different bacteria through horizontal gene transfer. Various microbes, including fungi and bacteria, that live in cold environments produce ice-binding proteins (IBPs) that protect them from freezing. Ascomycota and Basidiomycota are two major phyla of fungi, and Antarctomyces psychrotrophicus is currently designated as the sole ascomycete that produces IBP (AnpIBP). However, its complete amino acid sequence, ice-binding property, and evolutionary history have not yet been clarified. Here, we determined the peptide sequences of three new AnpIBP isoforms by total cDNA analysis and compared them with those of other microbial IBPs. The AnpIBP isoforms and ascomycete-putative IBPs were found to be phylogenetically close to the bacterial ones but far from the basidiomycete ones, which is supported by the higher sequence identities to bacterial IBPs than basidiomycete IBPs, although ascomycetes are phylogenetically distant from bacteria. In addition, two of the isoforms of AnpIBP share low sequence identity and are not close in the phylogenetic tree. It is hence presumable that these two AnpIBP isoforms were independently acquired from different bacteria through horizontal gene transfer (HGT), which implies that ascomycetes and bacteria frequently exchange their IBP genes. The non-colligative freezing-point depression ability of AnpIBP was not very high, whereas it exhibited significant abilities of ice recrystallization inhibition, ice shaping, and cryo-protection against freeze-thaw cycles even at submicromolar concentrations. These results suggest that HGT is crucial for the cold-adaptive evolution of ascomycetes, and their IBPs offer freeze resistance to organisms to enable them to inhabit the icy environments of Antarctica. DATABASES: Nucleotide sequence data are available in the DDBJ database under the accession numbers LC378707, LC378707, LC378707 for AnpIBP1a, AnpIBP1b, AnpIBP2, respectively.201930548092
827460.9829Exposure and resistance to lantibiotics impact microbiota composition and function. The intestinal microbiota is composed of hundreds of distinct microbial species that interact with each other and their mammalian host. Antibiotic exposure dramatically impacts microbiota compositions and leads to acquisition of antibiotic-resistance genes. Lantibiotics are ribosomally synthesized and post-translationally modified peptides produced by some bacterial strains to inhibit the growth of competing bacteria. Nisin A is a lantibiotic produced by Lactococcus lactis that is commonly added to food products to reduce contamination with Gram-positive pathogens. Little is known, however, about lantibiotic-resistance of commensal bacteria inhabiting the human intestine. Herein, we demonstrate that Nisin A administration to mice alters fecal microbiome compositions and the concentration of taurine-conjugated primary bile acids. Lantibiotic Resistance System genes (LRS) are encoded by lantibiotic-producing bacterial strains but, we show, are also prevalent in microbiomes across human cohorts spanning vastly different lifestyles and 5 continents. Bacterial strains encoding LRS have enhanced in vivo fitness upon dietary exposure to Nisin A but reduced fitness in the absence of lantibiotic pressure. Differential binding of host derived, secreted IgA contributes to fitness discordance between bacterial strains encoding or lacking LRS. Although LRS are associated with mobile genetic elements, sequence comparisons of LRS encoded by distinct bacterial species suggest they have been long-term components of their respective genomes. Our study reveals the prevalence, abundance and physiologic significance of an underappreciated subset of antimicrobial resistance genes encoded by commensal bacterial species constituting the human gut microbiome, and provides insights that will guide development of microbiome augmenting strategies.202338234830
607870.9828Genomic Insights into Cyanide Biodegradation in the Pseudomonas Genus. Molecular studies about cyanide biodegradation have been mainly focused on the hydrolytic pathways catalyzed by the cyanide dihydratase CynD or the nitrilase NitC. In some Pseudomonas strains, the assimilation of cyanide has been linked to NitC, such as the cyanotrophic model strain Pseudomonas pseudoalcaligenes CECT 5344, which has been recently reclassified as Pseudomonas oleovorans CECT 5344. In this work, a phylogenomic approach established a more precise taxonomic position of the strain CECT 5344 within the species P. oleovorans. Furthermore, a pan-genomic analysis of P. oleovorans and other species with cyanotrophic strains, such as P. fluorescens and P. monteilii, allowed for the comparison and identification of the cioAB and mqoAB genes involved in cyanide resistance, and the nitC and cynS genes required for the assimilation of cyanide or cyanate, respectively. While cyanide resistance genes presented a high frequency among the analyzed genomes, genes responsible for cyanide or cyanate assimilation were identified in a considerably lower proportion. According to the results obtained in this work, an in silico approach based on a comparative genomic approach can be considered as an agile strategy for the bioprospection of putative cyanotrophic bacteria and for the identification of new genes putatively involved in cyanide biodegradation.202438674043
602080.9828Safety evaluation of Lactococcus lactis IDCC 2301 isolated from homemade cheese. For applications of microorganisms as probiotics in the food industry, safety evaluation has increasingly become important to ensure the health of consumers. Although people have been using various lactic acid bacteria for different purposes, some studies have reported that certain lactic acid bacteria exhibit properties of virulence and produce toxic compounds. Thus, it is necessary to examine the characteristics associated with lactic acid bacteria that are safe for use as probiotics. This research aimed to assess the safety of Lactococcus lactis IDCC 2301 isolated from homemade cheese using in vitro and in vivo assays, including antibiotic resistance, hemolytic activity, toxin production, infectivity, and metabolic activity in immune-compromised animal species. The results demonstrated that the strain was susceptible to nine antibiotics suggested by the European Food Safety Authority (EFSA). Whole-genome analysis revealed that L. lactis IDCC 2301 neither has toxigenic genes nor harbors antibiotic resistance. Moreover, L. lactis IDCC 2301 showed neither hemolytic nor β-glucuronidase activity. Furthermore, none of the D-lactate and biogenic amines were produced by L. lactis IDCC 2301. Finally, it was demonstrated that there was no toxicity and mortality using single-dose oral toxicity tests in rats. These results indicate that L. lactis IDCC 2301 can be safely used as probiotics for human consumption.202235035910
604290.9827Limosilactobacillus fermentum ING8, a Potential Multifunctional Non-Starter Strain with Relevant Technological Properties and Antimicrobial Activity. Lactic acid bacteria (LAB) have gained particular attention among different exopolysaccharide-producing microorganisms due to their safety status and effects on human health and food production. Exopolysaccharide-producing LAB play a crucial role in different ways, such as improving texture, mouthfeel, controlling viscosity, and for low-calorie food production. In this study, we isolated a multifunctional strain with good exopolysaccharide production properties. Limosilactobacillus fermentum ING8 was isolated from an Indian traditional fermented milk (Dahi) and evaluated for its safety, enzymatic activity, NaCl resistance and temperature tolerance, milk coagulation, and storage stability. Finally, the complete genome of this strain was sequenced and subjected to safety in silico evaluation and genomic analysis. The results revealed that L. fermentum ING8 possesses relevant technological properties, such as exopolysaccharide production, antimicrobial activity, and galactose utilization. Besides, this strain showed very high stability to storage conditions at refrigeration temperature. In addition, the genomic analysis did not evidence any possible deleterious elements, such as acquired antibiotic resistance genes, virulence genes, or hemolysis-related genes. However, all structural genes related to the galactose operon and EPS production were detected. Therefore, L. fermentum ING8 can be considered a promising multifunctional bacterium to be proposed as non-starter in different types of dairy productions.202235267336
6041100.9827Gut commensal bacteria show beneficial properties as wildlife probiotics. Probiotics are noninvasive, environmentally friendly alternatives for reducing infectious diseases in wildlife species. Our aim in the present study was to evaluate the potential of gut commensals such as lactic acid bacteria (LAB) as wildlife probiotics. The LAB selected for our analyses were isolated from European badgers (Meles meles), a wildlife reservoir of bovine tuberculosis, and comprised four different genera: Enterococcus, Weissella, Pediococcus, and Lactobacillus. The enterococci displayed a phenotype and genotype that included the production of antibacterial peptides and stimulation of antiviral responses, as well as the presence of virulence and antibiotic resistance genes; Weissella showed antimycobacterial activity owing to their ability to produce lactate and ethanol; and lactobacilli and pediococci modulated proinflammatory phagocytic responses that associate with protection against pathogens, responses that coincide with the presence of immunomodulatory markers in their genomes. Although both lactobacilli and pediococci showed resistance to antibiotics, this was naturally acquired, and almost all isolates demonstrated a phylogenetic relationship with isolates from food and healthy animals. Our results show that LAB display probiotic benefits that depend on the genus, and that lactobacilli and pediococci are probably the most obvious candidates as probiotics against infectious diseases in wildlife because of their food-grade status and ability to modulate protective innate immune responses.202032026493
8467110.9827The Impacts of Lactiplantibacillus plantarum on the Functional Properties of Fermented Foods: A Review of Current Knowledge. One of the most varied species of lactic acid bacteria is Lactiplantibacillus plantarum (Lb. plantarum), formerly known as Lactobacillus plantarum. It is one of the most common species of bacteria found in foods, probiotics, dairy products, and beverages. Studies related to genomic mapping and gene locations of Lb. plantarum have shown the novel findings of its new strains along with their non-pathogenic or non-antibiotic resistance genes. Safe strains obtained with new technologies are a pioneer in the development of new probiotics and starter cultures for the food industry. However, the safety of Lb. plantarum strains and their bacteriocins should also be confirmed with in vivo studies before being employed as food additives. Many of the Lb. plantarum strains and their bacteriocins are generally safe in terms of antibiotic resistance genes. Thus, they provide a great opportunity for improving the nutritional composition, shelf life, antioxidant activity, flavour properties and antimicrobial activities in the food industry. Moreover, since some Lb. plantarum strains have the ability to reduce undesirable compounds such as aflatoxins, they have potential use in maintaining food safety and preventing food spoilage. This review emphasizes the impacts of Lb. plantarum strains on fermented foods, along with novel approaches to their genomic mapping and safety aspects.202235456875
6022120.9826Bile Salt Hydrolase Degrades β-Lactam Antibiotics and Confers Antibiotic Resistance on Lactobacillus paragasseri. Bile salt hydrolase (BSH) is a well-characterized probiotic enzyme associated with bile detoxification and colonization of lactic acid bacteria in the human gastrointestinal tract. Here, we isolated a putative BSH (LpBSH) from the probiotic bacterium Lactobacillus paragasseri JCM 5343(T) and demonstrated its bifunctional activity that allows it to degrade not only bile salts but also the antibiotic (penicillin). Although antibiotic resistance and bile detoxification have been separately recognized as different microbial functions, our findings suggest that bifunctional BSHs simultaneously confer ecological advantages to host gut bacteria to improve their survival in the mammalian intestine by attaining a high resistance to bile salts and β-lactams. Strain JCM 5343(T) showed resistance to both bile salts and β-lactam antibiotics, suggesting that LpBSH may be involved in this multi-resistance of the strain. We further verified that such bifunctional enzymes were broadly distributed among the phylogeny, suggesting that the bifunctionality may be conserved in other BSHs of gut bacteria. This study revealed the physiological role and phylogenetic diversity of bifunctional enzymes degrading bile salts and β-lactams in gut bacteria. Furthermore, our findings suggest that the hitherto-overlooked penicillin-degrading activity of penicillin acylase could be a potential new target for the probiotic function of gut bacteria.202235733973
4219130.9825Antibiotic resistance and virulence factors in lactobacilli: something to carefully consider. Lactobacilli are a ubiquitous bacteria, that includes many species commonly found as part of the human microbiota, take part in the natural food fermentation processes, are used as probiotics, and in the food sector as starter cultures or bio-protectors. Their wide use is dictated by a long history of safe employ, which has allowed them to be classified as GRAS (General Recognized As Safe) microorganisms by the US Food and Drug Administration (FDA) and QPS (Qualified Presumption of Safety) by the European Food Safety Authority (EFSA, 2007; EFSA, 2021). Despite their classification as safe microorganisms, several studies show that some members of Lactobacillus genus can cause, especially in individuals with previous pathological conditions, problems such as bacteremia, endocarditis, and peritonitis. In other cases, the presence of virulence genes and antibiotic resistance, and its potential transfer to pathogenic microorganisms constitute a risk to be considered. Consequently, their safety status was sometimes questioned, and it is, therefore, essential to carry out appropriate assessments before their use for any purposes. The following review focuses on the state of the art of studies on genes that confer virulence factors, including antibiotic resistance, reported in the literature within the lactobacilli, defining their genetic basis and related functions.202235082060
159140.9825Putrescine production via the ornithine decarboxylation pathway improves the acid stress survival of Lactobacillus brevis and is part of a horizontally transferred acid resistance locus. Decarboxylation pathways are widespread among lactic acid bacteria; their physiological role is related to acid resistance through the regulation of the intracellular pH and to the production of metabolic energy via the generation of a proton motive force and its conversion into ATP. These pathways include, among others, biogenic amine (BA) production pathways. BA accumulation in foodstuffs is a health risk; thus, the study of the factors involved in their production is of major concern. The analysis of several lactic acid bacterial strains isolated from different environments, including fermented foods and beverages, revealed that the genes encoding these pathways are clustered on the chromosome, which suggests that these genes are part of a genetic hotspot related to acid stress resistance. Further attention was devoted to the ornithine decarboxylase pathway, which affords putrescine from ornithine. Studies were performed on three lactic acid bacteria belonging to different species. The ODC pathway was always shown to be involved in cytosolic pH alkalinisation and acid shock survival, which were observed to occur with a concomitant increase in putrescine production.201424495587
6043150.9825Histamine and cholesterol lowering abilities of lactic acid bacteria isolated from artisanal Pico cheese. AIMS: This study was designed to select lactic acid bacteria with histamine- and cholesterol-reducing abilities to be used as potential probiotics. METHODS AND RESULTS: Thirty strains of lactic acid bacteria isolated from an artisanal raw milk cheese were screened for their abilities to degrade histamine, reduce cholesterol and hydrolyse bile salts. Strains were also screened for safety and probiotic traits, such as resistance to gastrointestinal conditions, adhesion to Caco-2 cells, resistance to antibiotics and presence of virulence genes. Two Lactobacillus paracasei strains presented high cholesterol- and histamine-lowering abilities, tested negative for the presence of virulence genes and showed susceptibility to most important antibiotics. These strains were also shown to possess desirable in vitro probiotic properties, revealed by tolerance to gastrointestinal conditions and high adhesion to intestinal cells. CONCLUSIONS: Among the screened strains, Lb. paracasei L3C21M6 revealed the best cholesterol and histamine reducing abilities together with desirable probiotic and safety features to be used in food applications. SIGNIFICANCE AND IMPACT OF THE STUDY: The strain L3C21M6 is a good candidate for use as a probiotic with histamine-degrading activity and cholesterol lowering effect. In addition, this strain could be use in dairy foods to prevent histamine food poisoning.202032500572
4174160.9824The role of conjugative transposons in spreading antibiotic resistance between bacteria that inhabit the gastrointestinal tract. There is huge potential for genetic exchange to occur within the dense, diverse anaerobic microbial population inhabiting the gastrointestinal tract (GIT) of humans and animals. However, the incidence of conjugative transposons (CTns) and the antibiotic resistance genes they carry has not been well studied among this population. Since any incoming bacteria, including pathogens, can access this reservoir of genes, this oversight would appear to be an important one. Recent evidence has shown that anaerobic bacteria native to the rumen or hindgut harbour both novel antibiotic resistance genes and novel conjugative transposons. These CTns, and previously characterized CTns, can be transferred to a wide range of commensal bacteria under laboratory and in vivo conditions. The main evidence that gene transfer occurs widely in vivo between GIT bacteria, and between GIT bacteria and pathogenic bacteria, is that identical resistance genes are present in diverse bacterial species from different hosts.200212568333
6026170.9824Probiotic Characteristics and Whole Genome Analysis of Lactiplantibacillus plantarum PM8 from Giant Panda (Ailuropoda melanoleuca) Milk. Milk is a rich source of probiotics, particularly lactic acid bacteria (LAB), which have been shown to promote gut health, support the immune system, enhance digestion, and prevent pathogen colonization. This study aimed to isolate and identify LAB strains from giant panda (Ailuropoda melanoleuca) milk, evaluate their probiotic properties, and analyze the genomic characteristics of a promising strain. Thirteen LAB strains were isolated from 12 samples of giant panda milk. Among all LAB strains, Lactiplantibacillus plantarum PM8 (PM8) demonstrated probiotic properties and safety features. It exhibited strong growth performance, high antipathogenic activity against four pathogens, and strong survival rates under simulated gastrointestinal conditions. PM8 also showed excellent adhesion capabilities to Caco-2 cells. Additionally, safety assessment revealed no hemolysin production and minimal antibiotic resistance, making it a promising candidate for probiotic applications. The genome of PM8 consists of 3,227,035 bp with a GC content of 44.60% and contains 3171 coding sequences, including 113 carbohydrate-active enzyme genes and genes related to exopolysaccharides synthesis, vitamin B biosynthesis, adhesion, antioxidant activity, and bile salt hydrolysis. Notably, it contains genes involved in nonribosomally synthesized secondary metabolite and bacteriocin production. The genomic safety analysis confirmed that PM8 lacks the capacity to transmit bacterial antimicrobial resistance and is non-pathogenic to both humans and animals. These findings suggest that PM8 holds considerable potential for enhancing gut health and supporting the development of safe probiotic products.202539900880
8713180.9823Genomic Analysis of 18th-Century Kazakh Individuals and Their Oral Microbiome. The Asian Central Steppe, consisting of current-day Kazakhstan and Russia, has acted as a highway for major migrations throughout history. Therefore, describing the genetic composition of past populations in Central Asia holds value to understanding human mobility in this pivotal region. In this study, we analyse paleogenomic data generated from five humans from Kuygenzhar, Kazakhstan. These individuals date to the early to mid-18th century, shortly after the Kazakh Khanate was founded, a union of nomadic tribes of Mongol Golden Horde and Turkic origins. Genomic analysis identifies that these individuals are admixed with varying proportions of East Asian ancestry, indicating a recent admixture event from East Asia. The high amounts of DNA from the anaerobic Gram-negative bacteria Tannerella forsythia, a periodontal pathogen, recovered from their teeth suggest they may have suffered from periodontitis disease. Genomic analysis of this bacterium identified recently evolved virulence and glycosylation genes including the presence of antibiotic resistance genes predating the antibiotic era. This study provides an integrated analysis of individuals with a diet mostly based on meat (mainly horse and lamb), milk, and dairy products and their oral microbiome.202134943238
6024190.9822Analyses of the probiotic property and stress resistance-related genes of Lactococcus lactis subsp. lactis NCDO 2118 through comparative genomics and in vitro assays. Lactococcus lactis subsp. lactis NCDO 2118 was recently reported to alleviate colitis symptoms via its anti-inflammatory and immunomodulatory activities, which are exerted by exported proteins that are not produced by L. lactis subsp. lactis IL1403. Here, we used in vitro and in silico approaches to characterize the genomic structure, the safety aspects, and the immunomodulatory activity of this strain. Through comparative genomics, we identified genomic islands, phage regions, bile salt and acid stress resistance genes, bacteriocins, adhesion-related and antibiotic resistance genes, and genes encoding proteins that are putatively secreted, expressed in vitro and absent from IL1403. The high degree of similarity between all Lactococcus suggests that the Symbiotic Islands commonly shared by both NCDO 2118 and KF147 may be responsible for their close relationship and their adaptation to plants. The predicted bacteriocins may play an important role against the invasion of competing strains. The genes related to the acid and bile salt stresses may play important roles in gastrointestinal tract survival, whereas the adhesion proteins are important for persistence in the gut, culminating in the competitive exclusion of other bacteria. Finally, the five secreted and expressed proteins may be important targets for studies of new anti-inflammatory and immunomodulatory proteins. Altogether, the analyses performed here highlight the potential use of this strain as a target for the future development of probiotic foods.201728384209