GENE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
452700.9998Study on the excision and integration mediated by class 1 integron in Enterococcus faecalis. Recognized as a mobile genetic element, integron is correlated to the excision and integration of exogenous genes, especially bacterial resistance genes. However, most of the investigations focused on Gram-positive bacteria with few exceptions. In this study, Enterococcus faecalis was selected to investigate the excision and integration of class 1 integron. A total of eight plasmids were subjected to establish the transformants for excision and integration test. As results showed, positive excision assay was observed, which had been confirmed by the further integration assays and PCR amplification. The observation of class 1 integron mediated excision and integration of various exogenous antibiotics resistance genes should raise the attention of integrons as novel antibiotic resistance determinant in Gram-positive bacteria, especially in Enterococcus.201728390978
452810.9998Study on the excision and integration mediated by class 1 integron in Streptococcus pneumoniae. As a novel antibiotic resistance mobile element, integron was recognized as a primary source of antibiotic genes among Gram-positive organisms for its excision and integration of exogenous genes. In this study, Streptococcus pneumoniae was subjected to investigate the excision and integration of class 1 integron with eight different plasmids. As the results indicated, excision in both att site and gene cassettes were successfully observed, which was further confirmed by integration assays and PCR amplification. The observation of class 1 integron mediated excision and integration of various exogenous antibiotics resistance genes may raise the attention of integrons as novel antibiotic resistance determinant in Gram-positive bacteria, especially in Streptococcus.201728923604
177120.9998Occurrence of integron-associated resistance gene cassettes located on antibiotic resistance plasmids isolated from a wastewater treatment plant. The role of a municipal wastewater treatment plant as a reservoir for bacteria carrying antibiotic resistance plasmids was analysed. Altogether, ninety-seven different multiresistance plasmids were isolated and screened by PCR for the presence of class 1 integron-specific sequences. Twelve of these plasmids were identified to carry integrons. In addition, integron-specific sequences were found on plasmid-DNA preparations from bacteria residing in activated sludge and in the final effluents of the wastewater treatment plant. Sequencing and annotation of the integrons identified nineteen different gene cassette arrays, containing twenty-one different resistance gene cassettes. These cassettes carry genes encoding eight different aminoglycoside-modifying enzymes, seven dihydrofolate reductases, three beta-lactamases, two chloramphenicol resistance proteins and two small exporter proteins. Moreover, new gene cassettes and cassettes with unknown function were identified. Eleven gene cassette combinations are described for the first time. Six integron-associated gene cassette arrays are located on self-transmissible, putative broad-host-range plasmids belonging to the IncP group. Hybridisation analyses, using the integron-specific gene cassette arrays as templates and labelled plasmid-DNA preparations from bacteria of the final effluents as hybridisation probes, revealed that bacteria containing integron-specific sequences on plasmids are released into the environment.200319719593
453030.9997Novel conjugative transferable multiple drug resistance plasmid pAQU1 from Photobacterium damselae subsp. damselae isolated from marine aquaculture environment. The emergence of drug-resistant bacteria is a severe problem in aquaculture. The ability of drug resistance genes to transfer from a bacterial cell to another is thought to be responsible for the wide dissemination of these genes in the aquaculture environment; however, little is known about the gene transfer mechanisms in marine bacteria. In this study, we show that a tetracycline-resistant strain of Photobacterium damselae subsp. damselae, isolated from seawater at a coastal aquaculture site in Japan, harbors a novel multiple drug resistance plasmid. This plasmid named pAQU1 can be transferred to Escherichia coli by conjugation. Nucleotide sequencing showed that the plasmid was 204,052 base pairs and contained 235 predicted coding sequences. Annotation showed that pAQU1 did not have known repA, suggesting a new replicon, and contained seven drug resistance genes: bla(CARB-9)-like, floR, mph(A)-like, mef(A)-like, sul2, tet(M) and tet(B). The plasmid has a complete set of genes encoding the apparatus for the type IV secretion system with a unique duplication of traA. Phylogenetic analysis of the deduced amino acid sequence of relaxase encoded by traI in pAQU1 demonstrated that the conjugative transfer system of the plasmid belongs to MOB(H12), a sub-group of the MOB(H) plasmid family, closely related to the IncA/C type of plasmids and SXT/R391 widely distributed among species of Enterobacteriaceae and Vibrionaceae. Our data suggest that conjugative transfer is involved in horizontal gene transfer among marine bacteria and provide useful insights into the molecular basis for the dissemination of drug resistance genes among bacteria in the aquaculture environment.201222446310
453140.9997Various pAQU plasmids possibly contribute to disseminate tetracycline resistance gene tet(M) among marine bacterial community. Emergence of antibiotic-resistant bacteria in the aquaculture environment is a significant problem for disease control of cultured fish as well as in human public health. Conjugative mobile genetic elements (MGEs) are involved in dissemination of antibiotic resistance genes (ARGs) among marine bacteria. In the present study, we first designed a PCR targeting traI gene encoding essential relaxase for conjugation. By this new PCR, we demonstrated that five of 83 strains isolated from a coastal aquaculture site had traI-positive MGEs. While one of the five strains that belonged to Shewanella sp. was shown to have an integrative conjugative element of the SXT/R391 family (ICEVchMex-like), the MGEs of the other four strains of Vibrio spp. were shown to have the backbone structure similar to that of previously described in pAQU1. The backbone structure shared by the pAQU1-like plasmids in the four strains corresponded to a ~100-kbp highly conserved region required for replication, partition and conjugative transfer, suggesting that these plasmids constituted "pAQU group." The pAQU group plasmids were shown to be capable of conjugative transfer of tet(M) and other ARGs from the Vibrio strains to E. coli. The pAQU group plasmid in one of the examined strains was designated as pAQU2, and its complete nucleotide sequence was determined and compared with that of pAQU1. The results revealed that pAQU2 contained fewer ARGs than pAQU1 did, and most of the ARGs in both of these plasmids were located in the similar region where multiple transposases were found, suggesting that the ARGs were introduced by several events of DNA transposition into an ancestral plasmid followed by drug selection in the aquaculture site. The results of the present study indicate that the "pAQU group" plasmids may play an important role in dissemination of ARGs in the marine environment.201424860553
450150.9997A Bacteroides tetracycline resistance gene represents a new class of ribosome protection tetracycline resistance. The ribosome protection type of tetracycline resistance (Tcr) has been found in a variety of bacterial species, but the only two classes described previously, Tet(M) and Tet(O), shared a high degree of amino acid sequence identity (greater than 75%). Thus, it appeared that this type of resistance emerged recently in evolution and spread among different species of bacteria by horizontal transmission. We obtained the DNA sequence of a Tcr gene from Bacteroides, a genus of gram-negative, obligately anaerobic bacteria that is phylogenetically distant from the diverse species in which tet(M) and tet(O) have been found. The Bacteroides Tcr gene defines a new class of ribosome protection resistance genes, Tet(Q), and has a deduced amino acid sequence that was only 40% identical to Tet(M) or Tet(O). Like tet(M) and tet(O), tet(Q) appears to have spread by horizontal transmission, but only within the Bacteroides group.19921339256
360160.9997R factors mediate resistance to mercury, nickel, and cobalt. Fifty-five clinical isolates and laboratory stocks of Escherichia coli and Salmonella were studied for resistance to each of ten metals. Eleven clinical isolates carrying R factors were resistant to mercury, and, in each case, the resistance was mediated by a previously undefined R-factor gene. The gene was phenotypically expressed within 2 to 4 minutes after entry into sensitive bacteria, but the basis for the resistance remains undefined. Fourteen strains, 12 infected with R factors, were resistant to cobalt and nickel, but these resistances were mediated by R-factor genes in only two strains; separate R-factor genes mediated the resistances to nickel and cobalt. These and other results indicate that the genetic composition of R factors is greater than that originally defined.19675337360
446570.9997Genetic analyses of sulfonamide resistance and its dissemination in gram-negative bacteria illustrate new aspects of R plasmid evolution. In contrast to what has been observed for many other antibiotic resistance mechanisms, there are only two known genes encoding plasmid-borne sulfonamide resistance. Both genes, sulI and sulII, encode a drug-resistant dihydropteroate synthase enzyme. In members of the family Enterobacteriaceae isolated from several worldwide sources, plasmid-mediated resistance to sulfonamides could be identified by colony hybridization as being encoded by sulI, sulII, or both. The sulI gene was in all cases found to be located in the newly defined, mobile genetic element, recently named an integron, which has been shown to contain a site-specific recombination system for the integration of various antibiotic resistance genes. The sulII gene was almost exclusively found as part of a variable resistance region on small, nonconjugative plasmids. Colony hybridization to an intragenic probe, restriction enzyme digestion, and nucleotide sequence analysis of small plasmids indicated that the sulII gene and contiguous sequences represent an independently occurring region disseminated in the bacterial population. The sulII resistance region was bordered by direct repeats, which in some plasmids were totally or partially deleted. The prevalence of sulI and sulII could thus be accounted for by their stable integration in transposons and in plasmids that are widely disseminated among gram-negative bacteria.19911952855
997280.9997Extensive antimicrobial resistance mobilization via multicopy plasmid encapsidation mediated by temperate phages. OBJECTIVES: To investigate the relevance of multicopy plasmids in antimicrobial resistance and assess their mobilization mediated by phage particles. METHODS: Several databases with complete sequences of plasmids and annotated genes were analysed. The 16S methyltransferase gene armA conferring high-level aminoglycoside resistance was used as a marker in eight different plasmids, from different incompatibility groups, and with differing sizes and plasmid copy numbers. All plasmids were transformed into Escherichia coli bearing one of four different lysogenic phages. Upon induction, encapsidation of armA in phage particles was evaluated using qRT-PCR and Southern blotting. RESULTS: Multicopy plasmids carry a vast set of emerging clinically important antimicrobial resistance genes. However, 60% of these plasmids do not bear mobility (MOB) genes. When carried on these multicopy plasmids, mobilization of a marker gene armA into phage capsids was up to 10000 times more frequent than when it was encoded by a large plasmid with a low copy number. CONCLUSIONS: Multicopy plasmids and phages, two major mobile genetic elements (MGE) in bacteria, represent a novel high-efficiency transmission route of antimicrobial resistance genes that deserves further investigation.202032719862
449990.9997Organization of two sulfonamide resistance genes on plasmids of gram-negative bacteria. The organization of two widely distributed sulfonamide resistance genes has been studied. The type I gene was linked to other resistance genes, like streptomycin resistance in R100 and trimethoprim resistance in R388 and other recently isolated plasmids from Sri Lanka. In R388, the sulfonamide resistance gene was transcribed from a promoter of its own, but in all other studied plasmids the linked genes were transcribed from a common promoter. This was especially established with a clone derived from plasmid R6-5, in which transposon mutagenesis showed that expression of sulfonamide resistance was completely dependent on the linked streptomycin resistance gene. The type II sulfonamide resistance gene was independently transcribed and found on two kinds of small resistance plasmids and also on large plasmids isolated from clinical material.19873032095
3577100.9997Intrinsic tet(L) sub-class in Bacillus velezensis and Bacillus amyloliquefaciens is associated with a reduced susceptibility toward tetracycline. Annotations of non-pathogenic bacterial genomes commonly reveal putative antibiotic resistance genes and the potential risks associated with such genes is challenging to assess. We have examined a putative tetracycline tet(L) gene (conferring low level tetracycline resistance), present in the majority of all publicly available genomes of the industrially important operational group Bacillus amyloliquefaciens including the species B. amyloliquefaciens, Bacillus siamensis and Bacillus velezensis. The aim was to examine the risk of transfer of the putative tet(L) in operational group B. amyloliquefaciens through phylogenetic and genomic position analysis. These analyses furthermore included tet(L) genes encoded by transferable plasmids and other Gram-positive and -negative bacteria, including Bacillus subtilis. Through phylogenetic analysis, we could group chromosomally and plasmid-encoded tet(L) genes into four phylogenetic clades. The chromosomally encoded putative tet(L) from operational group B. amyloliquefaciens formed a separate phylogenetic clade; was positioned in the same genomic region in the three species; was not flanked by mobile genetic elements and was not found in any other bacterial species suggesting that the gene has been present in a common ancestor before species differentiation and is intrinsic. Therefore the gene is not considered a safety concern, and the risk of transfer to and expression of resistance in other non-related species is considered negligible. We suggest a subgrouping of the tet(L) class into four groups (tet(L)1.1, tet(L)1.2 and tet(L)2.1, tet(L)2.2), corresponding with the phylogenetic grouping and tet(L) from operational group B. amyloliquefaciens referred to as tet(L)2.2. Phylogenetic analysis is a useful tool to correctly differentiate between intrinsic and acquired antibiotic resistance genes.202235992677
9974110.9997Role of Plasmids in Co-Selection of Antimicrobial Resistances Among Escherichia coli Isolated from Pigs. Co-selection is thought to occur when resistance genes are located on the same mobile genetic element. However, this mechanism is currently poorly understood. In this study, complete circular plasmids from swine-derived Escherichia coli were sequenced with short and long reads to confirm that resistance genes involved in co-resistance were co-transferred by the same plasmid. Conjugative transfer tests were performed, and multiple resistance genes were transmitted. The genes possessed by the donor, transconjugant, and plasmid of the donor were highly similar. In addition, the sequences of the plasmid of the donor and the plasmid of the transconjugant were almost identical. Resistance genes associated with statistically significant combinations of antimicrobial use and resistance were co-transmitted by the same plasmid. These results suggest that resistance genes may be involved in co-selection by their transfer between bacteria on the same plasmid.202337540099
9968120.9997Antibiotic Resistance, Core-Genome and Protein Expression in IncHI1 Plasmids in Salmonella Typhimurium. Conjugative plasmids from the IncHI1 incompatibility group play an important role in transferring antibiotic resistance in Salmonella Typhimurium. However, knowledge of their genome structure or gene expression is limited. In this study, we determined the complete nucleotide sequences of four IncHI1 plasmids transferring resistance to antibiotics by two different next generation sequencing protocols and protein expression by mass spectrometry. Sequence data including additional 11 IncHI1 plasmids from GenBank were used for the definition of the IncHI1 plasmid core-genome and pan-genome. The core-genome consisted of approximately 123 kbp and 122 genes while the total pan-genome represented approximately 600 kbp. When the core-genome sequences were used for multiple alignments, the 15 tested IncHI1 plasmids were separated into two main lineages. GC content in core-genome genes was around 46% and 50% in accessory genome genes. A multidrug resistance region present in all 4 sequenced plasmids extended over 20 kbp and, except for tet(B), the genes responsible for antibiotic resistance were those with the highest GC content. IncHI1 plasmids therefore represent replicons that evolved in low GC content bacteria. From their original host, they spread to Salmonella and during this spread these plasmids acquired multiple accessory genes including those coding for antibiotic resistance. Antibiotic-resistance genes belonged to genes with the highest level of expression and were constitutively expressed even in the absence of antibiotics. This is the likely mechanism that facilitates host cell survival when antibiotics suddenly emerge in the environment.201627189997
4526130.9997The tetracycline resistance gene tet(M) exhibits mosaic structure. Tetracycline resistance genes of the M class, tet(M), are typically found on mobile genetic elements as the conjugative transposons of gram-positive bacteria. By comparing the sequences of eight different tet(M) genes (from Enterococcus faecalis, Streptococcus pneumoniae, Staphylococcus aureus, Ureaplasma urealyticum, and Neisseria), a mosaic structure was detected which could be traced to two distinct alleles. The two alleles displayed a divergence of 8% and a different G/C content. The block structure of these genes provides evidence for the contribution of homologous recombination to the evolution and the heterogeneity of the tet(M) locus. Unlike described cases of chromosomally located mosaic loci, tet(M) is a relatively recently acquired determinant in the species examined and it would appear that mosaic structure within tet(M) has evolved after acquisition of the gene by the mobile genetic elements upon which it is located.19968812782
3595140.9997Antibiotic Susceptibility, Resistance Gene Determinants and Corresponding Genomic Regions in Lactobacillus amylovorus Isolates Derived from Wild Boars and Domestic Pigs. Restrictions on the use of antibiotics in pigs lead to the continuous search for new probiotics serving as an alternative to antibiotics. One of the key parameters for probiotic bacteria selection is the absence of horizontally transmissible resistance genes. The aim of our study was to determine antibiotic susceptibility profiles in 28 Lactobacillus amylovorus isolates derived from the digestive tract of wild boars and farm pigs by means of the broth microdilution method and whole genome sequencing (WGS). We revealed genetic resistance determinants and examined sequences flanking resistance genes in these strains. Our findings indicate that L. amylovorus strains from domestic pigs are predominantly resistant to tetracycline, erythromycin and ampicillin. WGS analysis of horizontally transmissible genes revealed only three genetic determinants (tetW, ermB and aadE) of which all tetW and ermB genes were present only in strains derived from domestic pigs. Sequence analysis of coding sequences (CDS) in the neighborhood of the tetW gene revealed the presence of site-specific recombinase (xerC/D), site-specific DNA recombinase (spoIVCA) or DNA-binding transcriptional regulator (xre), usually directly downstream of the tetW gene. In the case of ermB, CDS for omega transcriptional repressor or mobilization protein were detected upstream of the ermB gene.202236677394
3579150.9997The Tetracycline Resistance Gene, tet(W) in Bifidobacterium animalis subsp. lactis Follows Phylogeny and Differs From tet(W) in Other Species. The tetracycline resistance gene tet(W) encodes a ribosomal protection protein that confers a low level of tetracycline resistance in the probiotic bacterium Bifidobacterium animalis subsp. lactis. With the aim of assessing its phylogenetic origin and potential mobility, we have performed phylogenetic and in silico genome analysis of tet(W) and its flanking genes. tet(W) was found in 41 out of 44 examined B. animalis subsp. lactis strains. In 38 strains, tet(W) was flanked by an IS5-like element and an open reading frame encoding a hypothetical protein, which exhibited a similar GC content (51-53%). These genes were positioned in the same genomic context within the examined genomes. Phylogenetically, the B. animalis subsp. lactis tet(W) cluster in a clade separate from tet(W) of other species and genera. This is not the case for tet(W) encoded by other bifidobacteria and other species where tet(W) is often found in association with transferable elements or in different genomic regions. An IS5-like element identical to the one flanking the B. animalis subsp. lactis tet(W) has been found in a human gut related bacterium, but it was not associated with any tet(W) genes. This suggests that the IS5-like element is not associated with genetic mobility. tet(W) and the IS5 element have previously been shown to be co-transcribed, indicating that co-localization may be associated with tet(W) expression. Here, we present a method where phylogenetic and in silico genome analysis can be used to determine whether antibiotic resistance genes should be considered innate (intrinsic) or acquired. We find that B. animalis subsp. lactis encoded tet(W) is part of the ancient resistome and thereby possess a negligible risk of transfer.202134335493
4660160.9997Recovery of new integron classes from environmental DNA. Integrons are genetic elements known for their role in the acquisition and expression of genes conferring antibiotic resistance. Such acquisition is mediated by an integron-encoded integrase, which captures genes that are part of gene cassettes. To test whether integrons occur in environments with no known history of antibiotic exposure, PCR primers were designed to conserved regions of the integrase gene and the gene cassette recombination site. Amplicons generated from four environmental DNA samples contained features typical of the integrons found in antibiotic-resistant and pathogenic bacteria. The sequence diversity of the integrase genes in these clones was sufficient to classify them within three new classes of integron. Since they are derived from environments not associated with antibiotic use, integrons appear to be more prevalent in bacteria than previously observed.200111166996
4529170.9997Evolution of gentamicin and arsenite resistance acquisition in Ralstonia pickettii water isolates. Ralstonia pickettii are ubiquitous in water environments. Members of this species are frequently, but not always, resistant to both gentamicin and arsenite. Gentamicin and arsenite co-resistance and the putative molecular mechanisms were investigated. A group of 37 R. pickettii strains isolated from drinking water and hospital wastewater were characterized for gentamicin and arsenite resistance phenotypes, the number and size of plasmids, and screened for genetic elements associated with arsenite tolerance, Integrative and Conjugative Elements (ICEs), among other. The genomes of three representative strains were compared. Most gentamicin resistant (GR) isolates (32/33) were resistant to arsenite, and harbored ICE- and ars operon-related genes. These genetic elements were not detected in any of the five arsenite susceptible strains, regardless of the GR (n = 1) or gentamicin susceptibility (GS) (n = 4) phenotype. The comparison of the genomes of two GR (one resistant and one susceptible to arsenite) and one GS strains suggested that these phenotypes correspond to three phylogroups, distinguished by presence of some genes only in GR isolates, in addition to point mutations in functional genes. The presence of ICEs and ars operon-related genes suggest that arsenite resistance might have been acquired by GR lineages.202133197514
6001180.9996Assessment of horizontal gene transfer in Lactic acid bacteria--a comparison of mating techniques with a view to optimising conjugation conditions. Plate, filter and broth mating techniques were assessed over a range of pHs using three Lactococcus lactis donor strains (one with an erythromycin resistance marker and two with tetracycline resistance markers, all located on transferable genetic elements) and one L. lactis recipient strain. Transconjugants were confirmed using antibiotic selection, E-tests to determine MICs, PCR assays to detect the corresponding marker genes, DNA fingerprinting by pulsed-field gel electrophoresis (PFGE), and Southern blotting. Horizontal gene transfer (HGT) rates varied (ranging from 1.6 x 10(-1) to 2.3 x 10(-8)). The general trend observed was plate > filter > broth, independent of pH. Our data suggests that standardisation of methodologies to be used to assess HGT, is warranted and would provide a meaningful assessment of the ability of commensal and other bacteria in different environments to transfer relevant markers.200919135099
4466190.9996Antibiotic resistance in gram-negative bacteria: the role of gene cassettes and integrons. Resistance of gram-negative organisms to antibiotics such as beta-lactams, aminoglycosides, trimethoprim and chloramphenicol is caused by many different acquired genes, and a substantial proportion of these are part of small mobile elements known as gene cassettes. A gene cassette consists of the gene and a downstream sequence, known as a 59-base element (59-be), that acts as a specific recombination site. Gene cassettes can move into or out of a specific receptor site (attl site) in a companion element called an integron, and integration or excision of the cassettes is catalysed by a site-specific recombinase (Intl) that is encoded by the integron. At present count there are 40 different cassette-associated resistance genes and three distinct classes of integron, each encoding a distinct Intl integrase. The same cassettes are found in all three classes of integron, indicating that cassettes can move freely between different integrons. Integrons belonging to class I often contain a further antibiotic resistance gene, sull, conferring resistance to sulphonamides. The sull gene is found in a conserved region (3'-CS) that is not present in all members of this class. Class I integrons of the sull type are most prevalent in clinical isolates and have been found in many different organisms. Even though most of them are defective transposon derivatives, having lost at least one of the transposition genes, they are none the less translocatable and consequently found in many different locations. The transposon Tn7 is the best known representative of class 2 integrons, and Tn7 and relatives are also found in many different species.199816904397