# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3069 | 0 | 0.9939 | The hospital sink drain biofilm resistome is independent of the corresponding microbiota, the environment and disinfection measures. In hospitals, the transmission of antibiotic-resistant bacteria (ARB) may occur via biofilms present in sink drains, which can lead to infections. Despite the potential role of sink drains in the transmission of ARB in nosocomial infections, routine surveillance of these drains is lacking in most hospitals. As a result, there is currently no comprehensive understanding of the transmission of ARB and the dissemination of antimicrobial resistance genes (ARGs) and associated mobile genetic elements (MGEs) via sink drains. This study employed a multifaceted approach to monitor the total aerobic bacteria as well as the presence of carbapenemase-producing Enterobacterales (CPEs), the microbiota and the resistome of sink drain biofilms (SDBs) and hospital wastewater (WW) of two separate intensive care units (ICUs) in the same healthcare facility in France. Samples of SDB and WW were collected on a monthly basis, from January to April 2023, in the neonatal (NICU) and the adult (AICU) ICUs of Grenoble Alpes University Hospital. In the NICU, sink drain disinfection with surfactants was performed routinely. In the AICU, routine disinfection is not carried out. Culturable aerobic bacteria were quantified on non-selective media, and CPEs were screened using two selective agars. Isolates were identified by MALDI-TOF MS, and antibiotic susceptibility testing (AST) was performed on Enterobacterales and P. aeruginosa. The resistome was analyzed by high-throughput qPCR targeting >80 ARGs and MGEs. The overall bacterial microbiota was assessed via full-length 16S rRNA sequencing. No CPEs were isolated from SDBs in either ICU by bacterial culture. Culture-independent approaches revealed an overall distinct microbiota composition of the SDBs in the two ICUs. The AICU SDBs were dominated by pathogens containing Gram-negative bacterial genera including Pseudomonas, Stenotrophomona, Klebsiella, and Gram-positive Staphylococcus, while the NICU SDBs were dominated by the Gram-negative genera Achromobacter, Serratia, and Acidovorax, as well as the Gram-positive genera Weisella and Lactiplantibacillus. In contrast, the resistome of the SDBs exhibited no significant differences between the two ICUs, indicating that the abundance of ARGs and MGEs is independent of microbiota composition and disinfection practices. The AICU WW exhibited more distinct aerobic bacteria than the NICU WW. In addition, the AICU WW yielded 15 CPEs, whereas the NICU WW yielded a single CPE. All the CPEs were characterized at the species level. The microbiota of the NICU and AICU WW samples differed from their respective SDBs and exhibited distinct variations over the four-month period:the AICU WW contained a greater number of genes conferring resistance to quinolones and integron integrase genes, whereas the NICU WW exhibited a higher abundance of streptogramin resistance genes. Our study demonstrated that the resistome of the hospital SDBs in the two ICUs of the investigated healthcare institute is independent of the microbiota, the environment, and the local disinfection measures. However, the prevalence of CPEs in the WW pipes collecting the waste from the investigated drains differed. These findings offer valuable insights into the resilience of resistance genes in SDBs in ICUs, underscoring the necessity for innovative strategies to combat antimicrobial resistance in clinical environments. | 2025 | 40483807 |
| 2272 | 1 | 0.9931 | Routine wastewater-based monitoring of antibiotic resistance in two Finnish hospitals: focus on carbapenem resistance genes and genes associated with bacteria causing hospital-acquired infections. BACKGROUND: Wastewater-based monitoring represents a useful tool for antibiotic resistance surveillance. AIM: To investigate the prevalence and abundance of antibiotic resistance genes (ARGs) in hospital wastewater over time. METHODS: Wastewater from two hospitals in Finland (HUS1 and HUS2) was monitored weekly for nine weeks (weeks 25-33) in summer 2020. A high-throughput real-time polymerization chain reaction (HT-qPCR) system was used to detect and quantify 216 ARGs and genes associated with mobile genetic elements (MGEs), integrons, and bacteria causing hospital-acquired infections (HAIs), as well as the 16S rRNA gene. Data from HT-qPCR were analysed and visualized using a novel digital platform, ResistApp. Eight carbapenem resistance genes (blaGES, blaKPC, blaVIM, blaNDM, blaCMY, blaMOX, blaOXA48, and blaOXA51) and three genes associated with bacteria causing HAIs (Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa) were studied. FINDINGS: There was a significantly higher number of ARGs at both hospitals in weeks 27-30 (174-191 genes) compared to other sampling weeks (151-171 genes). Our analyses also indicated that the two hospitals, which used different amounts of antibiotics, had significantly different resistance gene profiles. Carbapenem resistance genes were more prevalent and abundant in HUS1 than HUS2. Across both hospitals, blaGES and blaVIM were the most prevalent and abundant. There was also a strong positive association between blaKPC and K. pneumoniae in HUS1 wastewater. CONCLUSION: Routine wastewater-based monitoring using ResistApp can provide valuable information on the prevalence and abundance of ARGs in hospitals. This helps hospitals understand the spread of antibiotic resistance in hospitals and identify potential areas for intervention. | 2021 | 34537275 |
| 2595 | 2 | 0.9928 | Antibiotic resistance pattern of waterborne causative agents of healthcare-associated infections: A call for biofilm control in hospital water systems. BACKGROUND: In recent years, the global spread of antimicrobial resistance has become a concerning issue, often referred to as a "silent pandemic". Healthcare-associated infections (HAIs) caused by antibiotic-resistant bacteria (ARB) are a recurring problem, with some originating from waterborne route. The study aimed to investigate the presence of clinically relevant opportunistic bacteria and antibiotic resistance genes (ARGs) in hospital water distribution systems (WDSs). METHODS: Water and biofilm samples (n = 192) were collected from nine hospitals in Isfahan and Kashan, located in central Iran, between May 2022 and June 2023. The samples were analyzed to determine the presence and quantities of opportunistic bacteria and ARGs using cultural and molecular methods. RESULTS: Staphylococcus spp. were highly detected in WDS samples (90 isolates), with 33 % of them harboring mecA gene. However, the occurrences of E. coli (1 isolate), Acinetobacter baumannii (3 isolates), and Pseudomonas aeruginosa (14 isolates) were low. Moreover, several Gram-negative bacteria containing ARGs were identified in the samples, mainly belonging to Stenotrophomonas, Sphingomonas and Brevundimonas genera. Various ARGs, as well as intI1, were found in hospital WDSs (ranging from 14 % to 60 %), with higher occurrences in the biofilm samples. CONCLUSION: Our results underscore the importance of biofilms in water taps as hotspots for the dissemination of opportunistic bacteria and ARG within hospital environments. The identification of multiple opportunistic bacteria and ARGs raises concerns about the potential exposure and acquisition of HAIs, emphasizing the need for proactive measures, particularly in controlling biofilms, to mitigate infection risks in healthcare settings. | 2024 | 38838607 |
| 2596 | 3 | 0.9928 | 16S rRNA amplicon sequencing and antimicrobial resistance profile of intensive care units environment in 41 Brazilian hospitals. INTRODUCTION: Infections acquired during healthcare setting stay pose significant public health threats. These infections are known as Healthcare-Associated Infections (HAI), mostly caused by pathogenic bacteria, which exhibit a wide range of antimicrobial resistance. Currently, there is no knowledge about the global cleaning process of hospitals and the bacterial diversity found in ICUs of Brazilian hospitals contributing to HAI. OBJECTIVE: Characterize the microbiome and common antimicrobial resistance genes present in high-touch Intensive Care Unit (ICU) surfaces, and to identify the potential contamination of the sanitizers/processes used to clean hospital surfaces. METHODS: In this national, multicenter, observational, and prospective cohort, bacterial profiles and several antimicrobial resistance genes from 41 hospitals across 16 Brazilian states were evaluated. Using high-throughput 16S rRNA amplicon sequencing and real-time PCR, the bacterial abundance and resistance genes presence were analyzed in both ICU environments and cleaning products. RESULTS: We identified a wide diversity of microbial populations with a recurring presence of HAI-related bacteria among most of the hospitals. The median bacterial positivity rate in surface samples was high (88.24%), varying from 21.62 to 100% in different hospitals. Hospitals with the highest bacterial load in samples were also the ones with highest HAI-related abundances. Streptococcus spp., Corynebacterium spp., Staphylococcus spp., Bacillus spp., Acinetobacter spp., and bacteria from the Flavobacteriaceae family were the microorganisms most found across all hospitals. Despite each hospital particularities in bacterial composition, clustering profiles were found for surfaces and locations in the ICU. Antimicrobial resistance genes mecA, bla (KPC-like), bla (NDM-like), and bla (OXA-23-like) were the most frequently detected in surface samples. A wide variety of sanitizers were collected, with 19 different active principles in-use, and 21% of the solutions collected showed viable bacterial growth with antimicrobial resistance genes detected. CONCLUSION: This study demonstrated a diverse and spread pattern of bacteria and antimicrobial resistance genes covering a large part of the national territory in ICU surface samples and in sanitizers solutions. This data should contribute to the adoption of surveillance programs to improve HAI control strategies and demonstrate that large-scale epidemiology studies must be performed to further understand the implications of bacterial contamination in hospital surfaces and sanitizer solutions. | 2024 | 39076419 |
| 3494 | 4 | 0.9928 | Pathogenic bacteria and antibiotic resistance genes in hospital indoor bioaerosols: pollution characteristics, interrelation analysis, and inhalation risk assessment. Hospitals are high risk areas for the spread of diseases, with indoor bioaerosols containing a variety of pathogens. Inhalation of these pathogens may cause severe nosocomial infections in patients and medical staff. A comprehensive investigation was conducted during the influenza A outbreak to explore the distribution and pathogenic risk of airborne pathogens and antibiotic resistance genes (ARGs) across different hospital departments. It was revealed that airborne bacterial concentrations ranged from 118 to 259 CFU/m(3), and the main aerosol particle size was 4.7-5.8 μm (27.7 %). The proportion of bioaerosols smaller than 2.5 μm was highest in the respiratory waiting area (59.3 %). The dominant pathogens detected in hospital air were Bacillus, Staphylococcus, Pseudomonas and Micrococcus. The absolute abundance of ARGs/mobile genetic elements (MGEs) ranged from 0.55 to 479.44 copies/m(3), peaking in the respiratory ward air. TetL-02, lnuA-01, intI1, ermB, and qacEdelta1-02 were the top five ARGs/MGEs in hospital air. Moreover, doctors inhaled higher doses of ARGs/MGEs in inpatient wards than outpatient waiting areas. Network analysis identified Pseudomonas, Micrococcus, Microbacterium, and Enterobacter as potential ARGs reservoirs. The Bugbase result showed the presence of potentially pathogenic pathogens in the bioaerosols at all sampling sites. The quantitative microbiological risk assessment results further showed that airborne Staphylococcus could pose an infection risk to medical staff. It was determined that the use of masks was effective in reducing this risk to an acceptable level. This study will provide a scientific basis for comprehensively understanding the characteristics and potential risks of hospital bioaerosols during the outbreak of respiratory infectious diseases. | 2025 | 40222613 |
| 2723 | 5 | 0.9927 | Hospital air: A potential route for transmission of infections caused by β-lactam-resistant bacteria. BACKGROUND: The emergence of bacterial resistance to β-lactam antibiotics seriously challenges the treatment of various nosocomial infections. This study was designed to investigate the presence of β-lactam-resistant bacteria (BLRB) in hospital air. METHODS: A total of 64 air samples were collected in 4 hospital wards. Detection of airborne bacteria was carried out using culture plates with and without β-lactams. BLRB isolates were screened for the presence of 5 common β-lactamase-encoding genes. Sequence analysis of predominant BLRB was also performed. RESULTS: The prevalence of BLRB ranged between 3% and 34%. Oxacillin-resistant bacteria had the highest prevalence, followed by ceftazidime- and cefazolin-resistant bacteria. The frequency of β-lactamase-encoding genes in isolated BLRB ranged between 0% and 47%, with the highest and lowest detection for OXA-23 and CTX-m-32, respectively. MecA had a relatively high frequency in surgery wards and operating theaters, whereas the frequency of blaTEM was higher in intensive care units and internal medicine wards. OXA-51 was detected in 4 wards. Acinetobacter spp, Acinetobacter baumannii, and Staphylococcus spp were the most predominant BLRB. CONCLUSIONS: The results revealed that hospital air is a potential route of transmission of BLRB, such as Acinetobacter and Staphylococcus, 2 important causative agents of nosocomial infections. Therefore, improvement of control measures against the spreading of airborne bacteria in hospital environments is warranted. | 2016 | 27021512 |
| 2268 | 6 | 0.9927 | Profile of Bacteria with ARGs Among Real-World Samples from ICU Admission Patients with Pulmonary Infection Revealed by Metagenomic NGS. BACKGROUND: Treatment of pulmonary infections in the intensive care unit (ICU) represents a great challenge, especially infections caused by antibiotic resistance pathogens. A thorough and up-to-date knowledge of the local spectrum of antibiotic resistant bacteria can improve the antibiotic treatment efficiency. In this study, we aimed to reveal the profile of bacteria with antibiotic resistance genes (ARGs) in real-world samples from ICU admission patients with pulmonary infection in Mainland, China, by metagenomic next-generation sequencing (mNGS). METHODS: A total of 504 different types of clinical samples from 452 ICU admission patients with pulmonary infection were detected by mNGS analysis. RESULTS: A total of 485 samples from 434 patients got successful mNGS results. Among 434 patients, one or more bacteria with ARGs were detected in 192 patients (44.24%, 192/434), and ≥2 bacteria with ARGs were detected in 85 (19.59%, 85/434) patients. The predominant detected bacteria were Corynebacterium striatum (C. striatum) (11.76%, 51/434), Acinetobacter baumannii (A. baumannii) (11.52%, 50/434) and Enterococcus faecium (E. faecium) (8.99%, 39/434). ermX conferred resistance to MSL(B) and cmx to phenicol were the only two ARGs detected in C. striatum; in A. baumannii, most of ARGs were resistance-nodulation-division (RND)-type efflux pumps genes, which conferred resistance to multi-drug; ermB conferred resistance to MSL(B) and efmA to multi-drug were the predominant ARGs in E. faecium. Bacteria with ARGs were detected in 50% (140/280) bronchoalveolar lavage fluid (BALF) and 50.5% (48/95) sputum samples, which were significantly higher than in blood and cerebrospinal fluid (CSF) samples. CONCLUSION: High level of bacteria with ARGs was observed in clinical samples, especially BALF and sputum samples from ICU admission patients with pulmonary infection in Mainland, China. And C. striatum resistant to MSL(B) and/or phenicol, multi-drug resistance A. baumannii and E. faecium were the lead bacteria. | 2021 | 34866919 |
| 2250 | 7 | 0.9927 | Prevalence of Antibiotic-Resistant Pathogenic Bacteria and Level of Antibiotic Residues in Hospital Effluents in Selangor, Malaysia: Protocol for a Cross-sectional Study. BACKGROUND: Antimicrobial resistance (AMR) has emerged as a major global public health challenge due to the overuse and misuse of antibiotics for humans and animals. Hospitals are among the major users of antibiotics, thereby having a large contribution to AMR. OBJECTIVE: The aim of this study is to determine the prevalence of antibiotic-resistant pathogenic bacteria and the level of antibiotic residues in the hospital effluents in Selangor, Malaysia. METHODS: A cross-sectional study will be performed in the state of Selangor, Malaysia. Tertiary hospitals will be identified based on the inclusion and exclusion criteria. The methods are divided into three phases: sample collection, microbiological analysis, and chemical analysis. Microbiological analyses will include the isolation of bacteria from hospital effluents by culturing on selective media. Antibiotic sensitivity testing will be performed on the isolated bacteria against ceftriaxone, ciprofloxacin, meropenem, vancomycin, colistin, and piperacillin/tazobactam. The identification of bacteria will be confirmed using 16S RNA polymerase chain reaction (PCR) and multiplex PCR will be performed to detect resistance genes (ermB, mecA, bla(NDM-L), bla(CTX-M), bla(OXA-48), bla(SHV), VanA, VanB, VanC1, mcr-1, mcr-2, mcr-3, Intl1, Intl2, and qnrA). Finally, the level of antibiotic residues will be measured using ultrahigh-performance liquid chromatography. RESULTS: The expected outcomes will be the prevalence of antibiotic-resistant Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter (ESKAPE) bacterial species from the hospital effluents, the occurrence of antibiotic resistance genes (ARGs) from the isolated ESKAPE bacteria, and the level of antibiotic residues that may be detected from the effluent. Sampling has been conducted in three hospitals. Data analysis from one hospital showed that as of July 2022, 80% (8/10) of E. faecium isolates were resistant to vancomycin and 10% (1/10) were resistant to ciprofloxacin. Further analysis will be conducted to determine if the isolates harbor any ARGs and effluent samples are being analyzed to detect antibiotic residues. Sampling activities will be resumed after being suspended due to the COVID-19 pandemic and are scheduled to end by December 2022. CONCLUSIONS: This study will provide the first baseline information to elucidate the current status of AMR of highly pathogenic bacteria present in hospital effluents in Malaysia. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/39022. | 2023 | 37247207 |
| 3113 | 8 | 0.9926 | Resistome in the indoor dust samples from workplaces and households: a pilot study. The antibiotic resistance genes (ARGs) limit the susceptibility of bacteria to antimicrobials, representing a problem of high importance. Current research on the presence of ARGs in microorganisms focuses mainly on humans, livestock, hospitals, or wastewater. However, the spectrum of ARGs in the dust resistome in workplaces and households has gone relatively unexplored. This pilot study aimed to analyze resistome in indoor dust samples from participants' workplaces (a pediatric hospital, a maternity hospital, and a research center) and households and compare two different approaches to the ARGs analysis; high-throughput quantitative PCR (HT-qPCR) and whole metagenome shotgun sequencing (WMGS). In total, 143 ARGs were detected using HT-qPCR, with ARGs associated with the macrolides, lincosamides, and streptogramin B (MLSB) phenotype being the most abundant, followed by MDR (multi-drug resistance) genes, and genes conferring resistance to aminoglycosides. A higher overall relative quantity of ARGs was observed in indoor dust samples from workplaces than from households, with the pediatric hospital being associated with the highest relative quantity of ARGs. WMGS analysis revealed 36 ARGs, of which five were detected by both HT-qPCR and WMGS techniques. Accordingly, the efficacy of the WMGS approach to detect ARGs was lower than that of HT-qPCR. In summary, our pilot data revealed that indoor dust in buildings where people spend most of their time (workplaces, households) can be a significant source of antimicrobial-resistant microorganisms, which may potentially pose a health risk to both humans and animals. | 2024 | 39691696 |
| 2267 | 9 | 0.9926 | MOLECULAR CHARACTERIZATION AND DETECTION OF MULTIDRUGRESISTANT GENE IN BACTERIAL ISOLATES CAUSING LOWER RESPIRATORY TRACT INFECTIONS (LRTI) AMONG HIV/AIDS PATIENTS ON HIGHLY ACTIVE ANTIRETROVIRAL THERAPY (HAART) IN UYO, SOUTH-SOUTH NIGERIA. BACKGROUND: Antibiotic-resistant genes (ARGs) pose a significant challenge in modern medicine, rendering infections increasingly difficult to treat as bacteria acquire mechanisms to resist antibiotics. Addressing ARGs necessitates a multifaceted approach, encompassing surveillance efforts to monitor their presence and the development of strategies aimed at managing and curbing the spread of antibiotic resistance. Hence, this study characterized the genetic determinants of antibiotic resistance among isolates responsible for Lower Respiratory Tract Infections (LRTIs) in People Living with HIV/AIDS (PLWHA) in Uyo. METHODS: Sputum samples were collected from 61 LRTI suspects, with bacterial isolates identified using VITEK-2 technology. Polymerase chain reaction assays were employed to detect resistance genes within the isolates. RESULTS: Results revealed a bacterial etiology in 39.3% of the samples, with a majority (79.2%) originating from St. Luke Hospital, Anua (SLHA), and the remainder (20.8%) from the University of Uyo Teaching Hospital (UUTH). Staphylococcus aureus emerged as the predominant isolate (46.6%), while resistance was notably high against Gentamicin and Sulphamethazole/Trimethoprim. Conversely, Azithromycin, imipenem, clindamycin, erythromycin, and ceftriaxone displayed relatively lower resistance levels across all isolates. Notably, four resistance genes CTX-M, Aac, KPC, and MecA were identified, with CTX-M detected in all multidrug-resistant isolates. This underscores the predominantly community-acquired nature of resistance as conferred by CTX-M. CONCLUSION: In conclusion, this study underscores the critical importance of continued vigilance and proactive measures in combating antibiotic resistance, particularly within vulnerable populations such as PLWHA. By elucidating the genetic mechanisms underlying antibiotic resistance, informed targeted interventions can be mitigated to curb threats posed by multidrug-resistant bacteria in clinical settings. | 2024 | 40385712 |
| 5819 | 10 | 0.9926 | Application of mNGS in the Etiological Analysis of Lower Respiratory Tract Infections and the Prediction of Drug Resistance. Lower respiratory tract infections (LRTIs) have high morbidity and mortality rates. However, traditional etiological detection methods have not been able to meet the needs for the clinical diagnosis and prognosis of LRTIs. The rapid development of metagenomic next-generation sequencing (mNGS) provides new insights for the diagnosis and treatment of LRTIs; however, little is known about how to interpret the application of mNGS results in LRTIs. In this study, lower respiratory tract specimens from 46 patients with suspected LRTIs were tested simultaneously using conventional microbiological detection methods and mNGS. Receiver operating characteristic (ROC) curves were used to evaluate the performance of the logarithm of reads per kilobase per million mapped reads [lg(RPKM)], genomic coverage, and relative abundance of the organism in predicting the true-positive pathogenic bacteria. True-positive viruses were identified according to the lg(RPKM) threshold of bacteria. We also evaluated the ability to predict drug resistance genes using mNGS. Compared to that using conventional detection methods, the false-positive detection rate of pathogenic bacteria was significantly higher using mNGS. It was concluded from the ROC curves that the lg(RPKM) and genomic coverage contributed to the identification of pathogenic bacteria, with the performance of lg(RPKM) being the best (area under the curve [AUC] = 0.99). The corresponding lg(RPKM) threshold for identifying the pathogenic bacteria was -1.35. Thirty-five strains of true-positive virus were identified based on the lg(RPKM) threshold of bacteria, with the detection of human gammaherpesvirus 4 being the highest and prone to coinfection with Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia. Antimicrobial susceptibility tests (AST) revealed the resistance of bacteria containing drug resistance genes (detected by mNGS). However, the drug resistance genes of some multidrug-resistant bacteria were not detected. As an emerging technology, mNGS has shown many advantages for the unbiased etiological detection and the prediction of antibiotic resistance. However, a correct understanding of mNGS results is a prerequisite for its clinical application, especially for LRTIs. IMPORTANCE LRTIs are caused by hundreds of pathogens, and they have become a great threat to human health due to the limitations of traditional etiological detection methods. As an unbiased approach to detect pathogens, mNGS overcomes such etiological diagnostic challenges. However, there is no unified standard on how to use mNGS indicators (the sequencing reads, genomic coverage, and relative abundance of each organism) to distinguish between pathogens and colonizing microorganisms or contaminant microorganisms. Here, we selected the mNGS indicator with the best identification performance and established a cutoff value for the identification of pathogens in LRTIs using ROC curves. In addition, we also evaluated the accuracy of antibiotic resistance prediction using mNGS. | 2022 | 35171007 |
| 5312 | 11 | 0.9926 | Presence and Persistence of ESKAPEE Bacteria before and after Hospital Wastewater Treatment. The metagenomic surveillance of antimicrobial resistance in wastewater has been suggested as a methodological tool to characterize the distribution, status, and trends of antibiotic-resistant bacteria. In this study, a cross-sectional collection of samples of hospital-associated raw and treated wastewater were obtained from February to March 2020. Shotgun metagenomic sequencing and bioinformatic analysis were performed to characterize bacterial abundance and antimicrobial resistance gene analysis. The main bacterial phyla found in all the samples were as follows: Proteobacteria, Bacteroides, Firmicutes, and Actinobacteria. At the species level, ESKAPEE bacteria such as E. coli relative abundance decreased between raw and treated wastewater, but S. aureus, A. baumannii, and P. aeruginosa increased, as did the persistence of K. pneumoniae in both raw and treated wastewater. A total of 172 different ARGs were detected; bla(OXA), bla(VEB), bla(KPC), bla(GES), mphE, mef, erm, msrE, AAC(6'), ant(3″), aadS, lnu, PBP-2, dfrA, vanA-G, tet, and sul were found at the highest abundance and persistence. This study demonstrates the ability of ESKAPEE bacteria to survive tertiary treatment processes of hospital wastewater, as well as the persistence of clinically important antimicrobial resistance genes that are spreading in the environment. | 2024 | 38930614 |
| 2743 | 12 | 0.9926 | Antimicrobial Resistance in the Aconcagua River, Chile: Prevalence and Characterization of Resistant Bacteria in a Watershed Under High Anthropogenic Contamination Pressure. Background: Antimicrobial resistance (AMR) is a growing global health concern, driven in part by the environmental release of antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs). Aquatic systems, particularly those exposed to urban, agricultural, and industrial activity, are recognized as hotspots for AMR evolution and transmission. In Chile, the Aconcagua River-subject to multiple anthropogenic pressures-offers a representative model for studying the environmental dimensions of AMR. Methods: Thirteen surface water samples were collected along the Aconcagua River basin in a single-day campaign to avoid temporal bias. Samples were filtered through 0.22 μm membranes and cultured on MacConkey agar, either unsupplemented or supplemented with ceftazidime (CAZ) or ciprofloxacin (CIP). Isolates were purified and identified using MALDI-TOF mass spectrometry. Antibiotic susceptibility was evaluated using the Kirby-Bauer disk diffusion method in accordance with CLSI guidelines. Carbapenemase activity was assessed using the Blue-Carba test, and PCR was employed for the detection of the bla(VIM), bla(KPC), bla(NDM), and bla(IMP) genes. Results: A total of 104 bacterial morphotypes were isolated; 80 were identified at the species level, 5 were identified at the genus level, and 19 could not be taxonomically assigned using MALDI-TOF. Pseudomonas (40 isolates) and Aeromonas (25) were the predominant genera. No growth was observed on CIP plates, while 24 isolates were recovered from CAZ-supplemented media, 87.5% of which were resistant to aztreonam. Five isolates exhibited resistance to carbapenems; two tested positive for carbapenemase activity and carried the bla(VIM) gene. Conclusions: Our results confirm the presence of clinically significant resistance mechanisms, including bla(VIM), in environmental Pseudomonas spp. from the Aconcagua River. These findings highlight the need for environmental AMR surveillance and reinforce the importance of adopting a One Health approach to antimicrobial stewardship and wastewater regulation. | 2025 | 40723973 |
| 1855 | 13 | 0.9925 | High Genetic Diversity of Carbapenem-Resistant Acinetobacter baumannii Isolates Recovered in Nigerian Hospitals in 2016 to 2020. Acinetobacter baumannii causes difficult-to-treat infections mostly among immunocompromised patients. Clinically relevant A. baumannii lineages and their carbapenem resistance mechanisms are sparsely described in Nigeria. This study aimed to characterize the diversity and genetic mechanisms of carbapenem resistance among A. baumannii strains isolated from hospitals in southwestern Nigeria. We sequenced the genomes of all A. baumannii isolates submitted to Nigeria's antimicrobial resistance surveillance reference laboratory between 2016 and 2020 on an Illumina platform and performed in silico genomic characterization. Selected strains were sequenced using the Oxford Nanopore technology to characterize the genetic context of carbapenem resistance genes. The 86 A. baumannii isolates were phylogenetically diverse and belonged to 35 distinct Oxford sequence types ((oxf)STs), 16 of which were novel, and 28 Institut Pasteur STs ((pas)STs). Thirty-eight (44.2%) isolates belonged to none of the known international clones (ICs). Over 50% of the isolates were phenotypically resistant to 10 of 12 tested antimicrobials. The majority (n = 54) of the isolates were carbapenem resistant, particularly the IC7 ((pas)ST25; 100%) and IC9 ((pas)ST85; >91.7%) strains. bla(OXA-23) (34.9%) and bla(NDM-1) (27.9%) were the most common carbapenem resistance genes detected. All bla(OXA-23) genes were carried on Tn2006 or Tn2006-like transposons. Our findings suggest that a 10-kb Tn125 composite transposon is the primary means of bla(NDM-1) dissemination. Our findings highlight an increase in bla(NDM-1) prevalence and the widespread transposon-facilitated dissemination of carbapenemase genes in diverse A. baumannii lineages in southwestern Nigeria. We make the case for improving surveillance of these pathogens in Nigeria and other understudied settings. IMPORTANCE Acinetobacter baumannii bacteria are increasingly clinically relevant due to their propensity to harbor genes conferring resistance to multiple antimicrobials, as well as their ability to persist and disseminate in hospital environments and cause difficult-to-treat nosocomial infections. Little is known about the molecular epidemiology and antimicrobial resistance profiles of these organisms in Nigeria, largely due to limited capacity for their isolation, identification, and antimicrobial susceptibility testing. Our study characterized the diversity and antimicrobial resistance profiles of clinical A. baumannii in southwestern Nigeria using whole-genome sequencing. We also identified the key genetic elements facilitating the dissemination of carbapenem resistance genes within this species. This study provides key insights into the clinical burden and population dynamics of A. baumannii in hospitals in Nigeria and highlights the importance of routine whole-genome sequencing-based surveillance of this and other previously understudied pathogens in Nigeria and other similar settings. | 2023 | 37067411 |
| 1809 | 14 | 0.9925 | Deciphering antibiotic resistance genes and plasmids in pathogenic bacteria from 166 hospital effluents in Shanghai, China. Although previous studies using phenotypic or metagenomic approaches have revealed the patterns of antibiotic resistance genes (ARGs) in hospital effluents in local regions, limited information is available regarding the antibiotic resistome and plasmidome in human pathogenic bacteria in hospital effluents of megacity in China. To address this knowledge gap, we analyzed effluent samples from 166 hospitals across 13 geographical districts in Shanghai, China, using both cultivation-based approaches and metagenomics. A total of 357 strains were isolated from these samples, with the predominant species being Escherichia coli (n = 61), Aeromonas hydrophila (n = 57), Klebsiella pneumoniae (n = 48), and Aeromonas caviae (n = 42). Those identified indicator bacteria were classified into biosafety level 1 (BSL-1, 60 %) and BSL-2 (40 %). We identified 1237 ARG subtypes across 22 types, predominantly including beta-lactam, tetracycline, multidrug, polymyxin, and aminoglycoside resistance genes, using culture-enriched phenotypic metagenomics. Mobile genetic elements such as plasmids, transposons (tnpA), integrons (intI1), and insertion sequences (IS91) were abundant. We recovered 135 plasmids classified into mobilizable (n = 94) and non-mobilizable (n = 41) types. Additionally, 80 metagenome-assembled genomes (MAGs) were reconstructed from the hospital effluents for the assessment of ARG transmission risks, including genes for last-line antibiotics such as bla(NDM), bla(KPC), bla(imiH), and mcr. This study is the first to comprehensively characterize and assess the risk of antimicrobial resistance levels and plasmidome in the hospital effluents of China's megacity, providing city-wide surveillance data and evidence to inform public health interventions. | 2025 | 39612873 |
| 3493 | 15 | 0.9925 | Studies on the airborne bacterial communities and antimicrobial resistance genes in duck houses based on metagenome and PCR analysis. The threat of antimicrobial resistance (AMR) is on the rise globally, especially with the development of animal husbandry and the increased demand for antibiotics. Livestock and poultry farms, as key sites for prevalence of antibiotic-resistant bacteria (ARB), can spread antimicrobial resistance genes (ARGs) through microbial aerosols and affect public health. In this study, total suspended particulate matter (TSP) and airborne culturable microorganisms were collected from duck houses in Tai'an, Shandong Province, and the bacterial communities and airborne ARGs were analyzed using metagenomics and PCR methods. The results showed that the bacterial communities in the air of duck houses were mainly Actinobacteria, Firmicutes, Proteobactria, Chlamydia, and Bcateroidetes at the phylum level. At the genus level, the air was dominated by Corynebacterium, Jeotgalicoccus, Staphylococcus, Brevibacterium, and Megacoccus, and contained some pathogenic bacteria such as Staphylococcus aureus, Corynebacterium diphtheriae, Klebsiella oxytoca, Acinetobacter baumannii, and Pseudomonas aeruginosa, which were also potential hosts for ARGs. The airborne ARGs were mainly macrolides (10.97%), penicillins (10.73%), cephalosporins (8.91%), streptozotocin (8.91%), and aminoglycosides (8.02%). PCR detected 27 ARGs in airborne culturable microorganisms, and comparative analysis between PCR and the metagenomic data revealed that a total of 9 ARGs were found to the same, including macrolides ErmA, ErmF, tetracyclines tetG, tetX, methicarbamazepines dfrA12, dfrA15, aminoglycosides APH3-VI, ANT2-Ⅰ, and sulfonamides sul2. Moreover, inhalation exposure modeling showed that the workers in duck houses inhaled higher concentrations of ARB, human pathogenic bacteria (HPB) and human pathogenic antibiotic-resistant bacteria (HPARB) than hospital workers. These results provide new insights into airborne microorganisms and ARGs in animal farms and lay the foundation for further study. | 2024 | 38157791 |
| 2759 | 16 | 0.9925 | Emergence of Carbapenemase Genes in Gram-Negative Bacteria Isolated from the Wastewater Treatment Plant in A Coruña, Spain. Wastewater treatment plants (WWTPs) are recognized as important niches of antibiotic-resistant bacteria that can be easily spread to the environment. In this study, we collected wastewater samples from the WWTP of A Coruña (NW Spain) from April 2020 to February 2022 to evaluate the presence of Gram-negative bacteria harboring carbapenemase genes. Bacteria isolated from wastewater were classified and their antimicrobial profiles were determined. In total, 252 Gram-negative bacteria carrying various carbapenemase genes were described. Whole-genome sequencing was conducted on 55 selected carbapenemase producing isolates using Oxford Nanopore technology. This study revealed the presence of a significant population of bacteria carrying carbapenemase genes in WWTP, which constitutes a public health problem due to their risk of dissemination to the environment. This emphasizes the usefulness of WWTP monitoring for combating antibiotic resistance. Data revealed the presence of different types of sequences harboring carbapenemase genes, such as bla(KPC-2), bla(GES-5), bla(GES-6), bla(IMP-11), bla(IMP-28), bla(OXA-24), bla(OXA-48), bla(OXA-58), bla(OXA-217), and bla(VIM-2). Importantly, the presence of the bla(KPC-2) gene in wastewater, several months before any clinical case was detected in University Hospital of A Coruña, suggests that wastewater-based epidemiology can be used as an early warning system for the surveillance of antibiotic-resistant bacteria. | 2024 | 38391580 |
| 2597 | 17 | 0.9925 | One year cross-sectional study in adult and neonatal intensive care units reveals the bacterial and antimicrobial resistance genes profiles in patients and hospital surfaces. Several studies have shown the ubiquitous presence of bacteria in hospital surfaces, staff, and patients. Frequently, these bacteria are related to HAI (healthcare-associated infections) and carry antimicrobial resistance (AMR). These HAI-related bacteria contribute to a major public health issue by increasing patient morbidity and mortality during or after hospital stay. Bacterial high-throughput amplicon gene sequencing along with identification of AMR genes, as well as whole genome sequencing (WGS), are biotechnological tools that allow multiple-sample screening for a diversity of bacteria. In this paper, we used these methods to perform a one-year cross sectional profiling of bacteria and AMR genes in adult and neonatal intensive care units (ICU and NICU) in a Brazilian public, tertiary hospital. Our results showed high abundances of HAI-related bacteria such as S. epidermidis, S. aureus, K. pneumoniae, A. baumannii complex, E. coli, E. faecalis, and P. aeruginosa in patients and hospital surfaces. Most abundant AMR genes detected throughout ICU and NICU were mecA, blaCTX-M-1 group, blaSHV-like, and blaKPC-like. We found that NICU environment and patients were more widely contaminated with pathogenic bacteria than ICU. Patient samples, despite the higher bacterial load, have lower bacterial diversity than environmental samples in both units. Finally, we also identified contamination hotspots in the hospital environment showing constant frequencies of bacterial and AMR contamination throughout the year. Whole genome sequencing (WGS), 16S rRNA oligotypes, and AMR identification allowed a high-resolution characterization of the hospital microbiome profile. | 2020 | 32492060 |
| 5267 | 18 | 0.9925 | Diversity and antibiotic resistance of cultivable bacteria in bulk tank milk from dairy farms in Shandong Province, China. INTRODUCTION: This study systematically analyzed bacterial diversity and antimicrobial resistance (AMR) profiles in bulk tank milk from five dairy farms (n = 30) in Shandong Province, China, to assess public health risks associated with microbial contamination and provide critical data for regional quality control and AMR risk assessment in dairy production systems. METHODS: Total bacterial counts were quantified, revealing significant inter-farm variation (P < 0.05) with a range of 3.94-6.68 log CFU/mL. Among 129 bacterial isolates, genus-level dominance and species prevalence were identified. Antimicrobial susceptibility testing (AST) against 10 agents was performed using integrated resistance criteria combining Clinical and Laboratory Standards Institute (CLSI) standards and epidemiological cutoff values (ECOFFs). Nine resistance genes targeting seven antibiotic classes were detected via PCR. RESULTS: The highest resistance rate was observed for sulfadiazine (53.2%) and the lowest for levofloxacin (6.0%). Multidrug resistance was detected in 23% (20/87) of isolates, with 14 strains meeting ECOFFs-based resistance criteria. PCR analysis showed sul1 (70.5%) and ant(4')-Ia (54.3%) as the most prevalent resistance genes, while mcr-1, lnu (B), and bla (NDM-1) were absent in all isolates. Regional resistance variations correlated significantly with farm management practices. DISCUSSION: These findings underscore the impact of historical antibiotic use on AMR dissemination. Enhanced AMR surveillance in raw milk, improved antibiotic stewardship, and targeted interventions are crucial to mitigate public health risks from microbial contamination and horizontal gene transfer of resistance determinants. | 2025 | 40771950 |
| 2248 | 19 | 0.9925 | Predictive Application Value of Metagenomic Next-Generation Sequencing in the Resistance of Carbapenem-Resistant Enterobacteriaceae. Objective: Although metagenomic next-generation sequencing (mNGS) technology has achieved notable outcomes in pathogen detection, there remains a gap in the research regarding its application in predicting the antibiotic resistance of pathogenic bacteria. This study aims to analyze the clinical application value of mNGS in predicting the resistance of carbapenem-resistant Enterobacteriaceae (CRE), as well as the relevant influencing factors, thereby providing valuable insights for clinical antimicrobial therapy. Methods: Nonduplicate isolates of Enterobacterales bacteria collected from Liaocheng People's Hospital from April 2023 to June 2024 were selected, and CRE bacteria were screened. mNGS was used to detect resistance genes, and the results were compared with those of polymerase chain reaction (PCR) to evaluate the specificity and sensitivity of gene detection. Furthermore, the performance of mNGS in identifying pathogenic microorganisms and predicting antibiotic resistance was assessed by comparing the sequencing results with those of antimicrobial susceptibility testing (AST). Results: A total of 46 isolates were confirmed as CRE through traditional AST and were further identified using the Vitek MS and Vitek 2 systems. The results indicated 27 isolates of Klebsiella pneumoniae, 14 isolates of Escherichia coli, 2 isolates of Enterobacter hormaechei, 2 isolates of Enterobacter cloacae, and 1 isolate of Citrobacter freundii. These isolates were subjected to both mNGS and PCR for detection. The calculation of the area under the receiver operating characteristic (ROC) curve demonstrated the reliability of mNGS in detecting resistance genes. Conclusion: mNGS demonstrated high sensitivity in predicting the presence of carbapenemase resistance genes in CRE, showing potential in early indication of isolate resistance information, thereby facilitating timely guidance for clinical treatment strategies. | 2025 | 39816186 |