GALLINAE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
260800.8656The investigation of bacteria in the oral of Trichomonas gallinae infected pigeons and the antibiotic resistance analysis of Klebsiella pneumoniae clinical isolates from farm pigeons in Shandong Province of China. While the global dissemination of extended-spectrum β-lactamases (ESBLs) in clinical isolates from various animals is well-documented, research on Klebsiella pneumoniae in Trichomonas gallinae-infected pigeons, particularly concerning antibiotic resistance genes in China, remains limited. This study aimed to investigate the relationship between oral harmful microbiota in pigeons and T. gallinae infection, as well as to isolate K. pneumoniae from the oral cavities of infected pigeons. Furthermore, we assessed the resistance profiles of K. pneumoniae isolates against quinolones, tetracyclines, and aminoglycosides, and identified the carriers of related resistance genes, including bla genes encoding SHV, TEM, and CTX-M-9 ESBLs.Our results revealed that approximately 30% of pigeons from Laiwu City and Tai'an City in Shandong Province were infected with T. gallinae. Notably, the species diversity and abundance of oral bacteria were significantly higher in infected pigeons compared to their uninfected counterparts, indicating a positive correlation between T. gallinae infection and oral microbial alterations. Among the 14 bacterial species isolated from oral samples of infected pigeons, seven were identified as K. pneumoniae isolates. The majority of these isolates exhibited multidrug resistance to ampicillin, ceftazidime, cefotaxime, and aminoglycosides. PCR analysis confirmed the presence of TEM, SHV, and CTX-M-9 genes in all seven K. pneumoniae isolates. The predominant plasmid-mediated resistance genes included qnrB (for quinolones), tetA (for tetracyclines), and aac(6')-Ⅰb (for aminoglycosides). These findings provide a overview of antibiotic susceptibility patterns and the emergence of resistance genes in K. pneumoniae isolates from farm pigeons in Shandong, China. They underscore the widespread multidrug resistance in these isolates and highlight the potential risk of antibiotic resistance transmission between animals and humans.202540915084
138610.8639ESBL/pAmpC-producing Enterobacterales in common leopard geckos (Eublepharis macularius) and central bearded dragons (Pogona vitticeps) from Portugal. Common leopard geckos (Eublepharis macularius) and central bearded dragon (Pogona vitticeps) are widely kept as pets but can harbor pathogenic bacteria, including antimicrobial-resistant (AMR) bacteria. This study aimed to research the frequency of β-lactamase-producing Enterobacterales in these two reptile species. A total of 132 samples were collected from the oral and cloacal cavities of healthy common leopard geckos and central bearded dragons in the Lisbon area, Portugal. Antimicrobial resistance was assessed for third-generation cephalosporin (3GC)-resistant Enterobacterales. The results revealed that 3GC-resistant Enterobacterales were observed in 17.9% (n = 14/78) of the reptiles. The most commonly identified species were: Citrobacter freundii and Klebsiella aerogenes. Furthermore, some isolates produced extended-spectrum β-lactamases (ESBLs) and AmpC β-lactamases (AmpC) encoding genes such as bla (CMY-2), bla (CTX-M-15,) and bla (TEM-1). These findings emphasize the potential role of these reptiles in the spread of AMR bacteria, particularly in urban settings where human- animal interactions are frequent. Given the zoonotic risks, this study emphasizes the importance of continued surveillance and responsible antimicrobial use in both veterinary and human medicine to mitigate the spread of AMR bacteria.202540370835
122120.8621Invasive whistling frogs (Eleutherodactylus johnstonei) act as a reservoir for antimicrobial-resistant Enterobacteriaceae in Latin America's most populous city. Invasive species represent a significant threat to ecological balance and the maintenance of native populations. Besides, these have been associated with the emergence of pathogens of public health importance, including multidrug-resistant bacteria. This study aimed to screen and describe the antimicrobial resistance profile of clinically important Enterobacteriaceae species isolated from whistling frogs (Eleutherodactylus johnstonei), an invasive anuran species in São Paulo, Brazil. Clinically relevant Enterobacteriaceae strains (n = 35) were isolated from oral and skin swabs of 19 whistling frogs and tested for antimicrobial susceptibility and antimicrobial resistance encoding genes. Resistance to amoxicillin + clavulanate and cefoxitin were the most frequent (16.67%; 4/24), followed by cefotaxime (5.71%; 2/35), ceftriaxone (2.86%; 1/35), and tetracycline (2.86%; 1/35). Among the antimicrobial resistance genes screened, bla(CTX-M group 8), bla(TEM), and bla(CMY) were identified. The whole genome of the bla(CTX-M group 8)-positive E. coli strain was assessed and confirmed bla(CTX-M-8) presence and phylogenetic analysis. Given the synanthropic behavior of whistling frogs, these amphibians may act as carriers of antimicrobial-resistant bacteria.202540884707
141330.8617Occurrence of Carbapenemases, Extended-Spectrum Beta-Lactamases and AmpCs among Beta-Lactamase-Producing Gram-Negative Bacteria from Clinical Sources in Accra, Ghana. Beta-lactamase (β-lactamase)-producing Gram-negative bacteria (GNB) are of public health concern due to their resistance to routine antimicrobials. We investigated the antimicrobial resistance and occurrence of carbapenemases, extended-spectrum β-lactamases (ESBLs) and AmpCs among GNB from clinical sources. GNB were identified using matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDITOF-MS). Antimicrobial susceptibility testing was performed via Kirby-Bauer disk diffusion and a microscan autoSCAN system. β-lactamase genes were determined via multiplex polymerase chain reactions. Of the 181 archived GNB analyzed, Escherichia coli and Klebsiella pneumoniae constituted 46% (n = 83) and 17% (n = 30), respectively. Resistance to ampicillin (51%), third-generation cephalosporins (21%), and ertapenem (21%) was observed among the isolates, with 44% being multi-drug resistant (MDR). β-lactamase genes such as AmpCs ((bla(FOX-M) (64%) and bla(DHA-M) and bla(EDC-M) (27%)), ESBLs ((bla(CTX-M) (81%), other β-lactamase genes bla(TEM) (73%) and bla(SHV) (27%)) and carbapenemase ((bla(OXA-)(48) (60%) and bla(NDM) and bla(KPC) (40%)) were also detected. One K. pneumoniae co-harbored AmpC (bla(FOX-M) and bla(EBC-M)) and carbapenemase (bla(KPC) and bla(OXA-)(48)) genes. bla(OXA-)(48) gene was detected in one carbapenem-resistant Acinetobacter baumannii. Overall, isolates were resistant to a wide range of antimicrobials including last-line treatment options. This underpins the need for continuous surveillance for effective management of infections caused by these pathogens in our settings.202337370334
122240.8617Molecular Characterization and the Antimicrobial Resistance Profile of Salmonella spp. Isolated from Ready-to-Eat Foods in Ouagadougou, Burkina Faso. The emergence of antimicrobial-resistantfood-borne bacteria is a great challenge to public health. This study was conducted to characterize and determine the resistance profile of Salmonella strains isolated from foods including sesames, ready-to-eat (RTE) salads, mango juices, and lettuce in Burkina Faso. One hundred and forty-eight biochemically identified Salmonella isolates were characterized by molecular amplification of Salmonella marker invA and spiC, misL, orfL, and pipD virulence genes. After that, all confirmed strains were examined for susceptibility to sixteen antimicrobials, and PCR amplifications were used to identify the following resistance genes: bla (TEM), temA, temB, StrA, aadA, sul1, sul2, tet(A), and tet(B). One hundred and eight isolates were genetically confirmed as Salmonella spp. Virulence genes were observed in 57.4%, 55.6%, 49.1%, and 38% isolates for pipD, SpiC, misL, and orfL, respectively. Isolates have shown moderate resistance to gentamycin (26.8%), ampicillin (22.2%), cefoxitin (19.4%), and nalidixic acid (18.5%). All isolates were sensitive to six antibiotics, including cefotaxime, ceftazidime, aztreonam, imipenem, meropenem, and ciprofloxacin. Among the 66 isolates resistant to at least one antibiotic, 11 (16.7%) were multidrug resistant. The Multiple Antimicrobial Resistance (MAR) index of Salmonella serovars ranged from 0.06 to 0.53. PCR detected 7 resistance genes (tet(A), tet(B), bla (TEM), temB, sul1, sul2, and aadA) in drug-resistant isolates. These findings raise serious concerns because ready-to-eat food in Burkina Faso could serve as a reservoir for spreading antimicrobial resistance genes worldwide.202236406904
116750.8616Investigating the virulence-associated genes and antimicrobial resistance of Escherichia fergusonii Isolated from diseased ostrich chicks. This study investigates the presence of virulence-associated genes and antimicrobial resistance (AMR) in Escherichia fergusonii isolates obtained from ostrich chicks. A total of 287 isolates were recovered from 106 fecal samples from ostrich chicks suffering from diarrhea and subjected to molecular identification and biochemical characterization. E. fergusonii was detected in 10 samples (9.4 %) using two PCR-detection protocols. Notably, the isolates lacked various virulence genes commonly associated with pathogenic E. coli including elt, est, stx, eae, ehly, cdt, iss, iutA, iroN, hlyA, ompT, except for one isolate harboring the astA gene. Antimicrobial susceptibility testing revealed that all isolates were susceptible to ciprofloxacin, while high resistance was observed against amoxicillin clavulanate (AMC), trimethoprim-sulfamethoxazole (SXT), and doxycycline (D). Moreover, eight isolates displayed multidrug resistance (MDR) and four exhibited resistance to 9-11 antimicrobials. The most frequent resistance gene was sul2, which was present in all isolates; the other resistance genes detected consisted of int1 (4/10), int2 (3/10), bla(CMY) (2/10), and qnrS, bla(TEM), bla(CMY), bla(CTX-M), and flo each were detected only in one E. fergusonii Isolate. Plasmid replicon typing identified the presence of I1 (7/10), N (5/10), and Y (1/10). This study provides valuable insights into the virulence and antimicrobial resistance of E. fergusonii isolates from ostrich chicks, highlighting the complexity of antimicrobial resistance mechanisms exhibited by these bacteria. Further research is essential to understand the transmission dynamics and clinical implications of these findings in veterinary and public health settings.202439168034
116860.8615Dairy Cattle and the Iconic Autochthonous Cattle in Northern Portugal Are Reservoirs of Multidrug-Resistant Escherichia coli. Background/Objectives: Animals destined for human consumption play a key role in potentially transmitting bacteria carrying antibiotic resistance genes. However, there is limited knowledge about the carriage of antibiotic-resistant bacteria in native breeds. We aimed to characterize the phenotypic profiles and antibiotic resistance genes in Escherichia coli isolated from bovines, including three native Portuguese bovine breeds. Methods: Forty-nine E. coli isolates were selected from 640 fecal samples pooled by age group (eight adult or eight calf samples) from each farm, representing both dairy cattle raised in intensive systems and meat cattle raised in extensive systems in Northern Portugal. The presumptive E. coli colonies plated onto MacConkey agar were confirmed using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). The antibiotic resistance profiles were screened by antimicrobial susceptibility testing (EUCAST/CLSI guidelines), and the antibiotic resistance genes by PCR. Results: Most isolates showed resistance to ampicillin (69%), tetracycline (57%), gentamicin (55%), and trimethoprim + sulfamethoxazole (53%), with no resistance to imipenem. Resistance to at least one antibiotic was found in 92% of isolates, while 59% exhibited multidrug resistance. Most calf isolates, including those from native breeds, showed a multidrug-resistant phenotype. Among the adults, this was only observed in Holstein-Friesian and Barrosã cattle. None of the Holstein-Friesian isolates were susceptible to all the tested antibiotics. ESBL-producing E. coli was identified in 39% of isolates, including those from Holstein-Friesian calves and adults, Cachena calves and Minhota adults. The sul2 gene was detected in 69% of isolates, followed by bla(CTX-M) (45%), aac(3')-IV (41%), and aac(6')-Ib-cr (31%), with a higher prevalence in adults. Conclusions: This pioneering study highlights the concerning presence of multidrug-resistant E. coli in native Portuguese cattle breeds.202439766598
138270.8613Surveillance of antimicrobial-resistant Escherichia coli in Sheltered dogs in the Kanto Region of Japan. There is a lack of an established antimicrobial resistance (AMR) surveillance system in animal welfare centers. Therefore, the AMR prevalence in shelter dogs is rarely known. Herein, we conducted a survey in animal shelters in Chiba and Kanagawa prefectures, in the Kanto Region, Japan, to ascertain the AMR status of Escherichia coli  (E. coli) prevalent in shelter dogs. E. coli was detected in the fecal samples of all 61 and 77 shelter dogs tested in Chiba and Kanagawa, respectively. The AMR was tested against 20 antibiotics. E. coli isolates derived from 16.4% and 26.0% of samples from Chiba and Kanagawa exhibited resistance to at least one antibiotic, respectively. E. coli in samples from Chiba and Kanagawa prefectures were commonly resistant to ampicillin, piperacillin, streptomycin, kanamycin, tetracycline, and nalidixic acid; that from the Kanagawa Prefecture to cefazolin, cefotaxime, aztreonam, ciprofloxacin, and levofloxacin and that from Chiba Prefecture to chloramphenicol and imipenem. Multidrug-resistant bacteria were detected in 18 dogs from both regions; β-lactamase genes (blaTEM, blaDHA-1, blaCTX-M-9 group CTX-M-14), quinolone-resistance protein genes (qnrB and qnrS), and mutations in quinolone-resistance-determining regions (gyrA and parC) were detected. These results could partially represent the AMR data in shelter dogs in the Kanto Region of Japan.202235031646
95880.8612Whole-Genome Analysis of Multidrug-Resistant Klebsiella pneumoniae Kp04 Reveals Distinctive Antimicrobial and Arsenic-Resistance Genomic Features: A Case Study from Bangladesh. Multidrug-resistant bacteria, particularly extended-spectrum-beta-lactamase-producing (ESBL) bacteria, pose a significant global public health challenge. Klebsiella pneumoniae (KPN) is frequently implicated in cases of this resistance. This study aimed to investigate the presence of drug and metal resistance genes in clinical K. pneumoniae isolate Kp04 and comparative genomics of clinical KPN isolates characterized from Bangladesh. A total of 12 isolates were collected. Disk-diffusion assay showed that all five isolates were resistant to 14 out of 21 tested antibiotics and sensitive to only three-tigecycline, imipenem, and meropenem. KPN Kp04 was positive for both bla(SHV) and bla(CTX-M) ESBL genes in PCR. All five isolates produced PCR amplicons of the correct size for ampicillin (ampC), tetracycline (tetC), fluoroquinolone (qnrS), and aminoglycoside (aadA) resistance genes. The whole genome of Kp04 was sequenced using the MiSeq Platform (V3 kit, 2 × 300 cycles). We utilized different databases to detect Antibiotic-Resistant Genes (ARGs), virulence factor genes (VFGs), and genomic functional features of the Kp04 strain. Whole-genome sequencing identified 75 ESBL, virulence, and multiple drug-resistant (MDR) genes including bla(SHV), tetA, oqxA, oqxB, aadA, sul1-5, and mphA in KPN Kp04 isolate. Pan-genomic analysis of 43 Bangladeshi KPN isolates showed similarities between Dhaka and Chattogram isolates regarding virulence and antibiotic-resistant genes. Our results indicate the transmission of similar virulent KPN strains in Dhaka and Chattogram. This study would provide valuable information about drug sensitivity, antibiotic, and metal resistance features of K. pneumoniae circulated among hospitalized patients in Bangladeshi megacities.202439613891
138990.8611Whole-Genome Sequencing of Gram-Negative Bacteria Isolated From Bovine Mastitis and Raw Milk: The First Emergence of Colistin mcr-10 and Fosfomycin fosA5 Resistance Genes in Klebsiella pneumoniae in Middle East. Antimicrobial resistance is a major concern in the dairy industry. This study investigated the prevalence, antimicrobial resistance phenotypes, and genome sequencing of Gram-negative bacteria isolated from clinical (n = 350) and subclinical (n = 95) bovine mastitis, and raw unpasteurized milk (n = 125). Klebsiella pneumoniae, Aeromonas hydrophila, Enterobacter cloacae (100% each), Escherichia coli (87.78%), and Proteus mirabilis (69.7%) were the most prevalent multidrug-resistant (MDR) species. Extensive drug-resistance (XDR) phenotype was found in P. mirabilis (30.30%) and E. coli (3.33%) isolates. Ten isolates (four E. coli, three Klebsiella species and three P. mirabilis) that displayed the highest multiple antibiotic resistance (MAR) indices (0.54-0.83), were exposed to whole-genome sequencing (WGS). Two multilocus sequence types (MLST): ST2165 and ST7624 were identified among the sequenced E. coli isolates. Three E. coli isolates (two from clinical mastitis and one from raw milk) belonging to ST2165 showed similar profile of plasmid replicon types: IncFIA, IncFIB, IncFII, and IncQ1 with an exception to an isolate that contained IncR, whereas E. coli ST7624 showed a different plasmid profile including IncHI2, IncHI2A, IncI1α, and IncFII replicon types. ResFinder findings revealed the presence of plasmid-mediated colistin mcr-10 and fosfomycin fosA5 resistance genes in a K. pneumoniae (K1) isolate from bovine milk. Sequence analysis of the reconstructed mcr-10 plasmid from WGS of K1 isolate, showed that mcr-10 gene was bracketed by xerC and insertion sequence IS26 on an IncFIB plasmid. Phylogenetic analysis revealed that K1 isolate existed in a clade including mcr-10-harboring isolates from human and environment with different STs and countries [United Kingdom (ST788), Australia (ST323), Malawi (ST2144), Myanmar (ST705), and Laos (ST2355)]. This study reports the first emergence of K. pneumoniae co-harboring mcr-10 and fosA5 genes from bovine milk in the Middle East, which constitutes a public health threat and heralds the penetration of the last-resort antibiotics. Hence, prudent use of antibiotics in both humans and animals and antimicrobial surveillance plans are urgently required.202134956131
1992100.8609Antimicrobial Resistance Genes, Cassettes, and Plasmids Present in Salmonella enterica Associated With United States Food Animals. The ability of antimicrobial resistance (AR) to transfer, on mobile genetic elements (MGEs) between bacteria, can cause the rapid establishment of multidrug resistance (MDR) in bacteria from animals, thus creating a foodborne risk to human health. To investigate MDR and its association with plasmids in Salmonella enterica, whole genome sequence (WGS) analysis was performed on 193 S. enterica isolated from sources associated with United States food animals between 1998 and 2011; 119 were resistant to at least one antibiotic tested. Isolates represented 86 serotypes and variants, as well as diverse phenotypic resistance profiles. A total of 923 AR genes and 212 plasmids were identified among the 193 strains. Every isolate contained at least one AR gene. At least one plasmid was detected in 157 isolates. Genes were identified for resistance to aminoglycosides (n = 472), β-lactams (n = 84), tetracyclines (n = 171), sulfonamides (n = 91), phenicols (n = 42), trimethoprim (n = 8), macrolides (n = 5), fosfomycin (n = 48), and rifampicin (n = 2). Plasmid replicon types detected in the isolates were A/C (n = 32), ColE (n = 76), F (n = 43), HI1 (n = 4), HI2 (n = 20), I1 (n = 62), N (n = 4), Q (n = 7), and X (n = 35). Phenotypic resistance correlated with the AR genes identified in 95.4% of cases. Most AR genes were located on plasmids, with many plasmids harboring multiple AR genes. Six antibiotic resistance cassette structures (ARCs) and one pseudo-cassette were identified. ARCs contained between one and five resistance genes (ARC1: sul2, strAB, tetAR; ARC2: aac3-iid; ARC3: aph, sph; ARC4: cmy-2; ARC5: floR; ARC6: tetB; pseudo-ARC: aadA, aac3-VIa, sul1). These ARCs were present in multiple isolates and on plasmids of multiple replicon types. To determine the current distribution and frequency of these ARCs, the public NCBI database was analyzed, including WGS data on isolates collected by the USDA Food Safety and Inspection Service (FSIS) from 2014 to 2018. ARC1, ARC4, and ARC5 were significantly associated with cattle isolates, while ARC6 was significantly associated with chicken isolates. This study revealed that a diverse group of plasmids, carrying AR genes, are responsible for the phenotypic resistance seen in Salmonella isolated from United States food animals. It was also determined that many plasmids carry similar ARCs.201931057528
1388110.8604Snapshot Study of Whole Genome Sequences of Escherichia coli from Healthy Companion Animals, Livestock, Wildlife, Humans and Food in Italy. Animals, humans and food are all interconnected sources of antimicrobial resistance (AMR), allowing extensive and rapid exchange of AMR bacteria and genes. Whole genome sequencing (WGS) was used to characterize 279 Escherichia coli isolates obtained from animals (livestock, companion animals, wildlife), food and humans in Italy. E. coli predominantly belonged to commensal phylogroups B1 (46.6%) and A (29%) using the original Clermont criteria. One hundred and thirty-six sequence types (STs) were observed, including different pandemic (ST69, ST95, ST131) and emerging (ST10, ST23, ST58, ST117, ST405, ST648) extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Eight antimicrobial resistance genes (ARGs) and five chromosomal mutations conferring resistance to highest priority critically important antimicrobials (HP-CIAs) were identified (qnrS1, qnrB19, mcr-1, bla(CTX-M1,15,55), bla(CMY-2), gyrA/parC/parE, ampC and pmrB). Twenty-two class 1 integron arrangements in 34 strains were characterized and 11 ARGs were designated as intI1 related gene cassettes (aadA1, aadA2, aadA5, aad23, ant2_Ia, dfrA1, dfrA7, dfrA14, dfrA12, dfrA17, cmlA1). Notably, most intI1 positive strains belonged to rabbit (38%) and poultry (24%) sources. Three rabbit samples carried the mcr-1 colistin resistance gene in association with IS6 family insertion elements. Poultry meat harbored some of the most prominent ExPEC STs, including ST131, ST69, ST10, ST23, and ST117. Wildlife showed a high average number of virulence-associated genes (VAGs) (mean = 10), mostly associated with an ExPEC pathotype and some predominant ExPEC lineages (ST23, ST117, ST648) were identified.202033172096
1383120.8604Detection of Tetracycline Resistance Genes in European Hedgehogs (Erinaceus europaeus) and Crested Porcupines (Hystrix cristata). Relatively little is known regarding the role of wildlife in the development of antibiotic resistance. Our aim was to assess the presence of the tetracycline resistance genes, tet(A), tet(B), tet(C), tet(D), tet(E), tet(G), tet(K), tet(L), tet(M), tet(O), tet(P), tet(Q), tet(S), and tet(X), in tissue samples of 14 hedgehogs (Erinaceus europaeus) and 15 crested porcupines (Hystrix cristata) using PCR assays. One or more tet genes were found in all but three hedgehogs and one crested porcupine. Of the 14 tetracycline resistance genes investigated, 13 were found in at least one sample; tet(G) was not detected. We confirmed the potential role of wild animals as bioindicators, reservoirs, or vectors of antibiotic-resistant bacteria in the environment.202031526277
1993130.8604Co-occurrence of antibiotic and disinfectant resistance genes in extensively drug-resistant Escherichia coli isolated from broilers in Ilorin, North Central Nigeria. OBJECTIVES: The occurrence of multidrug-resistant (MDR) bacteria in poultry poses the public health threat of zoonotic transmission to humans. Hence, this study assessed the occurrence of drug-resistant Escherichia coli in broilers in the largest live bird market in Kwara State, Nigeria in December 2020. METHODS: Presumptive E. coli isolates were isolated using the European Union Reference Laboratory guideline of 2017 and confirmed via matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). Broth microdilution was performed on confirmed E. coli isolates to determine the minimum inhibitory concentration. Five extensively drug-resistant (XDR) isolates were selected for Illumina whole genome sequencing to predict the resistome, phylotype, sequence type, serotype, and diversity of mobile genetic elements in these isolates. RESULTS: Of the 181 broiler caecal samples, 73 E. coli isolates were obtained, of which 67 (82.0%) and 37 (50.6%) were determined as MDR (resistant to at least three classes of antibiotics) and XDR (resistant to at least five classes of antibiotics), respectively. Whole genome sequencing revealed diverse sequence types, phylogroups, and serotypes (ST165/B1 - O80:H19, ST115/A - Unknown: H7, ST901/B1 - O109:H4, ST4087/F - O117:H42, and ST8324/A - O127:H42). The XDR E. coli isolates encoded resistance to fluoroquinolones, fosfomycin, sulfamethoxazole, ampicillin and cephalosporins, trimethoprim, aminoglycosides, chloramphenicol, tetracycline, and macrolides. Mutations in the gyrA gene conferring resistance to fluoroquinolones were also detected. There was a positive correlation between phenotypic resistance patterns and the antibiotic resistance genes that were detected in the sequenced isolates. The XDR isolates also harbored two disinfectant resistance genes (qacE and sitABCD) that conferred resistance to hydrogen peroxide and quaternary ammonium compounds, respectively. The genome of the XDR isolates harbored several mobile genetic elements and virulence-associated genes, which were conserved in all sequenced XDR isolates. CONCLUSIONS: This is the first report of co-carriage of antibiotic resistance genes and disinfectant resistance genes in E. coli isolated from broilers in Ilorin, Nigeria. Our findings suggest that poultry are potential carriers of clonally diverse, pathogenic, MDR/XDR E. coli, which may have detrimental zoonotic potentials on human health.202236375754
2464140.8603Characterization of antimicrobial resistant Empedobacter from fresh meat and meat preparations. Empedobacter has been identified as an opportunistic pathogen that frequently exhibits resistance to multiple antibiotics, including some of those known as of last-resort. This study describes the phenotypic and genotypic characterization of carbapenem-resistant Empedobacter isolates obtained from retail fresh meat and meat preparations. The antimicrobial susceptibility of 62 isolates to 15 common antibiotics was assessed using the broth microdilution method. Additionally, whole genome sequencing (WGS) was performed on 24 of these isolates to determine their taxonomic classification and to identify antimicrobial resistance genes (ARGs), as well as their chromosomal or plasmid-borne location. Resistance to meropenem, ciprofloxacin, amikacin, gentamicin, chloramphenicol, tetracycline, and/or colistin was frequently detected, with 61.3 % of the Empedobacter strains being classified as multi-drug resistant (MDR) despite the absence of breakpoints for some of the antibiotics tested. WGS revealed the presence of bla (EBR-1) genes in all Empedobacter falsenii isolates and the single Empedobacter tilapiae isolate, of a chromosomic ere(D) gene in one E. falsenii isolate, and of tet(X2) genes in eight E. falsenii isolates, seven of them harboured in plasmids. These findings underscore the need for further research to determine the role of neglected non-ESKAPE bacteria, such as Empedobacter, in the spread of antimicrobial resistance in meat production systems.202541080801
1387150.8603Whole-Genome Characterisation of ESBL-Producing E. coli Isolated from Drinking Water and Dog Faeces from Rural Andean Households in Peru. E. coli that produce extended-spectrum β-lactamases (ESBLs) are major multidrug-resistant bacteria. In Peru, only a few reports have characterised the whole genome of ESBL enterobacteria. We aimed to confirm the identity and antimicrobial resistance (AMR) profile of two ESBL isolates from dog faeces and drinking water of rural Andean households and determine serotype, phylogroup, sequence type (ST)/clonal complex (CC), pathogenicity, virulence genes, ESBL genes, and their plasmids. To confirm the identity and AMR profiles, we used the VITEK(®)2 system. Whole-genome sequencing (WGS) and bioinformatics analysis were performed subsequently. Both isolates were identified as E. coli, with serotypes -:H46 and O9:H10, phylogroups E and A, and ST/CC 5259/- and 227/10, respectively. The isolates were ESBL-producing, carbapenem-resistant, and not harbouring carbapenemase-encoding genes. Isolate 1143 ST5259 harboured the astA gene, encoding the EAST(1) heat-stable toxin. Both genomes carried ESBL genes (bla(EC-15), bla(CTX-M-8), and bla(CTX-M-55)). Nine plasmids were detected, namely IncR, IncFIC(FII), IncI, IncFIB(AP001918), Col(pHAD28), IncFII, IncFII(pHN7A8), IncI1, and IncFIB(AP001918). Finding these potentially pathogenic bacteria is worrisome given their sources and highlights the importance of One-Health research efforts in remote Andean communities.202235625336
2374160.8602Phenotypic and genetic antimicrobial resistance of the intestinal microbiota isolated from two alpacas (Vicugna pacos) post mortem. INTRODUCTION: In Poland, alpacas are commonly companion animals and producers of wool. Human-alpaca-environment interactions raise One Health concerns about antimicrobial resistance (AMR). No medications are licensed in Poland for camelids, and so all are prescribed under the cascade; they include β-lactams, cephalosporin, florfenicol, enrofloxacin, marbofloxacin, gentamicin, tetracycline and trimethoprim/sulfamethoxazole. Human and animal bacterial AMR is a matter of global concern. Consequently, the aim of the present study was to determine the prevalence of phenotypic and genotypic AMR among bacteria isolated from alpaca intestines. MATERIAL AND METHODS: Fifty-four strains were identified using matrix-assisted laser desorption/ionisation-time-of-flight mass spectrometry and biochemical methods. Antibacterial susceptibility was assessed by determining minimum inhibitory concentrations and by the Kirby-Bauer method. RESULTS: Citrobacter spp., Enterobacter spp. and Serratia spp. exhibited resistance to β-lactams, first-generation cephalosporins and tetracyclines, with Serratia spp. also resistant to colistin, polymyxin B and florfenicol. Enterococcus spp. were resistant to penicillin G, benzylpenicillin and erythromycin, but not to vancomycin, while Staphylococcus spp. showed resistance to amoxicillin and penicillins, but not to methicillin. Bacillus spp. and Corynebacterium spp. were resistant to some penicillins, tetracyclines and trimethoprim-sulfamethoxazole. Enterobacteriaceae isolates carried resistance genes (aadA, dfrA1, tetA, sul1, sul2, strA/strB and floR); therefore, the tested alpacas' microbiomes harboured AMR determinants. CONCLUSION: Alpacas should be monitored over an extended period to know the risk of transmission of AMR genes from components of their microbiome.202541064399
1190170.8601Co-occurrence of mcr-1, mcr-3, mcr-7 and clinically relevant antimicrobial resistance genes in environmental and fecal samples. Multidrug-resistant bacteria harboring different antimicrobial resistance genes (ARGs) have been detected worldwide. The association of plasmid-mediated colistin resistance genes (mcr-like) and other ARGs in bacteria isolated from animals is a huge concern worldwide. Therefore, this study aimed to investigate the presence of mcr-like genes and clinically relevant ARGs as well as plasmids in samples from a zoo. Fecal and environmental (soil and water) samples were collected from a zoo and the DNA of cultivable aerobic bacteria was extracted. ARGs were screened by PCR and the plasmids were detected using the PCR-based replicon typing method. A total of 74 amplicons from 27 ARGs [mcr-1, mcr-3, mcr-7.1, bla(CTX-M-Gp1), bla(CTX-M-Gp2), bla(CTX-M-Gp9), bla(VEB), bla(PER), bla(CMY), tetA, tetB, tetC, aadA, aac(6')-Ib, aph(3')-Ia, ant(2'')-Ia, qnrA, qnrB, qnrS, oqxA, oqxB, sul1, sul2, sul3, cmlA, mefAE, ermB] and 21 amplicons from eight plasmid families (IncY, ColE-like, IncF(repB), IncFIA, IncFIB, IncHI1, IncFIC, IncP) were detected. These findings reinforce that the zoo acts as a reservoir of clinically relevant ARGs, including mcr-like, and call attention to the monitoring studies in the zoo. Therefore, to the best of our knowledge, this is the first report of the world of mcr-1, mcr-3 and mcr-7.1 in environmental samples from the zoo.202032382766
948180.8601Multidrug-Resistant Bacteria in Aquaculture Systems in Accra, Ghana. BACKGROUND: Antibiotic resistance (ABR) poses a critical global health challenge, necessitating its surveillance across both human and animal health sectors. This study evaluated ABR in bacteria harboured in reared inland fishes sold in Accra and the pond water from which they originated. METHOD: The study was cross-sectional, involving fishes and water sampled from 80 ponds. The gastrointestinal organs of the fishes were homogenised and cultured for bacteria, as were the water samples. The bacteria were identified using matrix-assisted laser desorption/ionisation time of flight mass spectrometry (MALDI-TOF-MS). Antimicrobial susceptibility test was done using the Kirby-Bauer method. Multidrug-resistant (MDR) bacteria were selected for further testing. The double disc diffusion method was used to detect extended-spectrum beta-lactamase (ESBL) production in isolates that were resistant to third-generation cephalosporins. Whole genome sequencing was performed on the ESBL-positive isolates using the Illumina Miseq platform. RESULTS: In total, 39 different bacterial species, with their individual numbers totalling 391, were isolated. The bacteria were predominantly Escherichia coli (17%), Aeromonas veronii (11%), Citrobacter freundii (8%), Bacillus cereus (5%), and Klebsiella pneumoniae (5%). The overall ABR rates were cefotaxime (32%), gentamicin (1%), ciprofloxacin (4%), chloramphenicol (19%), tetracycline (37%), meropenem (0%), and ertapenem (0%). Overall MDR and ESBL bacteria prevalence were 13.6% and 1.3%, respectively. The sequence types of the ESBL isolates were ST4684 (80%, n = 4) and ST2005 (20%, n = 1), and the serotypes were H34:09 (80%, n = 4) and H7 (20%, n = 1); the ABR genes were blaCTX-M-15, fosA7, and qnrS1. CONCLUSION: The fishes and the pond water were contaminated with a diverse range of bacteria, mainly Escherichia coli and Aeromonas veronii. The ABR, MDR, and ESBL rates were low to moderate. Moreover, the main sequence type and serotype of the ESBL isolates were ST4684 and H34:09, respectively, and the ABR genes were blaCTX-M-15, fosA7, and qnrS1.202439600552
2644190.8599Prevalence of Antimicrobial-Resistant Escherichia coli in Migratory Greater White-Fronted Geese (Anser albifrons) and their Habitat in Miyajimanuma, Japan. The spread of antimicrobial-resistant bacteria (ARB) in natural environments including wild animals is a concern for public health. Birds cover large areas, and some fly across borders to migrate in large flocks. As a migratory bird, the Greater White-fronted Goose (Anser albifrons) travels to Miyajimanuma, North Japan, each spring and autumn. To investigate the ARB in migratory birds and their surroundings, we collected 110 fecal samples of A. albifrons and 18 water samples from Miyajimanuma in spring and autumn of 2019. Isolation of Escherichia coli was performed using selective agars with or without antimicrobials (cefazolin and nalidixic acid). Isolates of E. coli were recovered from 56 fecal samples (50.9%) and five water samples (27.8%) on agars without antimicrobials. No isolates were recovered on agars with antimicrobials. One E. coli isolate derived from a fecal sample exhibited resistance to β-lactams (ampicillin and cefazolin), whereas all other isolates exhibited susceptibility to all tested antimicrobials. The resistant isolate harbored blaACC, which could be transferred to other bacteria and confer resistance to β-lactams. These results suggest a low prevalence of antimicrobial resistance in wild migratory birds and their living environments; however, wild migratory birds sometimes carry ARB harboring transferrable antimicrobial resistance genes and therefore present a risk of spreading antimicrobial resistance.202134410412