# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8198 | 0 | 0.9981 | New insights into how Yersinia pestis adapts to its mammalian host during bubonic plague. Bubonic plague (a fatal, flea-transmitted disease) remains an international public health concern. Although our understanding of the pathogenesis of bubonic plague has improved significantly over the last few decades, researchers have still not been able to define the complete set of Y. pestis genes needed for disease or to characterize the mechanisms that enable infection. Here, we generated a library of Y. pestis mutants, each lacking one or more of the genes previously identified as being up-regulated in vivo. We then screened the library for attenuated virulence in rodent models of bubonic plague. Importantly, we tested mutants both individually and using a novel, "per-pool" screening method that we have developed. Our data showed that in addition to genes involved in physiological adaptation and resistance to the stress generated by the host, several previously uncharacterized genes are required for virulence. One of these genes (ympt1.66c, which encodes a putative helicase) has been acquired by horizontal gene transfer. Deletion of ympt1.66c reduced Y. pestis' ability to spread to the lymph nodes draining the dermal inoculation site--probably because loss of this gene decreased the bacteria's ability to survive inside macrophages. Our results suggest that (i) intracellular survival during the early stage of infection is important for plague and (ii) horizontal gene transfer was crucial in the acquisition of this ability. | 2014 | 24675805 |
| 8291 | 1 | 0.9981 | Pseudomonas Can Survive Tailocin Killing via Persistence-Like and Heterogenous Resistance Mechanisms. Phage tail-like bacteriocins (tailocins) are bacterially produced protein toxins that mediate competitive interactions between cocolonizing bacteria. Both theoretical and experimental research has shown there are intransitive interactions between bacteriocin-producing, bacteriocin-sensitive, and bacteriocin-resistant populations, whereby producers outcompete sensitive cells, sensitive cells outcompete resistant cells, and resistant cells outcompete producers. These so-called rock-paper-scissors dynamics explain how all three populations occupy the same environment, without one driving the others extinct. Using Pseudomonas syringae as a model, we demonstrate that otherwise sensitive cells survive bacteriocin exposure through a physiological mechanism. This mechanism allows cells to survive bacteriocin killing without acquiring resistance. We show that a significant fraction of the target cells that survive a lethal dose of tailocin did not exhibit any detectable increase in survival during a subsequent exposure. Tailocin persister cells were more prevalent in stationary- rather than log-phase cultures. Of the fraction of cells that gained detectable resistance, there was a range from complete (insensitive) to incomplete (partially sensitive) resistance. By using genomic sequencing and genetic engineering, we showed that a mutation in a hypothetical gene containing 8 to 10 transmembrane domains causes tailocin high persistence and that genes of various glycosyltransferases cause incomplete and complete tailocin resistance. Importantly, of the several classes of mutations, only those causing complete tailocin resistance compromised host fitness. This result indicates that bacteria likely utilize persistence to survive bacteriocin-mediated killing without suffering the costs associated with resistance. This research provides important insight into how bacteria can escape the trap of fitness trade-offs associated with gaining de novo tailocin resistance.IMPORTANCE Bacteriocins are bacterially produced protein toxins that are proposed as antibiotic alternatives. However, a deeper understanding of the responses of target bacteria to bacteriocin exposure is lacking. Here, we show that target cells of Pseudomonas syringae survive lethal bacteriocin exposure through both physiological persistence and genetic resistance mechanisms. Cells that are not growing rapidly rely primarily on persistence, whereas those growing rapidly are more likely to survive via resistance. We identified various mutations in lipopolysaccharide biogenesis-related regions involved in tailocin persistence and resistance. By assessing host fitness of various classes of mutants, we showed that persistence and subtle resistance are mechanisms P. syringae uses to survive competition and preserve host fitness. These results have important implications for developing bacteriocins as alternative therapeutic agents. | 2020 | 32312747 |
| 697 | 2 | 0.9981 | Step-wise loss of bacterial flagellar torsion confers progressive phagocytic evasion. Phagocytosis of bacteria by innate immune cells is a primary method of bacterial clearance during infection. However, the mechanisms by which the host cell recognizes bacteria and consequentially initiates phagocytosis are largely unclear. Previous studies of the bacterium Pseudomonas aeruginosa have indicated that bacterial flagella and flagellar motility play an important role in colonization of the host and, importantly, that loss of flagellar motility enables phagocytic evasion. Here we use molecular, cellular, and genetic methods to provide the first formal evidence that phagocytic cells recognize bacterial motility rather than flagella and initiate phagocytosis in response to this motility. We demonstrate that deletion of genes coding for the flagellar stator complex, which results in non-swimming bacteria that retain an initial flagellar structure, confers resistance to phagocytic binding and ingestion in several species of the gamma proteobacterial group of Gram-negative bacteria, indicative of a shared strategy for phagocytic evasion. Furthermore, we show for the first time that susceptibility to phagocytosis in swimming bacteria is proportional to mot gene function and, consequently, flagellar rotation since complementary genetically- and biochemically-modulated incremental decreases in flagellar motility result in corresponding and proportional phagocytic evasion. These findings identify that phagocytic cells respond to flagellar movement, which represents a novel mechanism for non-opsonized phagocytic recognition of pathogenic bacteria. | 2011 | 21949654 |
| 9603 | 3 | 0.9981 | Resistance signatures manifested in early drug response across cancer types and species. Aim: Growing evidence points to non-genetic mechanisms underlying long-term resistance to cancer therapies. These mechanisms involve pre-existing or therapy-induced transcriptional cell states that confer resistance. However, the relationship between early transcriptional responses to treatment and the eventual emergence of resistant states remains poorly understood. Furthermore, it is unclear whether such early resistance-associated transcriptional responses are evolutionarily conserved. In this study, we examine the similarity between early transcriptional responses and long-term resistant states, assess their clinical relevance, and explore their evolutionary conservation across species. Methods: We integrated datasets on early drug responses and long-term resistance from multiple cancer cell lines, bacteria, and yeast to identify early transcriptional changes predictive of long-term resistance and assess their evolutionary conservation. Using genome-wide CRISPR-Cas9 knockout screens, we evaluated the impact of genes associated with resistant transcriptional states on drug sensitivity. Clinical datasets were analyzed to explore the prognostic value of the identified resistance-associated gene signatures. Results: We found that transcriptional states observed in drug-naive cells and shortly after treatment overlapped with those seen in fully resistant populations. Some of these shared features appear to be evolutionarily conserved. Knockout of genes marking resistant states sensitized ovarian cancer cells to Prexasertib. Moreover, early resistance gene signatures effectively distinguished therapy responders from non-responders in multiple clinical cancer trials and differentiated premalignant breast lesions that progressed to malignancy from those that remained benign. Conclusion: Early cellular transcriptional responses to therapy exhibit key similarities to fully resistant states across different drugs, cancer types, and species. Gene signatures defining these early resistance states have prognostic value in clinical settings. | 2025 | 41019980 |
| 9600 | 4 | 0.9981 | Novel "Superspreader" Bacteriophages Promote Horizontal Gene Transfer by Transformation. Bacteriophages infect an estimated 10(23) to 10(25) bacterial cells each second, many of which carry physiologically relevant plasmids (e.g., those encoding antibiotic resistance). However, even though phage-plasmid interactions occur on a massive scale and have potentially significant evolutionary, ecological, and biomedical implications, plasmid fate upon phage infection and lysis has not been investigated to date. Here we show that a subset of the natural lytic phage population, which we dub "superspreaders," releases substantial amounts of intact, transformable plasmid DNA upon lysis, thereby promoting horizontal gene transfer by transformation. Two novel Escherichia coli phage superspreaders, SUSP1 and SUSP2, liberated four evolutionarily distinct plasmids with equal efficiency, including two close relatives of prominent antibiotic resistance vectors in natural environments. SUSP2 also mediated the extensive lateral transfer of antibiotic resistance in unbiased communities of soil bacteria from Maryland and Wyoming. Furthermore, the addition of SUSP2 to cocultures of kanamycin-resistant E. coli and kanamycin-sensitive Bacillus sp. bacteria resulted in roughly 1,000-fold more kanamycin-resistant Bacillus sp. bacteria than arose in phage-free controls. Unlike many other lytic phages, neither SUSP1 nor SUSP2 encodes homologs to known hydrolytic endonucleases, suggesting a simple potential mechanism underlying the superspreading phenotype. Consistent with this model, the deletion of endonuclease IV and the nucleoid-disrupting protein ndd from coliphage T4, a phage known to extensively degrade chromosomal DNA, significantly increased its ability to promote plasmid transformation. Taken together, our results suggest that phage superspreaders may play key roles in microbial evolution and ecology but should be avoided in phage therapy and other medical applications. IMPORTANCE: Bacteriophages (phages), viruses that infect bacteria, are the planet's most numerous biological entities and kill vast numbers of bacteria in natural environments. Many of these bacteria carry plasmids, extrachromosomal DNA elements that frequently encode antibiotic resistance. However, it is largely unknown whether plasmids are destroyed during phage infection or released intact upon phage lysis, whereupon their encoded resistance could be acquired and manifested by other bacteria (transformation). Because phages are being developed to combat antibiotic-resistant bacteria and because transformation is a principal form of horizontal gene transfer, this question has important implications for biomedicine and microbial evolution alike. Here we report the isolation and characterization of two novel Escherichia coli phages, dubbed "superspreaders," that promote extensive plasmid transformation and efficiently disperse antibiotic resistance genes. Our work suggests that phage superspreaders are not suitable for use in medicine but may help drive bacterial evolution in natural environments. | 2017 | 28096488 |
| 8891 | 5 | 0.9980 | Analysis of Shigella flexneri Resistance, Biofilm Formation, and Transcriptional Profile in Response to Bile Salts. The Shigella species cause millions of cases of watery or bloody diarrhea each year, mostly in children in developing countries. While many aspects of Shigella colonic cell invasion are known, crucial gaps in knowledge regarding how the bacteria survive, transit, and regulate gene expression prior to infection remain. In this study, we define mechanisms of resistance to bile salts and build on previous research highlighting induced virulence in Shigella flexneri strain 2457T following exposure to bile salts. Typical growth patterns were observed within the physiological range of bile salts; however, growth was inhibited at higher concentrations. Interestingly, extended periods of exposure to bile salts led to biofilm formation, a conserved phenotype that we observed among members of the Enterobacteriaceae Characterization of S. flexneri 2457T biofilms determined that both bile salts and glucose were required for formation, dispersion was dependent upon bile salts depletion, and recovered bacteria displayed induced adherence to HT-29 cells. RNA-sequencing analysis verified an important bile salt transcriptional profile in S. flexneri 2457T, including induced drug resistance and virulence gene expression. Finally, functional mutagenesis identified the importance of the AcrAB efflux pump and lipopolysaccharide O-antigen synthesis for bile salt resistance. Our data demonstrate that S. flexneri 2457T employs multiple mechanisms to survive exposure to bile salts, which may have important implications for multidrug resistance. Furthermore, our work confirms that bile salts are important physiological signals to activate S. flexneri 2457T virulence. This work provides insights into how exposure to bile likely regulates Shigella survival and virulence during host transit and subsequent colonic infection. | 2017 | 28348056 |
| 8295 | 6 | 0.9980 | Calcium Prevents Biofilm Dispersion in Bacillus subtilis. Biofilm dispersion is the final stage of biofilm development, during which biofilm cells actively escape from biofilms in response to deteriorating conditions within the biofilm. Biofilm dispersion allows cells to spread to new locations and form new biofilms in better locations. However, dispersal mechanisms have been elucidated only in a limited number of bacteria. Here, we investigated biofilm dispersion in Bacillus subtilis. Biofilm dispersion was clearly observed when B. subtilis was grown under static conditions in modified LB medium containing glycerol and manganese. Biofilm dispersion was synergistically caused by two mechanisms: decreased expression of the epsA operon encoding exopolysaccharide synthetases and the induction of sporulation. Indeed, constitutive expression of the epsA operon in the sporulation-defective ΔsigK mutant prevented biofilm dispersion. The addition of calcium to the medium prevented biofilm dispersion without significantly affecting the expression of the epsA operon and sporulation genes. In synthetic medium, eliminating calcium did not prevent the expression of biofilm matrix genes and, thereby, biofilm formation, but it attenuated biofilm architecture. These results indicate that calcium structurally stabilizes biofilms and causes resistance to biofilm dispersion mechanisms. Sporulation-dependent biofilm dispersion required the spoVF operon, encoding dipicolinic acid (DPA) synthase. During sporulation, an enormous amount of DPA is synthesized and stored in spores as a chelate with calcium. We speculate that, during sporulation, calcium bound to biofilm matrix components may be transported to spores as a calcium-DPA complex, which weakens biofilm structure and leads to biofilm dispersion. IMPORTANCE Bacteria growing as biofilms are notoriously difficult to eradicate and sometimes pose serious threats to public health. Bacteria escape from biofilms by degrading them when biofilm conditions deteriorate. This process, called biofilm dispersion, has been studied as a promising strategy for safely controlling biofilms. However, the regulation and mechanism of biofilm dispersion has been elucidated only in a limited number of bacteria. Here, we identified two biofilm dispersion mechanisms in the Gram-positive, spore-forming bacterium Bacillus subtilis. The addition of calcium to the medium stabilized biofilms and caused resistance to dispersal mechanisms. Our findings provide new insights into biofilm dispersion and biofilm control. | 2021 | 33927049 |
| 8402 | 7 | 0.9980 | Exploring phage-host interactions in Burkholderia cepacia complex bacterium to reveal host factors and phage resistance genes using CRISPRi functional genomics and transcriptomics. Complex interactions of bacteriophages with their bacterial hosts determine phage host range and infectivity. While phage defense systems and host factors have been identified in model bacteria, they remain challenging to predict in non-model bacteria. In this paper, we integrate functional genomics and transcriptomics to investigate phage-host interactions, revealing active phage resistance and host factor genes in Burkholderia cenocepacia K56-2. Burkholderia cepacia complex species are commonly found in soil and are opportunistic pathogens in immunocompromised patients. We studied infection of B. cenocepacia K56-2 with Bcep176, a temperate phage isolated from Burkholderia multivorans. A genome-wide dCas9 knockdown library targeting B. cenocepacia K56-2 was constructed, and a pooled infection experiment identified 63 novel genes or operons coding for candidate host factors or phage resistance genes. The activities of a subset of candidate host factor and resistance genes were validated via single-gene knockdowns. Transcriptomics of B. cenocepacia K56-2 during Bcep176 infection revealed that expression of genes coding for host factor and resistance candidates identified in this screen was significantly altered during infection by 4 h post-infection. Identifying which bacterial genes are involved in phage infection is important to understand the ecological niches of B. cenocepacia and its phages, and for designing phage therapies.IMPORTANCEBurkholderia cepacia complex bacteria are opportunistic pathogens inherently resistant to antibiotics, and phage therapy is a promising alternative treatment for chronically infected patients. Burkholderia bacteria are also ubiquitous in soil microbiomes. To develop improved phage therapies for pathogenic Burkholderia bacteria, or engineer phages for applications, such as microbiome editing, it's essential to know the bacterial host factors required by the phage to kill bacteria, as well as how the bacteria prevent phage infection. This work identified 65 genes involved in phage-host interactions in Burkholderia cenocepacia K56-2 and tracked their expression during infection. These findings establish a knowledge base to select and engineer phages infecting or transducing Burkholderia bacteria. | 2025 | 41036840 |
| 9607 | 8 | 0.9980 | Transcriptome-Level Signatures in Gene Expression and Gene Expression Variability during Bacterial Adaptive Evolution. Antibiotic-resistant bacteria are an increasingly serious public health concern, as strains emerge that demonstrate resistance to almost all available treatments. One factor that contributes to the crisis is the adaptive ability of bacteria, which exhibit remarkable phenotypic and gene expression heterogeneity in order to gain a survival advantage in damaging environments. This high degree of variability in gene expression across biological populations makes it a challenging task to identify key regulators of bacterial adaptation. Here, we research the regulation of adaptive resistance by investigating transcriptome profiles of Escherichia coli upon adaptation to disparate toxins, including antibiotics and biofuels. We locate potential target genes via conventional gene expression analysis as well as using a new analysis technique examining differential gene expression variability. By investigating trends across the diverse adaptation conditions, we identify a focused set of genes with conserved behavior, including those involved in cell motility, metabolism, membrane structure, and transport, and several genes of unknown function. To validate the biological relevance of the observed changes, we synthetically perturb gene expression using clustered regularly interspaced short palindromic repeat (CRISPR)-dCas9. Manipulation of select genes in combination with antibiotic treatment promotes adaptive resistance as demonstrated by an increased degree of antibiotic tolerance and heterogeneity in MICs. We study the mechanisms by which identified genes influence adaptation and find that select differentially variable genes have the potential to impact metabolic rates, mutation rates, and motility. Overall, this work provides evidence for a complex nongenetic response, encompassing shifts in gene expression and gene expression variability, which underlies adaptive resistance. IMPORTANCE Even initially sensitive bacteria can rapidly thwart antibiotic treatment through stress response processes known as adaptive resistance. Adaptive resistance fosters transient tolerance increases and the emergence of mutations conferring heritable drug resistance. In order to extend the applicable lifetime of new antibiotics, we must seek to hinder the occurrence of bacterial adaptive resistance; however, the regulation of adaptation is difficult to identify due to immense heterogeneity emerging during evolution. This study specifically seeks to generate heterogeneity by adapting bacteria to different stresses and then examines gene expression trends across the disparate populations in order to pinpoint key genes and pathways associated with adaptive resistance. The targets identified here may eventually inform strategies for impeding adaptive resistance and prolonging the effectiveness of antibiotic treatment. | 2017 | 28217741 |
| 9605 | 9 | 0.9980 | Gene Expression Variability Underlies Adaptive Resistance in Phenotypically Heterogeneous Bacterial Populations. The root cause of the antibiotic resistance crisis is the ability of bacteria to evolve resistance to a multitude of antibiotics and other environmental toxins. The regulation of adaptation is difficult to pinpoint due to extensive phenotypic heterogeneity arising during evolution. Here, we investigate the mechanisms underlying general bacterial adaptation by evolving wild-type Escherichia coli populations to dissimilar chemical toxins. We demonstrate the presence of extensive inter- and intrapopulation phenotypic heterogeneity across adapted populations in multiple traits, including minimum inhibitory concentration, growth rate, and lag time. To search for a common response across the heterogeneous adapted populations, we measured gene expression in three stress-response networks: the mar regulon, the general stress response, and the SOS response. While few genes were differentially expressed, clustering revealed that interpopulation gene expression variability in adapted populations was distinct from that of unadapted populations. Notably, we observed both increases and decreases in gene expression variability upon adaptation. Sequencing select genes revealed that the observed gene expression trends are not necessarily attributable to genetic changes. To further explore the connection between gene expression variability and adaptation, we propagated single-gene knockout and CRISPR (clustered regularly interspaced short palindromic repeats) interference strains and quantified impact on adaptation to antibiotics. We identified significant correlations that suggest genes with low expression variability have greater impact on adaptation. This study provides evidence that gene expression variability can be used as an indicator of bacterial adaptive resistance, even in the face of the pervasive phenotypic heterogeneity underlying adaptation. | 2015 | 27623410 |
| 299 | 10 | 0.9980 | Breaking barriers: pCF10 type 4 secretion system relies on a self-regulating muramidase to modulate the cell wall. Conjugative type 4 secretion systems (T4SSs) are the main driver for the spread of antibiotic resistance genes and virulence factors in bacteria. To deliver the DNA substrate to recipient cells, it must cross the cell envelopes of both donor and recipient bacteria. In the T4SS from the enterococcal conjugative plasmid pCF10, PrgK is known to be the active cell wall degrading enzyme. It has three predicted extracellular hydrolase domains: metallo-peptidase (LytM), soluble lytic transglycosylase (SLT), and cysteine, histidine-dependent amidohydrolases/peptidases (CHAP). Here, we report the structure of the LytM domain and show that its active site is degenerate and lacks the active site metal. Furthermore, we show that only the predicted SLT domain is functional in vitro and that it unexpectedly has a muramidase instead of a lytic transglycosylase activity. While we did not observe any peptidoglycan hydrolytic activity for the LytM or CHAP domain, we found that these domains downregulated the SLT muramidase activity. The CHAP domain was also found to be involved in PrgK dimer formation. Furthermore, we show that PrgK interacts with PrgL, which likely targets PrgK to the rest of the T4SS. The presented data provides important information for understanding the function of Gram-positive T4SSs.IMPORTANCEAntibiotic resistance is a large threat to human health and is getting more prevalent. One of the major contributors to the spread of antibiotic resistance among different bacteria is type 4 secretion systems (T4SS). However, mainly T4SSs from Gram-negative bacteria have been studied in detail. T4SSs from Gram-positive bacteria, which stand for more than half of all hospital-acquired infections, are much less understood. The significance of our research is in identifying the function and regulation of a cell wall hydrolase, a key component of the pCF10 T4SS from Enterococcus faecalis. This system is one of the best-studied Gram-positive T4SSs, and this added knowledge aids in our understanding of horizontal gene transfer in E. faecalis as well as other medically relevant Gram-positive bacteria. | 2024 | 38940556 |
| 308 | 11 | 0.9980 | Linearmycins Activate a Two-Component Signaling System Involved in Bacterial Competition and Biofilm Morphology. Bacteria use two-component signaling systems to adapt and respond to their competitors and changing environments. For instance, competitor bacteria may produce antibiotics and other bioactive metabolites and sequester nutrients. To survive, some species of bacteria escape competition through antibiotic production, biofilm formation, or motility. Specialized metabolite production and biofilm formation are relatively well understood for bacterial species in isolation. How bacteria control these functions when competitors are present is not well studied. To address fundamental questions relating to the competitive mechanisms of different species, we have developed a model system using two species of soil bacteria, Bacillus subtilis and Streptomyces sp. strain Mg1. Using this model, we previously found that linearmycins produced by Streptomyces sp. strain Mg1 cause lysis of B. subtilis cells and degradation of colony matrix. We identified strains of B. subtilis with mutations in the two-component signaling system yfiJK operon that confer dual phenotypes of specific linearmycin resistance and biofilm morphology. We determined that expression of the ATP-binding cassette (ABC) transporter yfiLMN operon, particularly yfiM and yfiN, is necessary for biofilm morphology. Using transposon mutagenesis, we identified genes that are required for YfiLMN-mediated biofilm morphology, including several chaperones. Using transcriptional fusions, we found that YfiJ signaling is activated by linearmycins and other polyene metabolites. Finally, using a truncated YfiJ, we show that YfiJ requires its transmembrane domain to activate downstream signaling. Taken together, these results suggest coordinated dual antibiotic resistance and biofilm morphology by a single multifunctional ABC transporter promotes competitive fitness of B. subtilisIMPORTANCE DNA sequencing approaches have revealed hitherto unexplored diversity of bacterial species in a wide variety of environments that includes the gastrointestinal tract of animals and the rhizosphere of plants. Interactions between different species in bacterial communities have impacts on our health and industry. However, many approaches currently used to study whole bacterial communities do not resolve mechanistic details of interspecies interactions, including how bacteria sense and respond to their competitors. Using a competition model, we have uncovered dual functions for a previously uncharacterized two-component signaling system involved in specific antibiotic resistance and biofilm morphology. Insights gleaned from signaling within interspecies interaction models build a more complete understanding of gene functions important for bacterial communities and will enhance community-level analytical approaches. | 2017 | 28461449 |
| 9618 | 12 | 0.9980 | Why bacteriophage encode exotoxins and other virulence factors. This study considers gene location within bacteria as a function of genetic element mobility. Our emphasis is on prophage encoding of bacterial virulence factors (VFs). At least four mechanisms potentially contribute to phage encoding of bacterial VFs: (i) Enhanced gene mobility could result in greater VF gene representation within bacterial populations. We question, though, why certain genes but not others might benefit from this mobility. (ii) Epistatic interactions-between VF genes and phage genes that enhance VF utility to bacteria-could maintain phage genes via selection acting on individual, VF-expressing bacteria. However, is this mechanism sufficient to maintain the rest of phage genomes or, without gene co-regulation, even genetic linkage between phage and VF genes? (iii) Phage could amplify VFs during disease progression by carrying them to otherwise commensal bacteria colocated within the same environment. However, lytic phage kill bacteria, thus requiring assumptions of inclusive fitness within bacterial populations to explain retention of phage-mediated VF amplification for the sake of bacterial utility. Finally, (iv) phage-encoded VFs could enhance phage Darwinian fitness, particularly by acting as ecosystem-modifying agents. That is, VF-supplied nutrients could enhance phage growth by increasing the density or by improving the physiology of phage-susceptible bacteria. Alternatively, VF-mediated break down of diffusion-inhibiting spatial structure found within the multicellular bodies of host organisms could augment phage dissemination to new bacteria or to environments. Such phage-fitness enhancing mechanisms could apply particularly given VF expression within microbiologically heterogeneous environments, ie, ones where phage have some reasonable potential to acquire phage-susceptible bacteria. | 2007 | 19325857 |
| 8191 | 13 | 0.9980 | When the going gets tough, the tough get going-Novel bacterial AAA+ disaggregases provide extreme heat resistance. Heat stress can lead to protein misfolding and aggregation, potentially causing cell death due to the loss of essential proteins. Bacteria, being particularly exposed to environmental stress, are equipped with disaggregases that rescue these aggregated proteins. The bacterial Hsp70 chaperone DnaK and the ATPase associated with diverse cellular activities protein ClpB form the canonical disaggregase in bacteria. While this combination operates effectively during physiological heat stress, it is ineffective against massive aggregation caused by temperature-based sterilization protocols used in the food industry and clinics. This leaves bacteria unprotected against these thermal processes. However, bacteria that can withstand extreme, man-made stress conditions have emerged. These bacteria possess novel ATPase associated with diverse cellular activities disaggregases, ClpG and ClpL, which are key players in extreme heat resistance. These disaggregases, present in selected Gram-negative or Gram-positive bacteria, respectively, function superiorly by exhibiting increased thermal stability and enhanced threading power compared to DnaK/ClpB. This enables ClpG and ClpL to operate at extreme temperatures and process large and tight protein aggregates, thereby contributing to heat resistance. The genes for ClpG and ClpL are often encoded on mobile genomic islands or conjugative plasmids, allowing for their rapid spread among bacteria via horizontal gene transfer. This threatens the efficiency of sterilization protocols. In this review, we describe the various bacterial disaggregases identified to date, characterizing their commonalities and the specific features that enable these novel disaggregases to provide stress protection against extreme stress conditions. | 2024 | 39039821 |
| 8373 | 14 | 0.9980 | Weak Acid Resistance A (WarA), a Novel Transcription Factor Required for Regulation of Weak-Acid Resistance and Spore-Spore Heterogeneity in Aspergillus niger. Propionic, sorbic, and benzoic acids are organic weak acids that are widely used as food preservatives, where they play a critical role in preventing microbial growth. In this study, we uncovered new mechanisms of weak-acid resistance in molds. By screening a library of 401 transcription factor deletion strains in Aspergillus fumigatus for sorbic acid hypersensitivity, a previously uncharacterized transcription factor was identified and named weak acid resistance A (WarA). The orthologous gene in the spoilage mold Aspergillus niger was identified and deleted. WarA was required for resistance to a range of weak acids, including sorbic, propionic, and benzoic acids. A transcriptomic analysis was performed to characterize genes regulated by WarA during sorbic acid treatment in A. niger Several genes were significantly upregulated in the wild type compared with a ΔwarA mutant, including genes encoding putative weak-acid detoxification enzymes and transporter proteins. Among these was An14g03570, a putative ABC-type transporter which we found to be required for weak-acid resistance in A. niger We also show that An14g03570 is a functional homologue of the Saccharomyces cerevisiae protein Pdr12p and we therefore name it PdrA. Last, resistance to sorbic acid was found to be highly heterogeneous within genetically uniform populations of ungerminated A. niger conidia, and we demonstrate that pdrA is a determinant of this heteroresistance. This study has identified novel mechanisms of weak-acid resistance in A. niger which could help inform and improve future food spoilage prevention strategies.IMPORTANCE Weak acids are widely used as food preservatives, as they are very effective at preventing the growth of most species of bacteria and fungi. However, some species of molds can survive and grow in the concentrations of weak acid employed in food and drink products, thereby causing spoilage with resultant risks for food security and health. Current knowledge of weak-acid resistance mechanisms in these fungi is limited, especially in comparison to that in yeasts. We characterized gene functions in the spoilage mold species Aspergillus niger which are important for survival and growth in the presence of weak-acid preservatives. Such identification of weak-acid resistance mechanisms in spoilage molds will help in the design of new strategies to reduce food spoilage in the future. | 2020 | 31915214 |
| 8922 | 15 | 0.9980 | Transitioning from Soil to Host: Comparative Transcriptome Analysis Reveals the Burkholderia pseudomallei Response to Different Niches. Burkholderia pseudomallei, a soil and water saprophyte, is responsible for the tropical human disease melioidosis. A hundred years since its discovery, there is still much to learn about B. pseudomallei proteins that are essential for the bacterium's survival in and interaction with the infected host, as well as their roles within the bacterium's natural soil habitat. To address this gap, bacteria grown under conditions mimicking the soil environment were subjected to transcriptome sequencing (RNA-seq) analysis. A dual RNA-seq approach was used on total RNA from spleens isolated from a B. pseudomallei mouse infection model at 5 days postinfection. Under these conditions, a total of 1,434 bacterial genes were induced, with 959 induced in the soil environment and 475 induced in bacteria residing within the host. Genes encoding metabolism and transporter proteins were induced when the bacteria were present in soil, while virulence factors, metabolism, and bacterial defense mechanisms were upregulated during active infection of mice. On the other hand, capsular polysaccharide and quorum-sensing pathways were inhibited during infection. In addition to virulence factors, reactive oxygen species, heat shock proteins, siderophores, and secondary metabolites were also induced to assist bacterial adaptation and survival in the host. Overall, this study provides crucial insights into the transcriptome-level adaptations which facilitate infection by soil-dwelling B. pseudomallei. Targeting novel therapeutics toward B. pseudomallei proteins required for adaptation provides an alternative treatment strategy given its intrinsic antimicrobial resistance and the absence of a vaccine. IMPORTANCE Burkholderia pseudomallei, a soil-dwelling bacterium, is the causative agent of melioidosis, a fatal infectious disease of humans and animals. The bacterium has a large genome consisting of two chromosomes carrying genes that encode proteins with important roles for survival in diverse environments as well as in the infected host. While a general mechanism of pathogenesis has been proposed, it is not clear which proteins have major roles when the bacteria are in the soil and whether the same proteins are key to successful infection and spread. To address this question, we grew the bacteria in soil medium and then in infected mice. At 5 days postinfection, bacteria were recovered from infected mouse organs and their gene expression was compared against that of bacteria grown in soil medium. The analysis revealed a list of genes expressed under soil growth conditions and a different set of genes encoding proteins which may be important for survival, replication, and dissemination in an infected host. These proteins are a potential resource for understanding the full adaptation mechanism of this pathogen. In the absence of a vaccine for melioidosis and with treatment being reliant on combinatorial antibiotic therapy, these proteins may be ideal targets for designing antimicrobials to treat melioidosis. | 2023 | 36856434 |
| 8923 | 16 | 0.9980 | The Genome-Wide Interaction Network of Nutrient Stress Genes in Escherichia coli. Conventional efforts to describe essential genes in bacteria have typically emphasized nutrient-rich growth conditions. Of note, however, are the set of genes that become essential when bacteria are grown under nutrient stress. For example, more than 100 genes become indispensable when the model bacterium Escherichia coli is grown on nutrient-limited media, and many of these nutrient stress genes have also been shown to be important for the growth of various bacterial pathogens in vivo To better understand the genetic network that underpins nutrient stress in E. coli, we performed a genome-scale cross of strains harboring deletions in some 82 nutrient stress genes with the entire E. coli gene deletion collection (Keio) to create 315,400 double deletion mutants. An analysis of the growth of the resulting strains on rich microbiological media revealed an average of 23 synthetic sick or lethal genetic interactions for each nutrient stress gene, suggesting that the network defining nutrient stress is surprisingly complex. A vast majority of these interactions involved genes of unknown function or genes of unrelated pathways. The most profound synthetic lethal interactions were between nutrient acquisition and biosynthesis. Further, the interaction map reveals remarkable metabolic robustness in E. coli through pathway redundancies. In all, the genetic interaction network provides a powerful tool to mine and identify missing links in nutrient synthesis and to further characterize genes of unknown function in E. coli Moreover, understanding of bacterial growth under nutrient stress could aid in the development of novel antibiotic discovery platforms. IMPORTANCE: With the rise of antibiotic drug resistance, there is an urgent need for new antibacterial drugs. Here, we studied a group of genes that are essential for the growth of Escherichia coli under nutrient limitation, culture conditions that arguably better represent nutrient availability during an infection than rich microbiological media. Indeed, many such nutrient stress genes are essential for infection in a variety of pathogens. Thus, the respective proteins represent a pool of potential new targets for antibacterial drugs that have been largely unexplored. We have created all possible double deletion mutants through a genetic cross of nutrient stress genes and the E. coli deletion collection. An analysis of the growth of the resulting clones on rich media revealed a robust, dense, and complex network for nutrient acquisition and biosynthesis. Importantly, our data reveal new genetic connections to guide innovative approaches for the development of new antibacterial compounds targeting bacteria under nutrient stress. | 2016 | 27879333 |
| 9280 | 17 | 0.9980 | Evolutionary Changes after Translational Challenges Imposed by Horizontal Gene Transfer. Genes acquired by horizontal gene transfer (HGT) may provide the recipient organism with potentially new functions, but proper expression level and integration of the transferred genes in the novel environment are not granted. Notably, transferred genes can differ from the receiving genome in codon usage preferences, leading to impaired translation and reduced functionality. Here, we characterize the genomic and proteomic changes undergone during experimental evolution of Escherichia coli after HGT of three synonymous versions, presenting very different codon usage preference, of an antibiotic resistance gene. The experimental evolution was conducted with and without the corresponding antibiotic and the mutational patterns and proteomic profiles after 1,000 generations largely depend on the experimental growth conditions (e.g., mutations in antibiotic off-target genes), and on the synonymous gene version transferred (e.g., mutations in genes responsive to translational stress). The transfer of an exogenous gene extensively modifies the whole proteome, and these proteomic changes are different for the different version of the transferred gene. Additionally, we identified conspicuous changes in global regulators and in intermediate metabolism, confirmed the evolutionary ratchet generated by mutations in DNA repair genes and highlighted the plasticity of bacterial genomes accumulating large and occasionally transient duplications. Our results support a central role of HGT in fuelling evolution as a powerful mechanism promoting rapid, often dramatic genotypic and phenotypic changes. The profound reshaping of the pre-existing geno/phenotype allows the recipient bacteria to explore new ways of functioning, far beyond the mere acquisition of a novel function. | 2019 | 30753446 |
| 9602 | 18 | 0.9980 | Polyhexamethylene biguanide promotes adaptive cross-resistance to gentamicin in Escherichia coli biofilms. Antimicrobial resistance is a critical public health issue that requires a thorough understanding of the factors that influence the selection and spread of antibiotic-resistant bacteria. Biocides, which are widely used in cleaning and disinfection procedures in a variety of settings, may contribute to this resistance by inducing similar defense mechanisms in bacteria against both biocides and antibiotics. However, the strategies used by bacteria to adapt and develop cross-resistance remain poorly understood, particularly within biofilms -a widespread bacterial habitat that significantly influences bacterial tolerance and adaptive strategies. Using a combination of adaptive laboratory evolution experiments, genomic and RT-qPCR analyses, and biofilm structural characterization using confocal microscopy, we investigated in this study how Escherichia coli biofilms adapted after 28 days of exposure to three biocidal active substances and the effects on cross-resistance to antibiotics. Interestingly, polyhexamethylene biguanide (PHMB) exposure led to an increase of gentamicin resistance (GenR) phenotypes in biofilms formed by most of the seven E. coli strains tested. Nevertheless, most variants that emerged under biocidal conditions did not retain the GenR phenotype after removal of antimicrobial stress, suggesting a transient adaptation (adaptive resistance). The whole genome sequencing of variants with stable GenR phenotypes revealed recurrent mutations in genes associated with cellular respiration, including cytochrome oxidase (cydA, cyoC) and ATP synthase (atpG). RT-qPCR analysis revealed an induction of gene expression associated with biofilm matrix production (especially curli synthesis), stress responses, active and passive transport and cell respiration during PHMB exposure, providing insight into potential physiological responses associated with adaptive crossresistance. In addition, confocal laser scanning microscopy (CLSM) observations demonstrated a global effect of PHMB on biofilm architectures and compositions formed by most E. coli strains, with the appearance of dense cellular clusters after a 24h-exposure. In conclusion, our results showed that the PHMB exposure stimulated the emergence of an adaptive cross-resistance to gentamicin in biofilms, likely induced through the activation of physiological responses and biofilm structural modulations altering gradients and microenvironmental conditions in the biological edifice. | 2023 | 38149014 |
| 155 | 19 | 0.9980 | RNA-Seq transcriptomic analysis reveals gene expression profiles of acetic acid bacteria under high-acidity submerged industrial fermentation process. Acetic acid bacteria (AAB) are Gram-negative obligate aerobics in Acetobacteraceae family. Producing acetic acid and brewing vinegars are one of the most important industrial applications of AAB, attributed to their outstanding ability to tolerate the corresponding stresses. Several unique acid resistance (AR) mechanisms in AAB have been revealed previously. However, their overall AR strategies are still less-comprehensively clarified. Consequently, omics analysis was widely performed for a better understanding of this field. Among them, transcriptome has recently obtained more and more attention. However, most currently reported transcriptomic studies were conducted under lab conditions and even in low-acidity environment, which may be unable to completely reflect the conditions that AAB confront under industrialized vinegar-brewing processes. In this study, we performed an RNA-Seq transcriptomic analysis concerning AAB's AR mechanisms during a continuous and periodical industrial submerged vinegar fermentation process, where a single AAB strain performed the fermentation and the acetic acid concentration fluctuated between ~8% and ~12%, the highest acidity as far we know for transcriptomic studies. Samples were directly taken from the initial (CK), mid, and final stages of the same period of the on-going fermentation. 16S rRNA sequence analysis indicated the participation of Komagataeibacter europaeus in the fermentation. Transcriptomic results demonstrated that more genes were downregulated than upregulated at both mid and final stages. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrich analysis reflected that the upregulated genes mainly carried out tricarboxylic acid cycle and oxidative phosphorylation processes, probably implying a considerable role of acetic acid overoxidation in AR during fermentation. Besides, upregulation of riboflavin biosynthesis pathway and two NAD(+)-dependent succinate-semialdehyde dehydrogenase-coding genes suggested a critical role of succinate oxidation in AR. Meanwhile, downregulated genes were mainly ribosomal protein-coding ones, reflecting that the adverse impact on ribosomes initiates at the transcription level. However, it is ambiguous whether the downregulation is good for stress responding or it actually reflects the stress. Furthermore, we also assumed that the fermentation stages may have a greater effect on gene expression than acidity. Additionally, it is possible that some physiological alterations would affect the AR to a larger extent than changes in gene expression, which suggests the combination of molecular biology and physiology research will provide deeper insight into the AR mechanisms in AAB. | 2022 | 36246236 |