# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 210 | 0 | 0.8686 | Development of antisense peptide-peptide nucleic acids against fluoroquinolone-resistant Escherichia coli. BACKGROUND: Fluoroquinolones (FQs) are potent and broad-spectrum antibiotics commonly used to treat MDR bacterial infections, but bacterial resistance to FQs has emerged and spread rapidly around the world. The mechanisms for FQ resistance have been revealed, including one or more mutations in FQ target genes such as DNA gyrase (gyrA) and topoisomerase IV (parC). Because therapeutic treatments for FQ-resistant bacterial infections are limited, it is necessary to develop novel antibiotic alternatives to minimize or inhibit FQ-resistant bacteria. OBJECTIVES: To examine the bactericidal effect of antisense peptide-peptide nucleic acids (P-PNAs) that can block the expression of DNA gyrase or topoisomerase IV in FQ-resistant Escherichia coli (FRE). METHODS: A set of antisense P-PNA conjugates with a bacterial penetration peptide were designed to inhibit the expression of gyrA and parC and were evaluated for their antibacterial activities. RESULTS: Antisense P-PNAs, ASP-gyrA1 and ASP-parC1, targeting the translational initiation sites of their respective target genes significantly inhibited the growth of the FRE isolates. In addition, ASP-gyrA3 and ASP-parC2, which bind to the FRE-specific coding sequence within the gyrA and parC structural genes, respectively, showed selective bactericidal effects against FRE isolates. CONCLUSIONS: Our results demonstrate the potential of targeted antisense P-PNAs as antibiotic alternatives against FQ-resistance bacteria. | 2023 | 37390375 |
| 539 | 1 | 0.8619 | A role of ygfZ in the Escherichia coli response to plumbagin challenge. Plumbagin is found in many herbal plants and inhibits the growth of various bacteria. Escherichia coli strains are relatively resistant to this drug. The mechanism of resistance is not clear. Previous findings showed that plumbagin treatment triggered up-regulation of many genes in E. coli including ahpC, mdaB, nfnB, nfo, sodA, yggX and ygfZ. By analyzing minimal inhibition concentration and inhibition zones of plumbagin in various gene-disruption mutants, ygfZ and sodA were found critical for the bacteria to resist plumbagin toxicity. We also found that the roles of YgfZ and SodA in detoxifying plumbagin are independent of each other. This is because of the fact that ectopically expressed SodA reduced the superoxide stress but not restore the resistance of bacteria when encountering plumbagin at the absence of ygfZ. On the other hand, an ectopically expressed YgfZ was unable to complement and failed to rescue the plumbagin resistance when sodA was perturbed. Furthermore, mutagenesis analysis showed that residue Cys228 within YgfZ fingerprint region was critical for the resistance of E. coli to plumbagin. By solvent extraction and HPLC analysis to follow the fate of the chemical, it was found that plumbagin vanished apparently from the culture of YgfZ-expressing E. coli. A less toxic form, methylated plumbagin, which may represent one of the YgfZ-dependent metabolites, was found in the culture supernatant of the wild type E. coli but not in the ΔygfZ mutant. Our results showed that the presence of ygfZ is not only critical for the E coli resistance to plumbagin but also facilitates the plumbagin degradation. | 2010 | 21059273 |
| 8432 | 2 | 0.8618 | A 0D-2D Heterojunction Bismuth Molybdate-Anchored Multifunctional Hydrogel for Highly Efficient Eradication of Drug-Resistant Bacteria. Due to the increasing antibiotic resistance and the lack of broad-spectrum antibiotics, there is an urgent requirement to develop fresh strategies to combat multidrug-resistant pathogens. Herein, defect-rich bismuth molybdate heterojunctions [zero-dimensional (0D) Bi(4)MoO(9)/two-dimensional (2D) Bi(2)MoO(6), MBO] were designed for rapid capture of bacteria and synergistic photocatalytic sterilization. The as-prepared MBO was experimentally and theoretically demonstrated to possess defects, heterojunctions, and irradiation triple-enhanced photocatalytic activity for efficient generation of reactive oxygen species (ROS) due to the exposure of more active sites and separation of effective electron-hole pairs. Meanwhile, dopamine-modified MBO (pMBO) achieved a positively charged and rough surface, which conferred strong bacterial adhesion and physical penetration to the nanosheets, effectively trapping bacteria within the damage range and enhancing ROS damage. Based on this potent antibacterial ability of pMBO, a multifunctional hydrogel consisting of poly(vinyl alcohol) cross-linked tannic acid-coated cellulose nanocrystals (CPTB) and pMBO, namely CPTB@pMBO, is developed and convincingly effective against methicillin-resistant Staphylococcus aureus in a mouse skin infection model. In addition, the strategy of combining a failed beta-lactam antibiotic with CPTB@pMBO to photoinactivation with no resistance observed was developed, which presented an idea to address the issue of antibiotic resistance in bacteria and to explore facile anti-infection methods. In addition, CPTB@pMBO can reduce excessive proteolysis of tissue and inflammatory response by regulating the expression of genes and pro-inflammatory factors in vivo, holding great potential for the effective treatment of wound infections caused by drug-resistant bacteria. | 2023 | 37531599 |
| 6367 | 3 | 0.8612 | Comparative Drug Resistance Reversal Potential of Natural Glycosides: Potential of Synergy Niaziridin & Niazirin. BACKGROUND: Due to the limited availability of antibiotics, Gram-negative bacteria (GNB) acquire different levels of drug resistance. It raised an urgent need to identify such agents, which can reverse the phenomenon of drug resistance. OBJECTIVE: To understand the mechanism of drug resistance reversal of glycosides; niaziridin and niazirin isolated from the pods of Moringa oleifera and ouabain (control) against the clinical isolates of multidrug-resistant Escherichia coli. METHODS: The MICs were determined following the CLSI guidelines for broth micro-dilution. In-vitro combination studies were performed by broth checkerboard method followed by Time-Kill studies, the efflux pump inhibition assay, ATPase inhibitory activity, mutation prevention concentration and in-silico studies. RESULTS: The results showed that both glycosides did not possess antibacterial activity of their own, but in combination, they reduced the MIC of tetracycline up to 16 folds. Both were found to inhibit efflux pumps, but niaziridin was the best. In real time expression pattern analysis, niaziridin was also found responsible for the down expression of the two important efflux pump acrB & yojI genes alone as well as in combination. Niaziridin was also able to over express the porin forming genes (ompA & ompX). These glycosides decreased the mutation prevention concentration of tetracycline. CONCLUSION: This is the first ever report on glycosides, niazirin and niaziridin acting as drug resistance reversal agent through efflux pump inhibition and modulation of expression pattern drug resistant genes. This study may be helpful in preparing an effective antibacterial combination against the drug-resistant GNB from a widely growing Moringa oleifera. | 2019 | 30977451 |
| 240 | 4 | 0.8611 | Resistance of rumen bacteria murein to bovine gastric lysozyme. BACKGROUND: Lysozymes, enzymes mostly associated with defence against bacterial infections, are mureinolytic. Ruminants have evolved a gastric c type lysozyme as a digestive enzyme, and profit from digestion of foregut bacteria, after most dietary components, including protein, have been fermented in the rumen. In this work we characterized the biological activities of bovine gastric secretions against membranes, purified murein and bacteria. RESULTS: Bovine gastric extract (BGE) was active against both G+ and G- bacteria, but the effect against Gram- bacteria was not due to the lysozyme, since purified BGL had only activity against Gram+ bacteria. We were unable to find small pore forming peptides in the BGE, and found that the inhibition of Gram negative bacteria by BGE was due to an artefact caused by acetate. We report for first time the activity of bovine gastric lysozyme (BG lysozyme) against pure bacterial cultures, and the specific resistance of some rumen Gram positive strains to BGL. CONCLUSIONS: Some Gram+ rumen bacteria showed resistance to abomasum lysozyme. We discuss the implications of this finding in the light of possible practical applications of such a stable antimicrobial peptide. | 2004 | 15137912 |
| 6009 | 5 | 0.8601 | Efflux pump inhibitor chlorpromazine effectively increases the susceptibility of Escherichia coli to antimicrobial peptide Brevinin-2CE. Aim: The response of E. coli ATCC8739 to Brevinin-2CE (B2CE) was evaluated as a strategy to prevent the development of antimicrobial peptide (AMP)-resistant bacteria. Methods: Gene expression levels were detected by transcriptome sequencing and RT-PCR. Target genes were knocked out using CRISPR-Cas9. MIC was measured to evaluate strain resistance. Results: Expression of acrZ and sugE were increased with B2CE stimulation. ATCC8739ΔacrZ and ATCC8739ΔsugE showed twofold and fourfold increased sensitivity, respectively. The survival rate of ATCC8739 was reduced in the presence of B2CE/chlorpromazine (CPZ). Combinations of other AMPs with CPZ also showed antibacterial effects. Conclusion: The results indicate that combinations of AMPs/efflux pump inhibitors (EPIs) may be a potential approach to combat resistant bacteria. | 2024 | 38683168 |
| 9026 | 6 | 0.8599 | Citral and its derivatives inhibit quorum sensing and biofilm formation in Chromobacterium violaceum. With an upsurge in multidrug resistant bacteria backed by biofilm defence armours, there is a desperate need of new antibiotics with a non-traditional mechanism of action. Targeting bacteria by misguiding them or halting their communication is a new approach that could offer a new way to combat the multidrug resistance problem. Quorum sensing is considered to be the achilles heel of bacteria that has a lot to offer. Since, both quorum sensing and biofilm formation have been related to drug resistance and pathogenicity, in this study we synthesised new derivatives of citral with antiquorum sensing and biofilm disrupting properties. We previously reported antimicrobial and antiquorum sensing activity of citral and herein we report the synthesis and evaluation of citral and its derivatives (CD1-CD3) for antibacterial, antibiofilm and antiquorum sensing potential against Chromobacterium violaceum using standard methods. Preliminary results revealed that CD1 is the most active of all the derivatives. Qualitative and quantitative evaluation of antiquorum sensing activity at sub-inhibitory concentrations of these compounds also revealed high activity for CD1 followed by CD2, CD3 and citral. These compounds also inhibit biofilm formation at subinhibitory concentrations without causing any bacterial growth inhibition. These results were replicated by RT-qPCR with down regulation of the quorum sensing genes when C. violaceum was treated with these test compounds. Overall, the results are quite encouraging, revealing that biofilm and quorum sensing are interrelated processes and also indicating the potential of these derivatives to impede bacterial communication and biofilm formation. | 2021 | 33392626 |
| 626 | 7 | 0.8597 | Enterococcus faecalis Adapts to Antimicrobial Conjugated Oligoelectrolytes by Lipid Rearrangement and Differential Expression of Membrane Stress Response Genes. Conjugated oligoelectrolytes (COEs) are emerging antimicrobials with broad spectrum activity against Gram positive and Gram negative bacteria as well as fungi. Our previous in vitro evolution studies using Enterococcus faecalis grown in the presence of two related COEs (COE1-3C and COE1-3Py) led to the emergence of mutants (changes in liaF and liaR) with a moderate 4- to16-fold increased resistance to COEs. The contribution of liaF and liaR mutations to COE resistance was confirmed by complementation of the mutants, which restored sensitivity to COEs. To better understand the cellular target of COEs, and the mechanism of resistance to COEs, transcriptional changes associated with resistance in the evolved mutants were investigated in this study. The differentially transcribed genes encoded membrane transporters, in addition to proteins associated with cell envelope synthesis and stress responses. Genes encoding membrane transport proteins from the ATP binding cassette superfamily were the most significantly induced or repressed in COE tolerant mutants compared to the wild type when exposed to COEs. Additionally, differences in the membrane localization of a lipophilic dye in E. faecalis exposed to COEs suggested that resistance was associated with lipid rearrangement in the cell membrane. The membrane adaptation to COEs in EFC3C and EFC3Py resulted in an improved tolerance to bile salt and sodium chloride stress. Overall, this study showed that bacterial cell membranes are the primary target of COEs and that E. faecalis adapts to membrane interacting COE molecules by both lipid rearrangement and changes in membrane transporter activity. The level of resistance to COEs suggests that E. faecalis does not have a specific response pathway to elicit resistance against these molecules and this is supported by the rather broad and diverse suite of genes that are induced upon COE exposure as well as cross-resistance to membrane perturbing stressors. | 2020 | 32117172 |
| 8155 | 8 | 0.8593 | Gut bacteria enable prostate cancer growth. Testosterone-synthetizing gut bacteria drive resistance to therapy. | 2021 | 34618567 |
| 8134 | 9 | 0.8590 | Sweet scents from good bacteria: Case studies on bacterial volatile compounds for plant growth and immunity. Beneficial bacteria produce diverse chemical compounds that affect the behavior of other organisms including plants. Bacterial volatile compounds (BVCs) contribute to triggering plant immunity and promoting plant growth. Previous studies investigated changes in plant physiology caused by in vitro application of the identified volatile compounds or the BVC-emitting bacteria. This review collates new information on BVC-mediated plant-bacteria airborne interactions, addresses unresolved questions about the biological relevance of BVCs, and summarizes data on recently identified BVCs that improve plant growth or protection. Recent explorations of bacterial metabolic engineering to alter BVC production using heterologous or endogenous genes are introduced. Molecular genetic approaches can expand the BVC repertoire of beneficial bacteria to target additional beneficial effects, or simply boost the production level of naturally occurring BVCs. The effects of direct BVC application in soil are reviewed and evaluated for potential large-scale field and agricultural applications. Our review of recent BVC data indicates that BVCs have great potential to serve as effective biostimulants and bioprotectants even under open-field conditions. | 2016 | 26177913 |
| 6008 | 10 | 0.8588 | Photopolymerized keratin-PGLa hydrogels for antibiotic resistance reversal and enhancement of infectious wound healing. Infectious wounds have become serious challenges for both treatment and management in clinical practice, so development of new antibiotics has been considered an increasingly difficult task. Here, we report the design and synthesis of keratin 31 (K31)-peptide glycine-leucine-amide (PGLa) photopolymerized hydrogels to rescue the antibiotic activity of antibiotics for infectious wound healing promotion. K31-PGLa displayed an outstanding synergistic effect with commercial antibiotics against drug-resistant bacteria by down-regulating the synthesis genes of efflux pump. Furthermore, the photopolymerized K31-PGLa/PEGDA hydrogels effectively suppressed drug-resistant bacteria growth and enhanced skin wound closure in murine. This study provided a promising alternative strategy for infectious wound treatment. | 2023 | 37810750 |
| 9053 | 11 | 0.8585 | Nordihydroguaiaretic acid reverses the antibacterial activity of colistin against MCR-1-positive bacteria in vivo/in vitro by inhibiting MCR-1 activity and injuring the bacterial cell membrane. BACKGROUND: Colistin (polymyxin E) is an effective antibiotic for the treatment of most multidrug-resistant Gram-negative bacteria. However, some bacteria, including bacterial spp. belonging to the Enterobacteriaceae family, have an acquired resistance against polymyxins, which is attributed to they possess plasmid-carried resistance genes (mcr-1 and its variants). So, there is an urgent need to develop new therapeutic strategies to target broad spectrum resistant spp. from Enterobacteriaceae family in response to the loss of the protective barrier of last-line antibiotics. Here, we report the adjuvant capacity of nordihydroguaiaretic acid (NDGA) for restoring the antibacterial activity of colistin against MCR-1-positive E. coli ZJ487 in vivo/in vitro. METHODS: A checkerboard assay, time-killing analysis, isobolograms, growth curves and inducible resistance test showed the effect of NDGA combined with colistin in vitro. TLC was used to detect the inhibitory effect of NDGA on MCR-1. Colony determination and hematoxylin and eosin (HE) staining were used to assess the synergistic effect of NDGA and colistin in mice. RESULTS: Our results showed that NDGA in combination with colistin showed a synergistic bactericidal action without inducing resistance. NDGA directly inhibited MCR-1 activity and resulted in measurable injury to the bacterial cell membrane to recover the antibacterial effect of colistin. Most importantly, NDGA in combination with colistin exhibited an in vivo synergistic effect in murine peritonitis infection models, as evidenced by the survival rate of MCR-1-positive E. coli ZJ487-infected mice which increased from 6.67 to 50.0%. CONCLUSION: Our study demonstrated that NDGA effectively rescues the efficiency of colistin against MCR-positive E. coli ZJ487 by simultaneously inhibiting both, the MCR activity and the injury to the cell membrane of bacteria. | 2022 | 35158237 |
| 9223 | 12 | 0.8585 | De novo evolution of antibiotic resistance to Oct-TriA(1). The rise of antimicrobial resistance as a global health concern has led to a strong interest in compounds able to inhibit the growth of bacteria without detectable levels of resistance evolution. A number of these compounds have been reported in recent years, including the tridecaptins, a small family of lipopeptides typified by the synthetic analogue octyl-tridecaptin A(1). Hypothesizing that prior reports of negligible resistance evolution have been due in part to limitations in the laboratory evolution systems used, we have attempted to select for resistant mutants using a soft agar gradient evolution (SAGE) system developed by our lab. Following optimization of the media conditions by incorporation of the anti-synaeresis agent xanthan gum into the agar matrix, we successfully evolved high-level resistance to both octyl-tridecaptin A(1) as well as the challenging lipopeptide antibiotic polymyxin B. Decreased tridecaptin susceptibility was linked to mutations in outer membrane proteins ompC, lptD and mlaA, with the effect of these genes confirmed through a mix of allelic replacement and knockout studies. Overall, this work demonstrates the robust evolutionary potential of bacteria, even in the face of challenging antimicrobial agents. | 2025 | 39832423 |
| 9225 | 13 | 0.8585 | Antibiotic resistance modifying ability of phytoextracts in anthrax biological agent Bacillus anthracis and emerging superbugs: a review of synergistic mechanisms. BACKGROUND AND OBJECTIVES: The chemotherapeutic management of infections has become challenging due to the global emergence of antibiotic resistant pathogenic bacteria. The recent expansion of studies on plant-derived natural products has lead to the discovery of a plethora of phytochemicals with the potential to combat bacterial drug resistance via various mechanisms of action. This review paper summarizes the primary antibiotic resistance mechanisms of bacteria and also discusses the antibiotic-potentiating ability of phytoextracts and various classes of isolated phytochemicals in reversing antibiotic resistance in anthrax agent Bacillus anthracis and emerging superbug bacteria. METHODS: Growth inhibitory indices and fractional inhibitory concentration index were applied to evaluate the in vitro synergistic activity of phytoextract-antibiotic combinations in general. FINDINGS: A number of studies have indicated that plant-derived natural compounds are capable of significantly reducing the minimum inhibitory concentration of standard antibiotics by altering drug-resistance mechanisms of B. anthracis and other superbug infection causing bacteria. Phytochemical compounds allicin, oleanolic acid, epigallocatechin gallate and curcumin and Jatropha curcas extracts were exceptional synergistic potentiators of various standard antibiotics. CONCLUSION: Considering these facts, phytochemicals represents a valuable and novel source of bioactive compounds with potent antibiotic synergism to modulate bacterial drug-resistance. | 2021 | 34856999 |
| 8860 | 14 | 0.8583 | Antibiotic in myrrh from Commiphora molmol preferentially kills nongrowing bacteria. AIM: To demonstrate that myrrh oil preferentially kills nongrowing bacteria and causes no resistance development. METHOD: Growth inhibition was determined on regular plates or plates without nutrients, which were later overlaid with soft agar containing nutrients to continue growth. Killing experiments were done in broth and in buffer without nutrients. RESULTS: Bacterial cells were inhibited preferentially in the absence of nutrients or when growth was halted by a bacteriostatic antibiotic. After five passages in myrrh oil, surviving colonies showed no resistance to the antibiotic. CONCLUSION: Myrrh oil has the potential to be a commercially viable antibiotic that kills persister cells and causes no resistance development. This is a rare example of an antibiotic that can preferentially kill nongrowing bacteria. | 2020 | 32257371 |
| 9991 | 15 | 0.8582 | A bifunctional dihydrofolate synthetase--folylpolyglutamate synthetase in Plasmodium falciparum identified by functional complementation in yeast and bacteria. Folate metabolism in the human malaria parasite Plasmodium falciparum is an essential activity for cell growth and replication, and the target of an important class of therapeutic agents in widespread use. However, resistance to antifolate drugs is a major health problem in the developing world. To date, only two activities in this complex pathway have been targeted by antimalarials. To more fully understand the mechanisms of antifolate resistance and to identify promising targets for new chemotherapies, we have cloned genes encoding as yet uncharacterised enzymes in this pathway. By means of complementation experiments using 1-carbon metabolism mutants of both Escherichia coli and Saccharomyces cerevisiae, we demonstrate here that one of these parasite genes encodes both dihydrofolate synthetase (DHFS) and folylpolyglutamate synthetase (FPGS) activities, which catalyse the synthesis and polyglutamation of folate derivatives, respectively. The malaria parasite is the first known example of a eukaryote encoding both DHFS and FPGS activities in a single gene. DNA sequencing of this gene in antifolate-resistant strains of P. falciparum, as well as drug-inhibition assays performed on yeast and bacteria expressing PfDHFS--FPGS, indicate that current antifolate regimes do not target this enzyme. As PfDHFS--FPGS harbours two activities critical to folate metabolism, one of which has no human counterpart, this gene product offers a novel chemotherapeutic target with the potential to deliver a powerful blockage to parasite growth. | 2001 | 11223131 |
| 212 | 16 | 0.8580 | Spectrum of antibacterial activity and mode of action of a novel tris-stilbene bacteriostatic compound. The spectrum of activity and mode of action of a novel antibacterial agent, 135C, was investigated using a range of microbiological and genomic approaches. Compound 135C was active against Gram-positive bacteria with MICs for Staphylococcus aureus ranging from 0.12-0.5 μg/ml. It was largely inactive against Gram-negative bacteria. The compound showed bacteriostatic activity in time-kill studies and did not elicit bacterial cell leakage or cell lysis. Checkerboard assays showed no synergy or antagonism when 135C was combined with a range of other antibacterials. Multi-step serial passage of four S. aureus isolates with increasing concentrations of 135C showed that resistance developed rapidly and was stable after drug-free passages. Minor differences in the fitness of 135C-resistant strains and parent wildtypes were evident by growth curves, but 135C-resistant strains did not show cross-resistance to other antibacterial agents. Genomic comparison of resistant and wildtype parent strains showed changes in genes encoding cell wall teichoic acids. 135C shows promising activity against Gram-positive bacteria but is currently limited by the rapid resistance development. Further studies are required to investigate the effects on cell wall teichoic acids and to determine whether the issue of resistance development can be overcome. | 2018 | 29720673 |
| 9027 | 17 | 0.8579 | Scorpion Venom Antimicrobial Peptides Induce Siderophore Biosynthesis and Oxidative Stress Responses in Escherichia coli. The increasing development of microbial resistance to classical antimicrobial agents has led to the search for novel antimicrobials. Antimicrobial peptides (AMPs) derived from scorpion and snake venoms offer an attractive source for the development of novel therapeutics. Smp24 (24 amino acids [aa]) and Smp43 (43 aa) are broad-spectrum AMPs that have been identified from the venom gland of the Egyptian scorpion Scorpio mauruspalmatus and subsequently characterized. Using a DNA microarray approach, we examined the transcriptomic responses of Escherichia coli to subinhibitory concentrations of Smp24 and Smp43 peptides following 5 h of incubation. Seventy-two genes were downregulated by Smp24, and 79 genes were downregulated by Smp43. Of these genes, 14 genes were downregulated in common and were associated with bacterial respiration. Fifty-two genes were specifically upregulated by Smp24. These genes were predominantly related to cation transport, particularly iron transport. Three diverse genes were independently upregulated by Smp43. Strains with knockouts of differentially regulated genes were screened to assess the effect on susceptibility to Smp peptides. Ten mutants in the knockout library had increased levels of resistance to Smp24. These genes were predominantly associated with cation transport and binding. Two mutants increased resistance to Smp43. There was no cross-resistance in mutants resistant to Smp24 or Smp43. Five mutants showed increased susceptibility to Smp24, and seven mutants showed increased susceptibility to Smp43. Of these mutants, formate dehydrogenase knockout (fdnG) resulted in increased susceptibility to both peptides. While the electrostatic association between pore-forming AMPs and bacterial membranes followed by integration of the peptide into the membrane is the initial starting point, it is clear that there are numerous subsequent additional intracellular mechanisms that contribute to their overall antimicrobial effect.IMPORTANCE The development of life-threatening resistance of pathogenic bacteria to the antibiotics typically in use in hospitals and the community today has led to an urgent need to discover novel antimicrobial agents with different mechanisms of action. As an ancient host defense mechanism of the innate immune system, antimicrobial peptides (AMPs) are attractive candidates to fill that role. Scorpion venoms have proven to be a rich source of AMPs. Smp24 and Smp43 are new AMPs that have been identified from the venom gland of the Egyptian scorpion Scorpio maurus palmatus, and these peptides can kill a wide range of bacterial pathogens. By better understanding how these AMPs affect bacterial cells, we can modify their structure to make better drugs in the future. | 2021 | 33980680 |
| 9088 | 18 | 0.8579 | Cocrystallizing and Codelivering Complementary Drugs to Multidrugresistant Tuberculosis Bacteria in Perfecting Multidrug Therapy. Bacteria cells exhibit multidrug resistance in one of two ways: by raising the genetic expression of multidrug efflux pumps or by accumulating several drug-resistant components in many genes. Multidrug-resistive tuberculosis bacteria are treated by multidrug therapy, where a few certain antibacterial drugs are administered together to kill a bacterium jointly. A major drawback of conventional multidrug therapy is that the administration never ensures the reaching of different drug molecules to a particular bacterium cell at the same time, which promotes growing drug resistivity step-wise. As a result, it enhances the treatment time. With additional tabletability and plasticity, the formation of a cocrystal of multidrug can ensure administrating the multidrug chemically together to a target bacterium cell. With properly maintaining the basic philosophy of multidrug therapy here, the synergistic effects of drug molecules can ensure killing the bacteria, even before getting the option to raise the drug resistance against them. This can minimize the treatment span, expenditure and drug resistance. A potential threat of epidemic from tuberculosis has appeared after the Covid-19 outbreak. An unwanted loop of finding molecules with the potential to kill tuberculosis, getting their corresponding drug approvals, and abandoning the drug after facing drug resistance can be suppressed here. This perspective aims to develop the universal drug regimen by postulating the principles of drug molecule selection, cocrystallization, and subsequent harmonisation within a short period to address multidrug-resistant bacteria. | 2023 | 37150990 |
| 8135 | 19 | 0.8578 | Harnessing Genome Editing Techniques to Engineer Disease Resistance in Plants. Modern genome editing (GE) techniques, which include clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) system, transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs) and LAGLIDADG homing endonucleases (meganucleases), have so far been used for engineering disease resistance in crops. The use of GE technologies has grown very rapidly in recent years with numerous examples of targeted mutagenesis in crop plants, including gene knockouts, knockdowns, modifications, and the repression and activation of target genes. CRISPR/Cas9 supersedes all other GE techniques including TALENs and ZFNs for editing genes owing to its unprecedented efficiency, relative simplicity and low risk of off-target effects. Broad-spectrum disease resistance has been engineered in crops by GE of either specific host-susceptibility genes (S gene approach), or cleaving DNA of phytopathogens (bacteria, virus or fungi) to inhibit their proliferation. This review focuses on different GE techniques that can potentially be used to boost molecular immunity and resistance against different phytopathogens in crops, ultimately leading to the development of promising disease-resistant crop varieties. | 2019 | 31134108 |