FOUND - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
201300.9993Identification and characterization of class 1 integrons in bacteria from an aquatic environment. In a survey of 3000 Gram-negative bacteria isolated from an estuarine environment over a 2 month period, the incidence of class 1 integrons was determined to be 3.6%. Of 85 integrons studied further, 11 lacked both the qacEdelta1 and sull genes usually present in the 3' conserved segment of the integron. The qacEdelta1 and sull genes were identified in the 3' conserved segment of 36 integrons. The remaining 38 integrons lacked a sull gene but contained a qacE gene. The variable region of 74 integrons was characterized by PCR and sequence analysis. Forty of the integrons were found to lack integrated gene cassettes, although 21 of these 'empty' integrons were shown to contain inserted DNA which has been tentatively identified as a novel insertion sequence (IS) element. Of the 34 integrons which contained inserted gene cassettes, the aadA1a gene was found to be the most prevalent (74%). Nineteen integrons contained additional or other gene cassettes in their variable region, including those encoding resistance to trimethoprim (dfr1a, dfrIIc, dfrV, dfrVII, dfrXII), chloramphenicol (catB3, catB5), aminoglycosides (aadA2, aacA4, aacC1), beta-lactamases (oxa2) and erythromycin (ereA). This study confirms the occurrence of integrons in bacteria from a natural habitat and suggests that in the absence of continued antibiotic selective pressures, integrons which persist appear to preferentially exist without integrated antibiotic resistance gene cassettes.199910459805
202010.9993Whole genome-based antimicrobial resistance, virulence, and phylogenetic characteristics of Trueperella pyogenes clinical isolates from humans and animals. Trueperella pyogenes is an opportunistic zoonotic bacterial pathogen, whose antimicrobial resistance, virulence, and genetic relatedness between strains from animals and humans are barely studied. These characteristics were therefore analyzed for clinical T. pyogenes strains from 31 animals of 11 different species and 8 humans determining their complete circular genome sequence and antimicrobial susceptibility. The MICs of 19 antimicrobials including 3 antiseptics correlated to the resistance genes identified in silico within the genomes revealing a predominance of resistance to streptomycin (aadA9), sulfamethoxazole (sul1), and tetracycline (tet(33), tet(W/N/W)) among strains from humans and cattle. Additional resistance genes (erm(X), erm(56), cmx, drfA1, aadA1, aph(3'')-Ib (strA), aph(6)-Id (strB), aac(3)-IVa, aph(4)-Ia) were found only sporadically. The resistance genes were localized on genetic elements integrated into the chromosome. A cgMLST-based phylogenetic analysis revealed two major clusters each containing genetically diverse strains. The human strains showed the closest relatedness to strains from cattle. Virulence genes coding for fimbriae (fimA, fimC), neuroamidase (nanP, nanH), pyolysin (plo), and collagen binding protein (cbpA) were identified in strains from different hosts, but no correlation was observed between virulence factors and strain origin. The existence of resistance genes typically found in Gram-negative bacteria within the Gram-positive T. pyogenes indicates a wider capacity to adapt to antimicrobial selective pressure. Moreover, the presence of similar antimicrobial resistance profiles found in cattle and human strains as well as their closest relatedness suggests common zoonotic features and cattle as the potential source for human infections.202438749210
201820.9993Genetic diversity of three classes of integrons in antibiotic-resistant bacteria isolated from Jiulong River in southern China. We identified antibiotic-resistant bacterial isolates from the surface waters of Jiulong River basin in southern China and determined their extent of resistance, as well as the prevalence and characterization of three classes of integrons. A phylogenetic analysis of 16S ribosomal DNA (rDNA) sequences showed that 20 genera were sampled from a total of 191 strains and the most common genus was Acinetobacter. Antimicrobial susceptibility testing revealed that the 191 isolates were all multiresistant and there were high levels of resistance to 19 antimicrobials that were tested, particularly the β-lactam, sulfonamide, amphenicol, macrolide, and rifamycin classes. Moreover, class 1 integrons were ubiquitous while only five out of 191 strains harbored class 2 integrons and no class 3 integrons were detected. The variable region of the class 1 integrons contained 30 different gene cassette arrays. Nine novel arrays were found in 65 strains, and seven strains had empty integrons. Among these 30 arrays, there were 34 different gene cassettes that included 25 resistance genes, six genes with unknown functions, two mutant transposase genes, and a new gene. The unique array dfrA1-sat2-aadA1 was detected in all five isolates carrying the class 2 integron. We found that antibiotic-resistant bacterial isolates from Jiulong River were diverse and antibiotic resistance genes associated with integrons were widespread.201525869436
586230.9993Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms. Twenty-five distinct tetracycline-resistant gram-negative bacteria recovered from four Chilean fish farms with no history of recent antibiotic use were examined for the presence of tetracycline resistance (tet) genes. Sixty percent of the isolates carried 1 of the 22 known tet genes examined. The distribution was as follows. The tet(A) gene was found in six isolates. The tet(B) gene was found in two isolates, including the first description in the genus Brevundimonas: Two isolates carried the tet(34) and tet(B) genes, including the first description of the tet(34) gene in Pseudomonas and Serratia and the first description of the tet(B) gene in Pseudomonas: The tet(H) gene was found in two isolates, which includes the first description in the genera Moraxella and Acinetobacter: One isolate carried tet(E), and one isolate carried tet(35), the first description of the gene in the genus Stenotrophomonas: Finally, one isolate carried tet(L), found for the first time in the genus Morganella: By DNA sequence analysis, the two tet(H) genes were indistinguishable from the previously sequenced tet(H) gene from Tn5706 found in Pasteurella multocida. The Acinetobacter radioresistens isolate also harbored the Tn5706-associated 1,063-bp IS element IS1597, while the Moraxella isolate carried a 1,026-bp IS-like element whose 293-amino-acid transposase protein exhibited 69% identity and 84% similarity to the transposase protein of IS1597, suggesting the presence of a novel IS element. The distribution of tet genes from the Chilean freshwater ponds was different than those that have previously been described from other geographical locations, with 40% of the isolates carrying unidentified tetracycline resistance genes.200312604516
296140.9993Molecular Characterization and Antimicrobial Susceptibility of C. jejuni Isolates from Italian Wild Bird Populations. Poultry is considered a major reservoir of human campylobacteriosis. It also been reported that not only poultry, but also wild birds, are capable of carrying C. jejuni, thus demonstrating to be a risk of spreading the bacteria in the environment. To gain insight into the population structure and investigate the antimicrobial resistance genotypes and phenotypes, we analyzed a collection of 135 C. jejuni from 15 species of wild birds in Italy. MLST revealed the presence of 41 sequence types (STs) and 13 clonal complexes (CCs). ST-179 complex and the generalist ST-45 complex were the most prevalent. Core genome MLST revealed that C. jejuni from ST-45 complex clustered according to the bird species, unlike the ST-179 complex which featured 3 different species in the same cluster. Overall we found a moderate prevalence of resistance to tetracycline (12.5%), ciprofloxacin and nalidixic acid (10%). The novel ST isolated from one pigeon showed resistance to all the antibiotics tested. The ST-179 complex (33.3%) was identified with significantly higher nalidixic acid resistance relative to other tested STs. Nine AMR genes (tet(O), cmeA, cmeB, cmeC, cmeR, aad, blaOXA-61, blaOXA-184 and erm(B)) and 23S rRNA and gyrA-associated point mutations were also described, indicating a concordance level between genotypic and phenotypic resistance of 23.3%, 23.4% and of 37.5% for streptomycin, tetracycline and quinolones/fluoroquinolones, respectively. We recommend that particular attention should be given to wild birds as key sentinel animals for the ecosystem contamination surveillance.202032326051
201650.9992Antibiotic selective pressure for the maintenance of antibiotic resistant genes in coliform bacteria isolated from the aquatic environment. Coliform bacteria isolated from the aquatic environment were investigated for antibiotic susceptibility and detailed structures of class 1 integrons. A high proportion of isolates were found to be resistant to sulfamethoxazole, aminoglycosides, and beta-lactams. The 750 (53.6%) isolates were resistant to one or more of the antibiotics tested out of 1,400 coliform bacteria. Based on the MIC of antibiotics and antibiogram, 150 isolates were selected and further studied for class 1 integrons. The intI1 gene was found in 36 (24.0%) of the 150 isolates. Twelve isolates carried the gene cassettes responsible for antibiotic resistance, while no gene cassettes were found in 24 isolates. Seven different genes, dfrA5, dfrA7, dfrA12, dfrA17, aaA2, aaA5, and aad(3'), were detected in gene cassettes. The dfrA and aad genes located on class 1 integrons were responsible for resistance to trimethoprim and aminoglycosides. The remaining 24 coliform bacteria had the incomplete or non-functional class 1 integrons. These results indicated that antibiotic selective pressures may play an important role to maintain gene cassettes of class 1 integrons and in the absence of sustained antibiotic pressures, such as the aquatic environment, coliform bacteria may carry empty or non-functional class 1 integrons.200312639037
165660.9992Characterisation of Commensal Escherichia coli Isolated from Apparently Healthy Cattle and Their Attendants in Tanzania. While pathogenic types of Escherichia coli are well characterized, relatively little is known about the commensal E. coli flora. In the current study, antimicrobial resistance in commensal E. coli and distribution of ERIC-PCR genotypes among isolates of such bacteria from cattle and cattle attendants on cattle farms in Tanzania were investigated. Seventeen E. coli genomes representing different ERIC-PCR types of commensal E. coli were sequenced in order to determine their possible importance as a reservoir for both antimicrobial resistance genes and virulence factors. Both human and cattle isolates were highly resistant to tetracycline (40.8% and 33.1%), sulphamethazole-trimethoprim (49.0% and 8.8%) and ampicillin (44.9% and 21.3%). However, higher proportion of resistant E. coli and higher frequency of resistance to more than two antimicrobials was found in isolates from cattle attendants than isolates from cattle. Sixteen out of 66 ERIC-PCR genotypes were shared between the two hosts, and among these ones, seven types contained isolates from cattle and cattle attendants from the same farm, suggesting transfer of strains between hosts. Genome-wide analysis showed that the majority of the sequenced cattle isolates were assigned to phylogroups B1, while human isolates represented phylogroups A, C, D and E. In general, in silico resistome and virulence factor identification did not reveal differences between hosts or phylogroups, except for lpfA and iss found to be cattle and B1 phylogroup specific. The most frequent plasmids replicon genes found in strains from both hosts were of IncF type, which are commonly associated with carriage of antimicrobial and virulence genes. Commensal E. coli from cattle and attendants were found to share same genotypes and to carry antimicrobial resistance and virulence genes associated with both intra and extraintestinal E. coli pathotypes.201627977751
593170.9992Antimicrobial resistance determinants among anaerobic bacteria isolated from footrot. Antibiotic resistance has been evaluated among 36 Gram negative and anaerobic bacilli (10 Bacteroides, 11 Prevotella, 7 Porphyromonas and 8 Fusobacterium strains) isolated from clinical cases of caprine and ovine footrot (necrotic pododermatitis). The initial analysis on this bacterial consortium evaluates the relationships existing among antimicrobial resistance determinants, phenotype expression and mobilization potential. The Bacteroides strains were generally resistant to penicillins, first-generation cephalosporins, tetracycline and erythromycin, and expressed low level of β-lactamase activity. The main determinants found among the Bacteroides strains were cepA and tetQ genes, conferring resistance to β-lactams and tetracycline, respectively. A general susceptibility to β-lactams was shown for most Prevotella, Porphyromonas and Fusobacterium strains, where none of the β-lactamase genes described in Bacteroides was detected. Resistance to tetracycline and/or erythromycin was found among the three bacterial groups. Although tetQ genes were detected for several Prevotella and Porphyromonas strains, a unique ermF positive was revealed among Prevotella strains. The expression of resistance markers was not related with the polymorphism of their coding sequences. However, the finding of sequence signatures for conjugative transposons in the vicinities of tetQ and ermF suggests a mobilization potential that might have contributed to the spread of antimicrobial resistance genes.201222177890
296080.9992Antibiotic resistance, virulence genes, and phylogenetic groups of bacteria isolated from wild passerine birds in Iran. Wild passerine birds may serve as environmental reservoirs and as vectors for the long-distance dispersal of microorganisms and resistance determinants. However, there is no much knowledge on pathogenic bacteria in wild birds in Iran. The present study aimed to analyze antibiotic resistance in wild passerine birds collected from the northeast region of Iran as the rich breeding bird fauna with a special focus on Escherichia coli virulence, integron, and phylogenetic groups. A total of 326 isolates were collected and identified from the cloaca of wild birds using a swab. The results showed a high percentage of resistance to tetracycline (45.8%) and ampicillin (26.7%). The resistance genes, tet(A), tet(B), tet(M), and tet(L) were detected in tetracycline-resistant isolates, while the blaTEM gene was the most prevalent in ampicillin-resistant isolates (38.6%). Out of the 129 E. coli isolates examined, 99 isolates were found to have virulence gene, with the highest prevalence of the fimbriae (fimH) gene (22.4%). Additionally, the E. coli strains were most often classified into phylogenetic groups B1 (48.8%) followed by B2 (19.3%). Also, the highest average frequency of class 1 integron was detected among our isolates. Results indicated that wild birds are reservoirs of multidrug resistance and virulence genes that may have the potential to be transferred to other organisms, including humans.202439298116
279990.9992Genetic and physiological characterization of oxytetracycline-resistant bacteria from giant prawn farms. Four hundred and thirteen oxytetracycline-resistant bacteria were recovered from six freshwater giant prawn farms with a history of oxytetracycline use. Most oxytetracyclineresistant isolates were Gram-negative bacteria. Six groups of oxytetracycline-resistant bacteria were classified using cluster analysis based on a comparison of levels of oxytetracycline resistance. Complex fingerprint patterns were obtained for 71 isolates studied. In general, the band patterns of isolates from different ponds were very similar, and the data indicated that the isolates were closely related. The exploration for crossresistance found that most of the 71 oxytetracycline-resistant isolates were also resistant to tetracycline and chlortetracycline, but had a relatively low resistance to doxycycline. Many isolates showed higher chlortetracycline resistance than oxytetracycline resistance. Additionally, the oxytetracyclineresistant isolates were examined for the presence of tetracycline resistance (tet) genes. Fifty percent of the isolates carried one of the 14 known tet genes examined. The most common determinants were TetA and TetD. However, TetB, TetC, TetE, TetK, TetL, and TetM were also found with various frequencies.200818309262
5935100.9992Antibiotic resistance genes in anaerobic bacteria isolated from primary dental root canal infections. Fourty-one bacterial strains isolated from infected dental root canals and identified by 16S rRNA gene sequence were screened for the presence of 14 genes encoding resistance to beta-lactams, tetracycline and macrolides. Thirteen isolates (32%) were positive for at least one of the target antibiotic resistance genes. These strains carrying at least one antibiotic resistance gene belonged to 11 of the 26 (42%) infected root canals sampled. Two of these positive cases had two strains carrying resistance genes. Six out of 7 Fusobacterium strains harbored at least one of the target resistance genes. One Dialister invisus strain was positive for 3 resistance genes, and 4 other strains carried two of the target genes. Of the 6 antibiotic resistance genes detected in root canal strains, the most prevalent were blaTEM (17% of the strains), tetW (10%), and ermC (10%). Some as-yet-uncharacterized Fusobacterium and Prevotella isolates were positive for blaTEM, cfxA and tetM. Findings demonstrated that an unexpectedly large proportion of dental root canal isolates, including as-yet-uncharacterized strains previously regarded as uncultivated phylotypes, can carry antibiotic resistance genes.201223108290
2027110.9992In Silico Detection of Integrons and Their Relationship with Resistance Phenotype of Salmonella Isolates from a Brazilian Pork Production Chain. The pork production chain is an important reservoir of antimicrobial resistant bacteria. This study identified and characterized integrons in Salmonella isolates from a Brazilian pork production chain and associate them with their antibiotic resistance pattern. A total of 41 whole-genome sequencing data of nontyphoidal Salmonella were analyzed using PlasmidSPAdes and IntegronFinder software. Nine isolates (21.9%) had some integrons identified (complete and/or incomplete). Six complete class 1 integrons were found, with streptomycin resistance genes (aadA1, aadA2) alone or downstream of a trimethoprim resistance gene (dfrA1, dfrA12), and some also containing resistance genes for sulfonamides (sul1, sul3) and chloramphenicol (cmlA1). Class 2 integron was detected in only one isolate, containing dfrA1-sat2-aadA1 gene cassettes. Five isolates harbored CALINs-clusters attC but lacking integrases-with antimicrobial resistance genes typically found in integron structures. In all, integrons were observed among four serotypes: Derby, Bredeney, Panama, and monophasic var. Typhimurium I 4,[5],12:i:-. The association of integrons with antibiotic resistance phenotype showed that these elements were predominantly identified in multidrug resistance isolates, and six of the seven gentamicin-resistant isolates had integrons. So, surveillance of integrons in Salmonella should be performed to identify the potential for the spread of antimicrobial resistance genes among bacteria.202438917456
2912120.9992Detection and characterization of antibiotic-resistance genes in Arcanobacterium pyogenes strains from abscesses of forest musk deer. Arcanobacterium pyogenes is commonly isolated from ruminant animals as an opportunistic pathogen that co-infects with other bacteria, normally causing surface or internal abscesses. Twenty-eight strains of A. pyogenes isolated from forest musk deer suppurative samples were identified by their 16S rRNA gene sequences, and confirmed by amplification of the pyolysin-encoding gene (plo) in all isolates. The MICs of 14 commonly used antibiotics were determined by an agar dilution method. Class 1 and 2 intI genes were amplified to determine whether integrons were present in the A. pyogenes genome. Class 1 gene cassettes were detected by specific primers and analysed by sequencing. All of the strains were susceptible to most fluoroquinolone antibiotics; however, high resistance rates were observed for β-lactams and trimethoprim. A total of 18 of the isolates (64.3%) were positive for the class 1 intI gene, and 16 (57.1%) contained class 1 gene cassettes with the aacC, aadA1, aadA2, blaP1 and dfr2a genes. Most were present in the multi-resistant isolates, indicating a general concordance between the presence of gene cassettes and antibiotic resistance, and that the integrons have played an important role in the dissemination of antimicrobial resistance in this species.201121852523
2014130.9992Class 1 and class 2 integrons in multidrug-resistant gram-negative bacteria isolated from the Salmon River, British Columbia. Using an enrichment protocol, we isolated 16 gram-negative, multidrug-resistant strains of known or opportunistic bacterial pathogens from the Salmon River in south-central British Columbia from 2005 to 2009, and investigated the genetic basis of their resistance to a variety of antibiotics. Of the 16 strains, 13 carried class 1 integrons and three carried class 2 integrons. Genes found in cassettes associated with the integrons included those for dihydrofolate reductases (dfrA1, dfrA12, dfrA17, and dfrB7), aminoglycoside adenyltransferases (aadA1, aadA2, aadA5, and aadB), streptothricin acetyltransferase (sat), and hypothetical proteins (orfF and orfC). A new gene cassette of unknown function, orf1, was discovered between dfrA1 and aadA5 in Escherichia sp. Other genes for resistance to tetracycline, chloramphenicol, streptomycin, and kanamycin (tetA, tetB, tetD; catA; strA-strB; and aphA1-Iab, respectively) were outside the integrons. Several of these resistance determinants were transferable by conjugation. The detection of organisms and resistance determinants normally associated with clinical settings attest to their widespread dispersal and suggest that regular monitoring of their presence in aquatic habitats should become a part of the overall effort to understand the epidemiology of antibiotic resistance genes in bacteria.201121627486
5948140.9992Genetic Diversity and Resistome Analysis of Campylobacter lari Isolated from Gulls in Croatia. Campylobacter lari is a thermotolerant bacterium that sporadically causes gastrointestinal diseases in humans and can be found in wildlife and the environment. C. lari is an understudied species, especially in wild birds such as gulls. Gulls are potentially good carriers of pathogens due to their opportunistic behavior and tendency to gather in large flocks. During winter and their breeding period, 1753 gulls were captured, and cloacal swabs were taken to be tested for the presence of C. lari. From isolated bacteria, the DNA was sequenced, and sequence types (ST) were determined. Sixty-four swabs were positive for C. lari, and from those, forty-three different STs were determined, of which thirty-one were newly described. The whole genome was sequenced for 43 random isolates, and the same isolates were tested for antimicrobial susceptibility using the broth microdilution method to compare them to WGS-derived antimicrobial-resistant isolates. All the tested strains were susceptible to erythromycin, gentamicin, and chloramphenicol, and all were resistant to ciprofloxacin. Resistance to ciprofloxacin was attributed to a gyrA_2 T86V mutation. Genes connected to possible beta-lactam resistance (blaOXA genes) were also detected.202337627730
5955150.9992Integrons and gene cassettes in clinical isolates of co-trimoxazole-resistant Gram-negative bacteria. Despite a trend of declining consumption, resistance to co-trimoxazole has increased during a 12-year period in Stockholm. The molecular background to this surprising development was investigated by using PCR to screen for integrons and specific resistance genes, followed by sequence analysis of selected integrons, in 105 clinical urinary isolates of Gram-negative bacteria selected partly for trimethoprim resistance. Sixty-five integrons of class 1 or 2 were detected in a subset of 59 isolates, and of these positive isolates, all but one were resistant to trimethoprim. However, 11 isolates were resistant to trimethoprim, but negative for integrons. Isolates positive for integrons were resistant to an average of 4.2 antibiotics, compared with 1.9 antibiotics for integron-negative isolates. Despite this, the only gene cassettes identified in 19 class 1 integrons analysed were dfr and aadA cassettes. Thus, only resistance to trimethoprim, streptomycin, spectinomycin and sulphonamides could be explained by the presence of integrons in these isolates. A new dfr gene, named dfrA22, was discovered as a single gene cassette in a class 1 integron. In addition, sulphonamide resistance in many isolates was caused by carriage of sul2, which has no known association with integrons. Resistance to co-trimoxazole and many other antibiotics was thus not accounted for fully by the presence of integrons in these isolates.200515715715
2913160.9992Distribution of resistance genetic determinants among Vibrio cholerae isolates of 2012 and 2013 outbreaks in IR Iran. The objective of this study was to characterize antimicrobial resistance determinants in relation to antimicrobial susceptibility and genotyping profile in 20 clinical isolates of Vibrio cholerae. All of the isolates were resistant to streptomycin. The second most prevalent resistance was observed to trimethoprim (75%), co-trimoxazole (60%), tetracycline (50%), and minocycline (45%). About 50% of the isolates fulfilled the criteria of Multi Drug Resistance (MDR) phenotype. None of the isolates carried tet A, B, C, and, D determinants. This finding shows that tetracycline resistance determinants recognized so far, does not satisfactorily describe the 50% tetracycline resistance phenotype in this study, suggesting the possible contribution of other not yet characterized resistance mechanisms involved. Class 1 integron, widely distributed among enteric bacteria, was not detected among V. cholerae strains under study. Conversely, 100% of the isolates harbored SXT constin((int)), among which 70% were positive for dfrA1, strA, and strB genes. The sul1gene was present in 60% of the isolates while none of them contained floR gene. All the isolates uniformly appeared to be identical in fingerprinting profiles expected from outbreak strains. In conclusion, SXT element with its mosaic structure was the exclusive antimicrobial resistance determinant of clonal V. cholerae isolates taken from outbreaks of 2012 and 2013 in Iran.201728062293
2692170.9992Tetracycline Resistance Genes in Campylobacter jejuni and C. coli Isolated From Poultry Carcasses. BACKGROUND: Campylobacter is one of the leading bacterial species causing foodborne illnesses in humans. Antimicrobial agents have been extensively used for treatment of Campylobacter infections; but in the recent years, both animal and human isolates of this bacterium have shown resistance to several antibiotics such as tetracycline. OBJECTIVES: The aim of this study was to investigate the presence of genetic determinants of tetracycline resistance in Campylobacter spp. recovered from poultry carcasses in Shiraz, Iran. MATERIALS AND METHODS: Eighty-three thermophilic Campylobacter spp. Isolates were first identified based on multiplex polymerase chain reaction (PCR) and then screened for presence of tetracycline resistance genes (tet (A), tet (B), tet (O) and te (S)) by PCR. RESULTS: The overall prevalence of Campylobacter jejuni and C. coli among the examined isolates was 51.8% and 48.2%, respectively. Tetracycline resistance genes of tet (B) and tet (S) were not seen among these Campylobacter spp. Isolates, whereas the most common tet gene identified was tet (O), found in 83.1% (69/83) of all the isolates. The tet (O) gene sequence comparison between C. jejuni and C. coli showed 100% similarity and these sequences (JX853721and JX853722) were also identical to the homologous sequences of other strains of Campylobacter spp. existing in the GenBank databases. In addition, tet (A) was found in 18% (15/83) of Campylobacter spp. isolates. To our knowledge, this represents the first report of tet (A) in Campylobacter spp. There was 100% homology between the sequences of tet (A) from this study (JX891463 and JX891464) and the tet (A) sequences mentioned for other bacteria in the GenBank databases. CONCLUSIONS: The high prevalence of tet (O) resistance gene along with new detection of tet (A) resistance gene in Campylobacter spp. isolated from poultry carcasses revealed an extensive tetracycline resistance among Campylobacter isolates from poultry in Iran. It emphasized the need for cautious use of tetracycline in poultry production to decrease the extension of tetracycline-resistant Campylobacter spp.201425485062
2895180.9992Diversity of antimicrobial resistance genes and class-1-integrons in phylogenetically related porcine and human Escherichia coli. Antimicrobial resistant bacteria and resistance genes can be transferred between the microbial flora of humans and animals. To assess the dimension of this risk, we compared the phylogenetic ancestry of human and porcine tetracycline-insusceptible Escherichia coli. Further, we compared the resistance gene profiles (tetA/tetB/tetC/tetD/tetM/sulI/sulII/sulIII/strA-strB/addA) and the prevalence of class-1-integrons in isolates of identical and different phylogroups by endpoint-PCR. This is the first genotypic comparison of antimicrobial resistance in E. coli from humans and animals which allows for the phylogenetic ancestry of the isolates. E. coli isolates from diseased humans belonged regularly to phylogroup B2 (24.3%) or D (30.9%) and were rarely not typeable (7.2%); by contrast, isolates from pig manure were regularly not typeable (46.7%) and rarely grouped into phylogroup B2 (2.2%) or D (2.9%). Class-1-integrons were detected in 40.8% of clinical (n=152), in 9.5% of community-derived (n=21) and in 10.9% of porcine (n=137) E. coli. The prevalence of sulI (42.4%/16.0%) in phylogroup A and of tetA, tetB and sulII in phylogroup B1 differed significantly between human clinical and porcine strains. Human clinical isolates (except B2-isolates) carried significantly more different resistance genes per strain, compared to porcine or community-derived isolates. ERIC-PCR-analysis of B2- (and D-) isolates with identical genetic profiles revealed that only a minor part was clonally related. The dominant resistance gene profiles differed depending on phylogroup and source. Human and porcine isolates do not exceedingly share their genes, and might rapidly adapt their resistance gene equipment to meet the requirements of a new environment. The study underlines that resistance gene transfer between human and porcine isolates is limited, even in phylogenetically related isolates.201222854332
5425190.9992The novel mef(C)-mph(G) macrolide resistance genes are conveyed in the environment on various vectors. BACKGROUND: The novel tandem genes mef(C) and mph(G) have been reported in marine bacteria in Japan. This paper aimed to characterise the extent of environmental distribution of mef(C) and mph(G) as well as their dissemination and persistence in aquatic bacterial communities. METHODS: Erythromycin-resistant bacteria were isolated from Japan, Taiwan and Thailand aquaculture sites. The mef(C)-mph(G) genes were detected by PCR. The size of mobile genetic elements conveying mef(C) and mph(G) was examined by Southern blotting. The conjugation rate was assessed by filter mating. RESULTS: The mef(C)-mph(G) tandem genes were distributed in erythromycin-resistant isolates from aquaculture seawater in Japan and northern Taiwan and in animal farm wastewater in Thailand. A total of 29 bacterial isolates were positive for mef(C)-mph(G). The genes were found on vectors of various sizes. Partial sequencing of the traI relaxase gene revealed homology with a pAQU1-like plasmid, an IncA/C-type plasmid and an SXT/R391 family integrative conjugative element (SRI) as vectors. Thirteen isolates (45%) were positive for traI(pAQU-IncA/C-SRI), whereas the others were negative. The traI(pAQU-IncA/C-SRI)-positive isolates exhibited a higher transfer frequency (10(-4)-10(-5) transconjugants/donor) than traI(pAQU-IncA/C-SRI)-negative isolates (<10(-9)). CONCLUSIONS: These results suggest that mef(C)-mph(G) are coded on various vectors and are distributed among marine and wastewater bacteria in Asian countries. Vectors with traI(pAQU-IncA/C-SRI) play a role in the spread of mef(C)-mph(G).201728689921