# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7811 | 0 | 0.9608 | Removal of Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes Affected by Varying Degrees of Fouling on Anaerobic Microfiltration Membranes. An anaerobic membrane bioreactor was retrofitted with polyvinylidene fluoride (PVDF) microfiltration membrane units, each of which was fouled to a different extent. The membranes with different degrees of fouling were evaluated for their efficiencies in removing three antibiotic-resistant bacteria (ARB), namely, bla(NDM-1)-positive Escherichia coli PI-7, bla(CTX-M-15)-positive Klebsiella pneumoniae L7, and bla(OXA-48)-positive E. coli UPEC-RIY-4, as well as their associated plasmid-borne antibiotic resistance genes (ARGs). The results showed that the log removal values (LRVs) of ARGs correlated positively with the extent of membrane fouling and ranged from 1.9 to 3.9. New membranes with a minimal foulant layer could remove more than 5 log units of ARB. However, as the membranes progressed to subcritical fouling, the LRVs of ARB decreased at increasing operating transmembrane pressures (TMPs). The LRV recovered back to 5 when the membrane was critically fouled, and the achieved LRV remained stable at different operating TMPs. Furthermore, characterization of the surface attributed the removal of both the ARB and ARGs to adsorption, which was facilitated by an increasing hydrophobicity and a decreasing surface ζ potential as the membranes fouled. Our results indicate that both the TMP and the foulant layer synergistically affected ARB removal, but the foulant layer was the main factor that contributed to ARG removal. | 2017 | 28957626 |
| 7751 | 1 | 0.9584 | A novel hypothermic strain, Pseudomonas reactans WL20-3 with high nitrate removal from actual sewage, and its synergistic resistance mechanism for efficient nitrate removal at 4 °C. Nitrate can be well removed by bacteria at 25-30 °C. However, nitrate removal almost ceases at temperatures lower than 5 °C. In this study, a novel hypothermic strain, Pseudomonas reactans WL20-3 exhibited an excellent aerobic nitrate removal ability at 4 °C. It had high capability for the removal of nitrate, total dissolved nitrogen (TDN), and dissolved organic carbon (DOC) at 4 °C, achieving removal efficiencies of 100%, 87.91%, and 97.48%, respectively. The transcriptome analysis revealed all genes involved in the nitrate removal pathway were significantly up-regulated. Additionally, the up-regulation of ABC transporter genes and down-regulation of respiratory chain genes cooperated with the nitrate metabolism pathway to resist low-temperature stress. In actual sewage, inoculated with WL20-3, the nitrate removal efficiency was found to be 70.70%. Overall, these findings demonstrated the impressive capacity of the novel strain WL20-3 to remove nitrate and provided novel insights into the synergistic resistance mechanism of WL20-3 at low temperature. | 2023 | 37369315 |
| 6990 | 2 | 0.9576 | Metagenomics analysis of antibiotic resistance genes, the bacterial community and virulence factor genes of fouled filters and effluents from household water purifiers in drinking water. The aim of this study was to explore the influence and removal of household water purifiers (HWPs) on emerging contaminants in drinking water, and their distribution characteristics. The antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), virulence factor genes (VFGs) and bacterial communities were profiled in the fouled filters, influents, and effluents from HWPs with five steps of filtration after 150 days operation, using metagenomics. The results showed that the diversity of dominant species in Poly Propylene 1 μm (PP1) and nanofiltration membrane (NM) was significantly higher than that in other filters. Post-activated carbon (AC) was used to detect low species richness or diversity, and the highest proportion of dominant species, which contributes to the greater microbial risk of HWPs effluents in drinking water. The number of dominant bacterial genera in the filters disinfected with chloramine was higher than that in the same group disinfected with chlorine. The bacterial species richness or diversity in water was reduced by the purification of HWPs because the filter elements effectively trapped a variety of microorganisms. The relative abundance of Antibiotic efflux in the effluents of chlorinated and chloraminated HWPs was 5.58 × 10(-3) and 4.60 × 10(-3), respectively, which was the main resistance mechanism. High abundance of VFGs was found in HWPs effluents and the relative abundance of aggressive VFGs was significantly higher than those of defensive VFGs. Based on the co-occurrence results, 243 subtypes of ARGs co-occurred with VFGs, and a variety of bacteria were thought to be possible ARGs hosts, which indicated that the host bacteria of VFGs in HWP effluents had a stronger attack ability. The effluent of HWPs with only filtration processes is exposed to the risk of ARGs and VFGs. This study helps to understand the actual purification effect of HWPs and provides a theoretical reference for the management and control of ARGs pollution in domestic drinking water. | 2023 | 36075417 |
| 8112 | 3 | 0.9573 | Fate of antibiotic resistance bacteria and genes during enhanced anaerobic digestion of sewage sludge by microwave pretreatment. The fate of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) were investigated during the sludge anaerobic digestion (AD) with microwave-acid (MW-H), microwave (MW) and microwave-H2O2-alkaline (MW-H2O2) pretreatments. Results showed that combined MW pretreatment especially for the MW-H pretreatment could efficiently reduce the ARB concentration, and most ARG concentrations tended to attenuate during the pretreatment. The subsequent AD showed evident removal of the ARB, but most ARGs were enriched after AD. Only the concentration of tetX kept continuous declination during the whole sludge treatment. The total ARGs concentration showed significant correlation with 16S rRNA during the pretreatment and AD. Compared with unpretreated sludge, the AD of MW and MW-H2O2 pretreated sludge presented slightly better ARB and ARGs reduction efficiency. | 2016 | 26970692 |
| 7745 | 4 | 0.9572 | Iron-modified biochar boosts anaerobic digestion of sulfamethoxazole pharmaceutical wastewater: Performance and microbial mechanism. The accumulation of volatile fatty acids (VFAs) caused by antibiotic inhibition significantly reduces the treatment efficiency of sulfamethoxazole (SMX) wastewater. Few studies have been conducted to study the VFAs gradient metabolism of extracellular respiratory bacteria (ERB) and hydrogenotrophic methanogen (HM) under high-concentration sulfonamide antibiotics (SAs). And the effects of iron-modified biochar on antibiotics are unknown. Here, the iron-modified biochar was added to an anaerobic baffled reactor (ABR) to intensify the anaerobic digestion of SMX pharmaceutical wastewater. The results demonstrated that ERB and HM were developed after adding iron-modified biochar, promoting the degradation of butyric, propionic and acetic acids. The content of VFAs reduced from 1166.0 mg L(-1) to 291.5 mg L(-1). Therefore, chemical oxygen demand (COD) and SMX removal efficiency were improved by 22.76% and 36.51%, and methane production was enhanced by 6.19 times. Furthermore, the antibiotic resistance genes (ARGs) such as sul1, sul2, intl1 in effluent were decreased by 39.31%, 43.33%, 44.11%. AUTHM297 (18.07%), Methanobacterium (16.05%), Geobacter (6.05%) were enriched after enhancement. The net energy after enhancement was 0.7122 kWh m(-3). These results confirmed that ERB and HM were enriched via iron-modified biochar to achieve high efficiency of SMX wastewater treatment. | 2023 | 37030222 |
| 8113 | 5 | 0.9568 | Fate of antibiotic resistance genes in mesophilic and thermophilic anaerobic digestion of chemically enhanced primary treatment (CEPT) sludge. Anaerobic digestion (AD) of chemically enhanced primary treatment (CEPT) sludge and non-CEPT (conventional sedimentation) sludge were comparatively operated under mesophilic and thermophilic conditions. The highest methane yield (692.46±0.46mL CH(4)/g VS(removed) in CEPT sludge) was observed in mesophilic AD of CEPT sludge. Meanwhile, thermophilic conditions were more favorable for the removal of total antibiotic resistance genes (ARGs). In this study, no measurable difference in the fates and removal of ARGs and class 1 integrin-integrase gene (intI1) was observed between treated non-CEPT and CEPT sludge. However, redundancy analysis indicated that shifts in bacterial community were primarily accountable for the variations in ARGs and intI1. Network analysis further revealed potential host bacteria for ARGs and intI1. | 2017 | 28797965 |
| 7861 | 6 | 0.9568 | The removal of antibiotic resistant bacteria and genes and inhibition of the horizontal gene transfer by contrastive research on sulfidated nanoscale zerovalent iron activating peroxymonosulfate or peroxydisulfate. Antibiotic resistant bacteria (ARB) and the antibiotic resistance genes (ARGs) dissemination via plasmid-mediated conjugation have attracted considerable attentions. In this research, sulfidated nanoscale zerovalent iron (S-nZVI)/peroxymonosulfate (PMS) and S-nZVI/peroxydisulfate (PDS) process were investigated to inactivate ARB (Escherichia coli DH5α with RP4 plasmid, Pseudomonas. HLS-6 contains sul1 and intI1 on genome DNA sequence). S-nZVI/PMS system showed higher efficiency than S-nZVI/PDS on ARB inactivation. Thus, the optimal condition 28 mg/L S-nZVI coupled with 153.7 mg/L (0.5 mM) PMS was applied to remove both intracellular ARGs (iARGs) and ARB. The oxidative damage of ARB cell was systemically studied by cell viability, intracellular Mg(2+) levels, the changes of extracellular and internal structure, integrity of cell walls and membranes and enzymatic activities. S-nZVI/PMS effectively inactivated ARB (~7.32 log) within 15 min. These effects were greatly higher than those achieved individually. Moreover, removal efficiencies of iARGs sul1, intI1 and tetA were 1.52, 1.79 and 1.56 log, respectively. These results revealed that S-nZVI and PMS have a synergistic effect against ARB and iARGs. The regrowth assays illustrated that the ARB were effectively inactivated. By verifying the inhibitory impacts of S-nZVI/PMS treatment on conjugation transfer, this work highlights a promising alternative technique for inhibiting the horizontal gene transfer. | 2022 | 34482079 |
| 8054 | 7 | 0.9567 | Effects of nanoscale zero-valent iron on the performance and the fate of antibiotic resistance genes during thermophilic and mesophilic anaerobic digestion of food waste. The effects of nanoscale zero-valent iron (nZVI) on the performance of food waste anaerobic digestion and the fate of antibiotic resistance genes (ARGs) were investigated in thermophilic (TR) and mesophilic (MR) reactors. Results showed that nZVI enhanced biogas production and facilitated ARGs reduction. The maximum CH(4) production was 212.00 ± 4.77 ml/gVS with 5 g/L of nZVI in MR. The highest ARGs removal ratio was 86.64 ± 0.72% obtained in TR at nZVI of 2 g/L. nZVI corrosion products and their contribution on AD performance were analyzed. The abundance of tetracycline genes reduced significantly in nZVI amended digesters. Firmicutes, Chloroflexi, Proteobacteria and Spirochaetes showed significant positive correlations with various ARGs (p < 0.05) in MR and TR. Redundancy analysis indicated that microbial community was the main factor that influenced the fate of ARGs. nZVI changed microbial communities, with decreasing the abundance bacteria belonging to Firmicutes and resulting in the reduction of ARGs. | 2019 | 31505392 |
| 7860 | 8 | 0.9565 | Enhanced removal of antibiotic-resistant bacteria and resistance genes by three-dimensional electrochemical process using MgFe(2)O(4)-loaded biochar as both particle electrode and catalyst for peroxymonosulfate activation. In this study, MgFe(2)O(4)-loaded biochar (MFBC) was used as a three-dimensional particle electrode to active peroxymonosulfate (EC/MFBC/PMS) for the removal of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). The results demonstrated that, under the conditions of 1.0 mM PMS concentration, 0.4 g/L material dosage, 5 V voltage intensity, and MFBC preparation temperature of 600 °C, the EC/MFBC600/PMS system achieved complete inactivation of E. coli DH5α within 5 min and the intracellular sul1 was reduced by 81.5 % after 30 min of the treatment. Compared to EC and PMS alone treatments, the conjugation transfer frequency of sul1 rapidly declined by 92.9 % within 2 min. The cell membrane, proteins, lipids, as well as intracellular and extracellular ARGs in E. coli DH5α were severely damaged by free radicals in solution and intracellular reactive oxygen species (ROS). Furthermore, up-regulation was observed in genes associated with oxidative stress, SOS response and cell membrane permeability in E. coli DH5α, however, no significant changes were observed in functional genes related to gene conjugation and transfer mechanisms. This study would contribute to the underlying of PMS activation by three-dimensional particle electrode, and provide novel insights into the mechanism of ARB inactivation and ARGs degradation under PMS advanced oxidation treatment. | 2024 | 39197284 |
| 7848 | 9 | 0.9565 | Simultaneous Removal of Antibiotic Resistant Bacteria, Antibiotic Resistance Genes, and Micropollutants by FeS(2)@GO-Based Heterogeneous Photo-Fenton Process. The co-occurrence of various chemical and biological contaminants of emerging concerns has hindered the application of water recycling. This study aims to develop a heterogeneous photo-Fenton treatment by fabricating nano pyrite (FeS(2)) on graphene oxide (FeS(2)@GO) to simultaneously remove antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs), and micropollutants (MPs). A facile and solvothermal process was used to synthesize new pyrite-based composites. The GO coated layer forms a strong chemical bond with nano pyrite, which enables to prevent the oxidation and photocorrosion of pyrite and promote the transfer of charge carriers. Low reagent doses of FeS(2)@GO catalyst (0.25 mg/L) and H(2)O(2) (1.0 mM) were found to be efficient for removing 6-log of ARB and 7-log of extracellular ARG (e-ARG) after 30 and 7.5 min treatment, respectively, in synthetic wastewater. Bacterial regrowth was not observed even after a two-day incubation. Moreover, four recalcitrant MPs (sulfamethoxazole, carbamazepine, diclofenac, and mecoprop at an environmentally relevant concentration of 10 μg/L each) were completely removed after 10 min of treatment. The stable and recyclable composite generated more reactive species, including hydroxyl radicals (HO(•)), superoxide radicals (O(2)(• -)), singlet oxygen ((1)O(2)). These findings highlight that the synthesized FeS(2)@GO catalyst is a promising heterogeneous photo-Fenton catalyst for the removal of emerging contaminants. | 2022 | 35759741 |
| 7880 | 10 | 0.9562 | The synergistic mechanism of β-lactam antibiotic removal between ammonia-oxidizing microorganisms and heterotrophs. Nitrifying system is an effective strategy to remove numerous antibiotics, however, the contribution of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and heterotrophs for antibiotic removal are still unclear. In this study, the mechanism of β-lactam antibiotic (cefalexin, CFX) removal was studied in a nitrifying sludge system. Results showed that CFX was synergistically removed by AOB (Nitrosomonas, played a major role) and AOA (Candidatus_Nitrososphaera) through ammonia monooxygenase-mediated co-metabolism, and by heterotrophs (Pseudofulvimonas, Hydrogenophaga, RB41, Thauera, UTCFX1, Plasticicumulans, Phaeodactylibacter) through antibiotic resistance genes (ARGs)-encoded β-lactamases-mediated hydrolysis. Regardless of increased archaeal and heterotrophic CFX removal with the upregulation of amoA in AOA and ARGs, the system exhibited poorer CFX removal performance at 10 mg/L, mainly due to the inhibition of AOB. This study provides new reference for the important roles of heterotrophs and ARGs, opening the possibilities for the application of ARGs in antibiotic biodegradation. | 2023 | 36174754 |
| 7831 | 11 | 0.9561 | Integration of nanowire-confined electroporation of antibiotic-resistant bacteria and electroactivation of peracetic acid for eliminating intracellular resistance genes. Antimicrobial resistance is one of the most substantial challenges for global public health. To address the inefficient elimination of intracellular resistance genes (i-ARGs) in antibiotic-resistant bacteria (ARB) by peracetic acid (PAA) oxidation, we developed an integration strategy (NW-EP/EA) of nanowire-confined electroporation (NW-EP) of ARB cells and nanowire-confined electroactivation (NW-EA) of PAA with a sequential oxidation-reduction process. The locally enhanced electric field and electrocatalytic activity over NW tips prompted the formation of electroporation pores on ARB cells and the generation of reactive ⋅OH and RO⋅ radicals by PAA electroactivation. The NW-EP/EA with Pd-coated TiO(2)NW cathode with atomic H* evolution exhibited 0.6 -2.8-log higher i-ARG removal than the pristine TiO(2)NW cathode, especially achieving ∼5.0-log i-ARG removal (99.999 %) at 4.0 V and 2.0 mM PAA with ∼4.1-log synergistic effect and ∼10 times lower energy consumption as compared with the individual NW-EP (∼0.32-log and 52.1 %) and PAA (∼0.56-log and 74.4 %). For the sequential oxidation-reduction process, the electrooxidative activation of PAA on TiO(2)NW anode produced H(+) ions, ⋅OH and RO⋅ radicals for enlarging electroporation pores, and the generated H(+) ions promoted the evolution of atomic H* and electroreduction of PAA on subsequent Pd-TiO(2)NW cathode for further facilitating ARB cell damages, i-ARG leakage and degradation. The effective i-ARGs removal and HGT inhibition in tap water suggested the great application potentials of NW-EP/EA in the control of ARGs dissemination risks in drinking water. | 2025 | 40907311 |
| 7898 | 12 | 0.9559 | Effects of graphite and Mn ore media on electro-active bacteria enrichment and fate of antibiotic and corresponding resistance gene in up flow microbial fuel cell constructed wetland. This study assessed the influence of substrate type on pollutants removal, antibiotic resistance gene (ARG) fate and bacterial community evolution in up-flow microbial fuel cell constructed wetlands (UCW-MFC) with graphite and Mn ore electrode substrates. Better COD removal and higher bacterial community diversity and electricity generation performance were achieved in Mn ore constructed UCW-MFC (Mn). However, the lower concentration of sulfadiazine (SDZ) and the total abundances of ARGs were obtained in the effluent in the graphite constructed UCW-MFC (s), which may be related to higher graphite adsorption and filter capacity. Notably, both reactors can remove more than 97.8% of ciprofloxacin. In addition, significant negative correlations were observed between SDZ, COD concentration, ARG abundances and bacterial a-diversity indices. The LEfse analysis revealed significantly different bacterial communities due to the substrate differences in the two reactors, and Geobacter, a typical model electro-active bacteria (EAB), was greatly enriched on the anode of UCW-MFC (Mn). In contrast, the relative abundance of methanogens (Methanosaeta) was inhibited. PICRUSt analysis results further demonstrated that the abundance of extracellular electron transfer related functional genes was increased, but the methanogen function genes and multiple antibiotic resistance genes in UCW-MFC (Mn) anode were reduced. Redundancy analyses indicated that substrate type, antibiotic accumulation and bacterial community were the main factors affecting ARGs. Moreover, the potential ARG hosts and the co-occurrence of ARGs and intI1 were revealed by network analysis. | 2019 | 31442759 |
| 8056 | 13 | 0.9559 | Antibiotic resistance gene profiles and evolutions in composting regulated by reactive oxygen species generated via nano ZVI loaded on biochar. In this study, nano zero-valent iron loaded on biochar (BC-nZVI) was analyzed for its effects on antibiotic resistance genes (ARGs) in composting. The results showed that BC-nZVI increased reactive oxygen species (ROS) production, and the peak values of H(2)O(2) and OH were 22.95 % and 55.30 % higher than those of the control group, respectively. After 65 days, the relative abundances of representative ARGs decreased by 56.12 % in the nZVI group (with BC-nZVI added). An analysis of bacterial communities and networks revealed that Actinobacteria, Proteobacteria, and Firmicutes were the main hosts for ARGs, and BC-nZVI weakened the link between ARGs and host bacteria. Distance-based redundancy analysis showed that BC-nZVI altered the microbial community structure through environmental factors and that most ARGs were negatively correlated with ROS, suggesting that ROS significantly affected the relative abundance of ARGs. According to these results, BC-nZVI showed potential for decreasing the relative abundance of ARGs in composting. | 2023 | 37611721 |
| 7877 | 14 | 0.9559 | External circuit loading mode regulates anode biofilm electrochemistry and pollutants removal in microbial fuel cells. This study investigated the effects of different external circuit loading mode on pollutants removal and power generation in microbial fuel cells (MFC). The results indicated that MFC exhibited distinct characteristics of higher maximum power density (P(max)) (named MFC-HP) and lower P(max) (named MFC-LP). And the capacitive properties of bioanodes may affect anodic electrochemistry. Reducing external load to align with the internal resistance increased P(max) of MFC-LP by 54.47 %, without no obvious effect on MFC-HP. However, intermittent external resistance loading (IER) mitigated the biotoxic effects of sulfamethoxazole (SMX) (a persistent organic pollutant) on chemical oxygen demand (COD) and NH(4)(+)-N removal and maintained high P(max) (424.33 mW/m(2)) in MFC-HP. Meanwhile, IER mode enriched electrochemically active bacteria (EAB) and environmental adaptive bacteria Advenella, which may reduce antibiotic resistance genes (ARGs) accumulation. This study suggested that the external circuit control can be effective means to regulate electrochemical characteristics and pollutants removal performance of MFC. | 2024 | 39153696 |
| 8055 | 15 | 0.9559 | Effects of nano-zerovalent iron on antibiotic resistance genes during the anaerobic digestion of cattle manure. This study investigated the effects of adding nano-zerovalent iron (nZVI) at three concentrations (0, 80, and 160 mg/L) on the methane yield and the fate of antibiotic resistance genes (ARGs) during the anaerobic digestion (AD) of cattle manure. The addition of nZVI effectively enhanced the methane yield, where it significantly increased by 6.56% with 80 mg/L nZVI and by 6.43% with 160 mg/L nZVI. The reductions in the abundances of ARGs and Tn916/1545 were accelerated by adding 160 mg/L nZVI after AD. Microbial community analysis showed that nZVI mainly increased the abundances of bacteria with roles in hydrolysis and acidogenesis, whereas it reduced the abundance of Acinetobacter. Redundancy analysis indicated that the changes in mobile genetic elements made the greatest contribution to the fate of ARGs. The results suggest that 160 mg/L nZVI is a suitable additive for reducing the risks due to ARGs in AD. | 2019 | 31247529 |
| 7750 | 16 | 0.9558 | Efficient removal of enrofloxacin in swine wastewater using eukaryotic-bacterial symbiotic membraneless bioelectrochemical system. A eukaryotic-bacterial symbiotic membraneless bioelectrochemical system (EBES) reactor with eukaryotic-bacteria symbiotic cathode was developed to treat swine wastewater containing enrofloxacin (ENR), which had high performance at ENR tolerance and operational stability. With ENR concentrations shifting from 2 to 50 mg/L, the removal efficiencies of ENR, chemical oxygen demand (COD) and NH(4)(+)-N always were higher than 95 %, and the maximum power output (≥343 mW/m(3)) could be achieved. At 20 mg/L ENR, the removal efficiencies of ENR, COD and NH(4)(+)-N respectively reached to 99.4 ± 0.1 %, 98.5 % ± 0.1 %, and 96.3 % ± 0.5 %, corresponding to the open circuit voltage and maximum power density (P(max)) of EBES were 851 mV and 455 mW/m(3). The community analyses showed that bacteria (Comamonas, Rhodobacter, Rhodococcus, and Vermiphilaceae et al.), algae (Chlorella) and fungi (Rozellomycota, Trebouxiophyceae, Exophiala, and Aspergillus et al.) at genus level were the dominate populations in the EBES, and their abundance increased with ENR concentration, suggesting they played key roles to remove ENR and another nutrient element. The low relative abundances (1.9 ×10(-7) to 1.1 ×10(-5) copies/g) of aac (6')-ib-cr, qnrA, qnrD, qnrS, and gyrA in effluent revealed that the present EBES reactor had superior capabilities in controlling antibiotic-resistance genes and antibiotic-resistant bacteria. Our trial experiments provided a novel way for antibiotic livestock wastewater treatment. | 2025 | 39938376 |
| 7985 | 17 | 0.9557 | Differential response of nonadapted ammonia-oxidising archaea and bacteria to drying-rewetting stress. Climate change is expected to increase the frequency of severe drought events followed by heavy rainfall, which will influence growth and activity of soil microorganisms, through osmotic stress and changes in nutrient concentration. There is evidence of rapid recovery of processes and adaptation of communities in soils regularly experiencing drying/rewetting and lower resistance and resilience in nonadapted soils. A microcosm-based study of ammonia-oxidising archaea (AOA) and bacteria (AOB), employing a grassland soil that rarely experiences drought, was used to test this hypothesis and also whether AOB were more resistant and resilient, through greater tolerance of high ammonia concentrations produced during drought and rewetting. Treated soils were dried, incubated for 3 weeks, rewetted, incubated for a further 3 weeks and compared to untreated soils, maintained at a constant moisture content. Nitrate accumulation and AOA and AOB abundance (abundance of respective amoA genes) and community composition (DGGE analysis of AOA amoA and AOB 16S rRNA genes) were poorly adapted to drying-rewetting. AOA abundance and community composition were less resistant than AOB during drought and less resilient after rewetting, at times when ammonium concentration was higher. Data provide evidence for poor adaptation of microbial communities and processes to drying-rewetting in soils with no history of drought and indicate niche differentiation of AOA and AOB associated with high ammonia concentration. | 2014 | 25070168 |
| 8733 | 18 | 0.9557 | Enhanced anti-herbivore defense of tomato plants against Spodoptera litura by their rhizosphere bacteria. BACKGROUND: The use of beneficial microorganisms as an alternative for pest control has gained increasing attention. The objective of this study was to screen beneficial rhizosphere bacteria with the ability to enhance tomato anti-herbivore resistance. RESULTS: Rhizosphere bacteria in tomato field from Fuqing, one of the four locations where rhizosphere bacteria were collected in Fujian, China, enhanced tomato resistance against the tobacco cutworm Spodoptera litura, an important polyphagous pest. Inoculation with the isolate T6-4 obtained from the rhizosphere of tomato field in Fuqing reduced leaf damage and weight gain of S. litura larvae fed on the leaves of inoculated tomato plants by 27% in relative to control. Analysis of 16S rRNA gene sequence identities indicated that the isolate T6-4 was closely related to Stenotrophomonas rhizophila supported with 99.37% sequence similarity. In the presence of S. litura infestation, inoculation with the bacterium led to increases by a 66.9% increase in protease inhibitor activity, 53% in peroxidase activity and 80% in polyphenol oxidase activity in the leaves of inoculated plants as compared to the un-inoculated control. Moreover, the expression levels of defense-related genes encoding allene oxide cyclase (AOC), allene oxide synthase (AOS), lipoxygenase D (LOXD) and proteinase inhibitor (PI-II) in tomato leaves were induced 2.2-, 1.7-, 1.4- and 2.7-fold, respectively by T6-4 inoculation. CONCLUSION: These results showed that the tomato rhizosphere soils harbor beneficial bacteria that can systemically induce jasmonate-dependent anti-herbivore resistance in tomato plants. | 2022 | 35606741 |
| 7886 | 19 | 0.9557 | Resistance of anammox granular sludge to copper nanoparticles and oxytetracycline and restoration of performance. Nanoparticles and antibiotics, the two most frequently detected emerging pollutants from different wastewater sources, are eventually discharged into wastewater treatment plants. In this study, the widely used materials CuNPs and oxytetracycline (OTC) were selected as target pollutants to investigate their joint effects on anaerobic ammonium oxidation (anammox). The results indicated that the environmental concentration slightly inhibited the performance of the reactors, while the performance rapidly deteriorated within a week under high-level combined shocks (5.0 mg L(-1) CuNPs and 2.0 mg L(-1) OTC). After the second shock (2.5 mg L(-1) CuNPs and 2.0 mg L(-1) OTC), the resistance of anammox bacteria was enhanced, with an elevated relative abundance of Candidatus Kuenenia and absolute abundance of hzsA, nirS, and hdh. Moreover, the extracellular polymeric substance (EPS) content and specific anammox activity (SAA) showed corresponding changes. Improved sludge resistance was observed with increasing CuNP and OTC doses, which accelerated the recovery of performance. | 2020 | 32244076 |