# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2437 | 0 | 0.9770 | Periodontal pathogens and tetracycline resistance genes in subgingival biofilm of periodontally healthy and diseased Dominican adults. OBJECTIVE: The objective of this study was to compare the periodontopathogen prevalence and tetracycline resistance genes in Dominican patients with different periodontal conditions. METHODS: Seventy-seven samples were collected from healthy, gingivitis, chronic (CP) and aggressive (AgP) periodontitis patients. Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Prevotella intermedia, Parvimonas micra, Eikenella corrodens and Dialister pneumosintes and 11 resistance genes were studied by PCR. P. gingivalis fimA genotype was determined. RESULTS: In healthy patients, P. micra and P. intermedia were the most and least frequently detected, respectively. T. forsythia and E. corrodens appeared in 100% of gingivitis patients. Red complex, D. pneumosintes and E. corrodens were significantly more prevalent in CP compared to healthy patients. F. nucleatum and T. denticola were detected more frequently in AgP. A. actinomycetemcomitans was the most rarely observed in all groups. The fimA II genotype was the most prevalent in periodontitis patients. Seven tetracycline-resistant genes were detected. tet(Q), tet(32) and tet(W) showed the greatest prevalence. tet(32) was significantly more prevalent in CP than in healthy patients. CONCLUSIONS: Red complex bacteria and D. pneumosintes were significantly the most prevalent species among periodontitis patients. T. forsythia was the most frequently detected in this population. To our knowledge, this is the first study describing the tet(32) gene in subgingival biofilm from healthy and periodontally diseased subjects. CLINICAL RELEVANCE: This study contributes to the knowledge on the subgingival microbiota and its resistance genes of a scarcely studied world region. Knowing the prevalence of resistance genes could impact on their clinical prescription and could raise awareness to the appropriate use of antibiotics. | 2016 | 26121972 |
| 6122 | 1 | 0.9764 | Metatranscriptome and Resistome of the Endodontic Microbiome. INTRODUCTION: In this study, we used metatranscriptomics for the first time to investigate microbial composition, functional signatures, and antimicrobial resistance gene expression in endodontic infections. METHODS: Root canal samples were collected from ten teeth, including five primary and five persistent/secondary endodontic infections. RNA from endodontic samples was extracted, and RNA sequencing was performed on a NovaSeq6000 system (Illumina). Taxonomic analysis was performed using the Kraken2 bacterial database. Then, sequences with a taxonomic classification were annotated against the Universal Protein Knowledgebase for functional annotation and the Comprehensive Antibiotic Resistance Database for AR-like gene identification. RESULTS: Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria represented the dominant phyla, whereas Fusobacteria, Spirochetes, and Synergistetes were among the nondominant phyla. The top ten species were mainly represented by obligate (or quasiobligate) anaerobes, including Gram-negative (eg, Capnocytophaga sp. oral taxon 323, Fusobacterium nucleatum, Prevotella intermedia, Prevotella oris, Tannerella forsythia, and Tannerella sp. oral taxon HOT-286) and Gram-positive species (eg, Olsenella uli and Parvimonas micra). Transcripts encoding moonlighting proteins (eg, glycolytic proteins, translational elongation factors, chaperonin, and heat shock proteins) were highly expressed, potentially affecting bacterial adhesion, biofilm formation, host defense evasion, and inflammation induction. Endodontic bacteria expressed genes conferring resistance to antibiotic classes commonly used in dentistry, with a high prevalence and expression of tetracycline and lincosamide resistance genes. Antibiotic efflux and antibiotic target alteration/protection were the main resistance mechanisms. CONCLUSIONS: Metatranscriptomics revealed the activity of potential endodontic pathogens, which expressed putative virulence factors and a wide diversity of genes potentially involved in AR. | 2024 | 38719087 |
| 6056 | 2 | 0.9752 | Virulence, antibiotic resistance and biogenic amines of bacteriocinogenic lactococci and enterococci isolated from goat milk. The present study aimed to investigate the virulence, antibiotic resistance and biogenic amine production in bacteriocinogenic lactococci and enterococci isolated from goat milk in order to evaluate their safety. Twenty-nine bacteriocinogenic lactic acid bacteria (LAB: 11 Lactococcus spp., and 18 Enterococcus spp.) isolated from raw goat milk were selected and subjected to PCR to identify gelE, cylA, hyl, asa1, esp, efaA, ace, vanA, vanB, hdc1, hdc2, tdc and odc genes. The expression of virulence factors (gelatinase, hemolysis, lipase, DNAse, tyramine, histamine, putrescine) in different incubation temperatures was assessed by phenotypic methods, as well as the resistance to vancomycin, gentamicin, chloramphenicol, ampicillin and rifampicin (using Etest®). The tested isolates presented distinct combinations of virulence related genes, but not necessarily the expression of such factors. The relevance of identifying virulence-related genes in bacteriocinogenic LAB was highlighted, demanding for care in their usage as starter cultures or biopreservatives due to the possibility of horizontal gene transfer to other bacteria in food systems. | 2014 | 24960293 |
| 5888 | 3 | 0.9751 | Microbial Composition of Extracted Dental Alveoli in Dogs with Advanced Periodontitis. Periodontitis is a serious gum infection that damages the soft tissue and destroys the bone supporting the teeth. The aim of the study was to investigate the microbiota using traditional microbiology plating and metagenomic sequencing of extracted tooth alveoli in dogs with severe periodontitis. Isolation of culturable microorganisms was performed as part of bacteriological testing to provide bacteriological diagnosis to veterinary surgeons. Metagenomic sequencing was performed using shotgun sequencing on the Illumina HiSeq system platform. The most prevalent species at sites of periodontal infection detected by metagenomic sequencing were Porphyromonas gulae, Prevotella spp., Tannerella forsythia, Porphyromonas crevioricanis, Porphyromonas cangingivalis, and Bacteroides heparinolyticus. Pasteurella, Streptococcus, and Neisseria were the most frequently isolated culturable bacteria from infected sites detected by traditional microbiologic methods. Metagenomic data revealed that these three genera accounted for only 1.6% of all microbiota at the sites of infection. Antimicrobial resistance patterns of the isolated bacteria included resistance to ampicillin, doxycycline, sulfamethoxazole-trimethoprim, ciprofloxacin, colistin, cefotaxime, and chloramphenicol. Antimicrobial-resistant genes detected using shotgun sequencing also showed resistance to aminoglycosides and macrolides. Dogs with periodontal infections carry bacteria that can cause bite infections in humans as well as multi-resistant isolates. Therefore, treatment and prophylaxis or periodontal disease of dogs is important from a One Health perspective. | 2024 | 39065223 |
| 2092 | 4 | 0.9750 | Antibacterial activities of multi drug resistant Myroides odoratimimus bacteria isolated from adult flesh flies (Diptera: sarcophagidae) are independent of metallo beta-lactamase gene. Sarcophagidae) are well known cause of myiasis and their gut bacteria have never been studied for antimicrobial activity against bacteria. Antimicrobial studies of Myroides spp. are restricted to nosocomial strains. A Gram-negative bacterium, Myroides sp., was isolated from the gut of adult flesh flies (Sarcophaga sp.) and submitted to evaluation of nutritional parameters using Biolog GN, 16S rRNA gene sequencing, susceptibility to various antimicrobials by disc diffusion method and detection of metallo β-lactamase genes (TUS/MUS). The antagonistic effects were tested on Gram-negative and Gram-positive bacteria isolated from human clinical specimens, environmental samples and insect mid gut. Bacterial species included were Aeromonas hydrophila, A. culicicola, Morganella morganii subsp. sibonii, Ochrobactrum anthropi, Weissella confusa, Escherichia coli, Ochrobactrum sp., Serratia sp., Kestersia sp., Ignatzschineria sp., Bacillus sp. The Myroides sp. strain was resistant to penicillin-G, erythromycin, streptomycin, amikacin, kanamycin, gentamycin, ampicillin, trimethoprim and tobramycin. These strain showed antibacterial action against all bacterial strains except W. confusa, Ignatzschineria sp., A. hydrophila and M. morganii subsp. sibonii. The multidrug resistance of the strain was similar to the resistance of clinical isolates, inhibiting growth of bacteria from clinical, environmental and insect gut samples. The metallo β-lactamase (TUS/MUS) genes were absent, and resistance due to these genes was ruled out, indicating involvement of other secretion machinery. | 2008 | 24031236 |
| 6075 | 5 | 0.9749 | Molecular screening of beneficial and safety determinants from bacteriocinogenic lactic acid bacteria isolated from Brazilian artisanal calabresa. Despite of the beneficial relevance of several lactic acid bacteria (LAB) in the food industry, micro-organisms belonging to this group can determine spoilage in food products and carry a number of virulence and antibiotic resistance-related genes. This study aimed on the characterization of beneficial and safety aspects of five bacteriocinogenic LAB strains (Lactobacillus curvatus 12-named L. curvatus UFV-NPAC1), L. curvatus 36, Weissela viridescens 23, W. viridescens 31 and Lactococcus garvieae 36) isolated from an artisanal Brazilian calabresa, a traditional meat sausage. Regarding their beneficial aspects, all tested isolates were positive for mub, while EF226-cbp, EF1249-fbp and EF2380-maz were detected in at least one tested strain; none of the isolates presented map, EFTu or prgB. However, evaluated strains presented a variable pattern of virulence-related genes, but none of the strains presented gelE, cylA, efsA, cpd, int-Tn or sprE. Moreover, other virulence-related genes evaluated in this study were detected at different frequencies. L. curvatus 12 was generated positive results for ace, ccf, int, ermC, tetL, aac(6')-Ie-aph(2″)-Ia, aph(2″)-Ib, aph(2″)-Ic, bcrB, vanB and vanC2; L. curvatus 36: hyl, asa1, esp, int, ermC, tetK, aph(3')-IIIa, aph(2'')-Ic and vanC2; L. garvieae 32: asa1, ant(4')-Ia, aph(2'')-Ib, catA, vanA and vanC1; W. viridescens 23: esp, cob, ermB, aph(3')-IIIa, aph(2'')-Ic, vanA, vanB and vanC2; W. viridescens 31: hyl, esp, ermC, aph(3')-IIIa, aph(2'')-Ib, aph(2'')-Ic, catA, vanA and vanB. Despite presenting some beneficial aspects, the presence of virulence and antibiotic resistance genes jeopardize their utilization as starter or biopreservatives cultures in food products. Considering the inhibitory potential of these strains, an alternative would be the use of their bacteriocins as semi-purified or pure technological preparation. SIGNIFICANCE AND IMPACT OF THE STUDY: The food industry has a particular interest in using bacteriocinogenic lactic acid bacteria (LAB) as starter, probiotics and/or biopreservatives in different food products. Characterization of additional beneficial features is important to identify new, multifunctional potential probiotic strains. However, these strains can only be applied in food products only after being properly characterized according their potential negative aspects, such as virulence and antibiotic resistance genes. A wide characterization of beneficial and safety aspects of bacteriocinogenic LAB is determinant to guide the proper utilization of these strains, or their purified bacteriocins, by the food industry. | 2019 | 31250457 |
| 5440 | 6 | 0.9747 | Molecular structure and evolution of the conjugative multiresistance plasmid pRE25 of Enterococcus faecalis isolated from a raw-fermented sausage. Plasmid pRE25 from Enterococcus faecalis transfers resistances against kanamycin, neomycin, streptomycin, clindamycin, lincomycin, azithromycin, clarithromycin, erythromycin, roxithromycin, tylosin, chloramphenicol, and nourseothricin sulfate by conjugation in vitro to E. faecalis JH2-2, Lactococcus lactis Bu2, and Listeria innocua L19. Its nucleotide sequence of 50237 base pairs represents the largest, fully sequenced conjugative multiresistance plasmid of enterococci (Plasmid 46 (2001) 170). The gene for chloramphenicol resistance (cat) was identified as an acetyltransferase identical to the one of plasmid pIP501 of Streptococcus agalactiae. Erythromycin resistance is due to a 23S ribosomal RNA methyl transferase, again as found in pIP501 (ermB). The aminoglycoside resistance genes are packed in tandem as in transposon Tn5405 of Staphylococcus aureus: an aminoglycoside 6-adenyltransferase, a streptothricin acetyl transferase, and an aminoglycoside phosphotransferase.). Identical resistance genes are known from pathogens like Streptococcus pyogenes, S. agalactiae, S. aureus, Campylobacter coli, Clostridium perfringens, and Clostridium difficile. pRE25 is composed of a 30.5-kbp segment almost identical to pIP501. Of the 15 genes involved in conjugative transfer, 10 codes for putative transmembrane proteins (e.g. trsB, traC, trsF, trsJ, and trsL). The enterococcal part is joined into the pIP501 part by insertion elements IS1216V of E. faecium Tn1545 (three copies), and homologs of IS1062 (E. faecalis) and IS1485 (E. faecium). pRE25 demonstrates that enterococci from fermented food do participate in the molecular communication between Gram-positive and Gram-negative bacteria of the human and animal microflora. | 2003 | 14597005 |
| 6051 | 7 | 0.9746 | Antibiotic susceptibility of different lactic acid bacteria strains. Five lactic acid bacteria (LAB) strains belonging to species Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus delbrueckii subsp. lactis and Streptococcus thermophilus were tested for their susceptibility to 27 antibiotics. The minimum inhibitory concentrations of each antimicrobial were determined using a microdilution test. Among the strains a high susceptibility was detected for most of the cell-wall synthesis inhibitors (penicillins, cefoxitin and vancomycin) and resistance toward inhibitors of DNA synthesis (trimethoprim/sulfonamides and fluoroquinolones). Generally, the Lactobacillus strains were inhibited by antibiotics such as chloramphenicol, erythromycin and tetracycline at breakpoint levels lower or equal to the levels defined by the European Food Safety Authority. Despite the very similar profile of S. thermophilus LC201 to lactobacilli, the detection of resistance toward erythromycin necessitates the performance of additional tests in order to prove the absence of transferable resistance genes. | 2011 | 22146692 |
| 5390 | 8 | 0.9746 | Presence of erythromycin and tetracycline resistance genes in lactic acid bacteria from fermented foods of Indian origin. Lactic acid bacteria (LAB) resistant to erythromycin were isolated from different food samples on selective media. The isolates were identified as Enterococcus durans, Enterococcus faecium, Enterococcus lactis, Enterococcus casseliflavus, Lactobacillus salivarius, Lactobacillus reuteri, Lactobacillus plantarum, Lactobacillus fermentum, Pediococcus pentosaceus and Leuconostoc mesenteroides. Of the total 60 isolates, 88 % harbored the ermB gene. The efflux gene msrA was identified in E. faecium, E. durans, E. lactis, E. casseliflavus, P. pentosaceus and L. fermentum. Further analysis of the msrA gene by sequencing suggested its homology to msrC. Resistance to tetracycline due to the genes tetM, tetW, tetO, tetK and tetL, alone or in combination, were identified in Lactobacillus species. The tetracycline efflux genes tetK and tetL occurred in P. pentosaceus and Enterococcus species. Since it appeared that LAB had acquired these genes, fermented foods may be a source of antibiotic resistance. | 2012 | 22644346 |
| 2168 | 9 | 0.9745 | PREVALENCE OF GENETIC MARKERS OF RESISTANCE TO ANTIBIOTICS IN BIOFILM-FORMING STRAINS OF OBLIGATE AND ELECTIVE ANAEROBES. AIM: Comparative study of frequency of detection of genetic markers of resistance to antibiotics forming in anaerobic bacteria under the conditions of mixed biofilms in a clinical setting and comparison of data of phenotypic and genotypic methods of study. MATERIALS AND METHODS: 66 strains of bacteria forming biofilm with PCR detection of antibiotics were studied: Streptococcus sanguinis, Streptococcus salivarius, Staphylococcus aureus, Staphylococcus epi- dermidis, Enterococcusfaecalis, Klebsiellapneumoniae, Pseudomonas aeruginosa and anaero- bic pathogens - Porphyromonasgingivalis, Tannerella forsythia, Parvinonas micra, Prevotella intermedia. Modelling of microbial biofilms in vitro and scanning electron microscopy were carried out. RESULTS: The studied strains of resident and pathogenic microbiota were established to have genes that code resistance to P-lactam antibiotics; carbapenems, macrolides, tetra- cyclines. Genetic markers of resistance to P-lactam antibiotics (STX-M 14 MECA - cepha- losporines), including carbapenems.(VIM and NDM, but not Oxa-48), glycopeptides (VanA and VanB), macrolides (ERM), tetracycline (Tet) and QNRB plasmids (fluoroquinolones) were detected in strains by PCR. CONCLUSION: The most frequently used preparations in dental practice - metronidazole and lincomycin (for the last 20 - 30 years) have shown the highest number of resistant strains - 52.3 and 22.7%, respectively. The frequency of detection of genetic markers of resistance to other studied preparations did not exceed 2.5 - 11.4%. Minimal quantity of resistant strains of anaerobic bacteria was detected for carbapenems and fluoroquinolones. | 2017 | 30695540 |
| 5395 | 10 | 0.9745 | Assessment of Antibiotic Susceptibility within Lactic Acid Bacteria and Coagulase-Negative Staphylococci Isolated from Hunan Smoked Pork, a Naturally Fermented Meat Product in China. The aim of this study was to evaluate the antibiotic susceptibility of lactic acid bacteria (LAB) and coagulase-negative staphylococci (CNS) strains isolated from naturally fermented smoked pork produced in Hunan, China. A total of 48 strains were isolated by selective medium and identified at the species level by 16S rRNA gene sequencing as follows: Staphylococcus carnosus (23), Lactobacillus plantarum (12), Lactobacillus brevis (10), Lactobacillus sakei (1), Weissella confusa (1), and Weissella cibaria (1). All strains were typed by RAPD-PCR, and their susceptibility to 15 antibiotics was determined and expressed as the minimum inhibitory concentration (MIC) using agar dilution method. High resistance to penicillin G, streptomycin, gentamycin, vancomycin, chloramphenicol, norfloxacin, ciprofloxacin, kanamycin, and neomycin was found among the isolates. All the strains were sensitive to ampicillin, while the susceptibility to tetracycline, oxytetracycline, erythromycin, lincomycin, and roxithromycin varied. The presence of relevant resistance genes was investigated by PCR and sequencing, with the following genes detected: str(A), str(B), tet(O), tet(M), ere(A), and catA. Eleven strains, including 3 S. carnosus, 6 L. plantarum, and 2 L. brevis, harbored more than 3 antibiotic resistance genes. Overall, multiple antibiotic resistance patterns were widely observed in LAB and S. carnosus strains isolated from Hunan smoked pork. Risk assessment should be carried out with regard to the safe use of LAB and CNS in food production. PRACTICAL APPLICATION: We evaluated the antibiotic resistance of lactic acid bacteria and coagulase-negative staphylococci strains isolated from Chinese naturally fermented smoked pork. Our results may provide important data on establishing breakpoint standards for LAB and CNS and evaluating the safety risk of these strains for commercial use. | 2018 | 29786847 |
| 6013 | 11 | 0.9744 | Multidrug resistance in hydrocarbon-tolerant Gram-positive and Gram-negative bacteria. New Gram-positive and Gram-negative bacteria were isolated from Poeni oily sludge, using enrichment procedures. The six Gram-positive strains belong to Bacillus, Lysinibacillus and Rhodococcus genera. The eight Gram-negative strains belong to Shewanella, Aeromonas, Pseudomonas and Klebsiella genera. Isolated bacterial strains were tolerant to saturated (i.e., n-hexane, n-heptane, n-decane, n-pentadecane, n-hexadecane, cyclohexane), monoaromatic (i.e., benzene, toluene, styrene, xylene isomers, ethylbenzene, propylbenzene) and polyaromatic (i.e., naphthalene, 2-methylnaphthalene, fluorene) hydrocarbons, and also resistant to different antimicrobial agents (i.e., ampicillin, kanamycin, rhodamine 6G, crystal violet, malachite green, sodium dodecyl sulfate). The presence of hydrophilic antibiotics like ampicillin or kanamycin in liquid LB-Mg medium has no effects on Gram-positive and Gram-negative bacteria resistance to toxic compounds. The results indicated that Gram-negative bacteria are less sensitive to toxic compounds than Gram-positive bacteria, except one bacteria belonging to Lysinibacillus genus. There were observed cellular and molecular modifications induced by ampicillin or kanamycin to isolated bacterial strains. Gram-negative bacteria possessed between two and four catabolic genes (alkB, alkM, alkB/alkB1, todC1, xylM, PAH dioxygenase, catechol 2,3-dioxygenase), compared with Gram-positive bacteria (except one bacteria belonging to Bacillus genus) which possessed one catabolic gene (alkB/alkB1). Transporter genes (HAE1, acrAB) were detected only in Gram-negative bacteria. | 2011 | 21478643 |
| 6079 | 12 | 0.9743 | Genomic and metabonomic methods reveal the probiotic functions of swine-derived Ligilactobacillus salivarius. BACKGROUND: As substitutes for antibiotics, probiotic bacteria protect against digestive infections caused by pathogenic bacteria. Ligilactobacillus salivarius is a species of native lactobacillus found in both humans and animals. Herein, a swine-derived Ligilactobacillus salivarius was isolated and shown to colonize the ileal mucous membrane, thereby promoting nutritional digestion, absorption, and immunity. To evaluate its probiotic role, the entire genome was sequenced, the genetic information was annotated, and the metabolic information was analyzed. RESULTS: The phylogenetic relationship indicated that the bacteria was closer to L. salivarius MT573555.1 and MT585431.1. Functional genes included transporters, membrane proteins, enzymes, heavy metal resistance proteins, and putative proteins; metabolism-related genes were the most abundant. The six types of metabolic pathways secreted by L. salivarius were mainly composed of secretory transmembrane proteins and peptides. The secretory proteins of L. salivarius were digestive enzymes, functional proteins that regulate apoptosis, antibodies, and hormones. Non-targeted metabolomic analysis of L. salivarius metabolites suggested that ceramide, pyrrolidone- 5- carboxylic acid, N2-acetyl-L-ornithine, 2-ethyl-2-hydroxybutyric acid, N-lactoyl-phenylalanine, and 12 others were involved in antioxidation, repair of the cellular membrane, anticonvulsant, hypnosis, and appetite inhibition. Metabolites of clavaminic acid, antibiotic X14889C, and five other types of bacteriocins were identified, namely phenyllactic acid, janthitrem G, 13-demethyl tacrolimus, medinoside E, and tertonasin. The adherence and antioxidation of L. salivarius were also predicted. No virulence genes were found. CONCLUSION: The main probiotic properties of L. salivarius were identified using genomic, metabonomic, and biochemical assays, which are beneficial for porcine feeding. Our results provided deeper insights into the probiotic effects of L. salivarius. | 2023 | 37648978 |
| 5392 | 13 | 0.9742 | Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products. The study provides phenotypic and molecular analyses of the antibiotic resistance in lactic acid bacteria (LAB) from fermented foods in Xi'an, China. LAB strains (n = 84) belonging to 16 species of Lactobacillus (n = 73), and Streptococcus thermophilus (n = 11) were isolated and identified by sequencing their 16S rRNA gene. All strains were susceptible to ampicillin, bacitracin, and cefsulodin, and intrinsically resistant to nalidixic acid, kanamycin, and vancomycin (except L. bulgaricus, L. acidophilus, and S. thermophilus, which were susceptible to vancomycin). Some strains had acquired resistance for penicillin (n = 2), erythromycin (n = 9), clindamycin (n = 5), and tetracycline (n = 14), while resistance to gentamycin, ciprofloxacin, streptomycin, and chloramphenicol was species dependent. Minimum inhibitory concentrations presented in this study will help to review microbiological breakpoints for some of the species of Lactobacillus. The erm(B) gene was detected from two strains of each of L. fermentum and L. vaginalis, and one strain of each of L. plantarum, L. salivarius, L. acidophilus, L. animalis, and S. thermophilus. The tet genes were identified from 12 strains of lactobacilli from traditional foods. This is the first time, the authors identified tet(S) gene from L. brevis and L. kefiri. The erm(B) gene from L. fermentum NWL24 and L. salivarius NWL33, and tet(M) gene from L. plantarum NWL22 and L. brevis NWL59 were successfully transferred to Enterococcus faecalis 181 by filter mating. It was concluded that acquired antibiotic resistance is well dispersed in fermented food products in Xi'an, China and its transferability to other genera should be monitored closely. | 2011 | 21212956 |
| 5887 | 14 | 0.9742 | Safety assessment of Bifidobacterium longum JDM301 based on complete genome sequences. AIM: To assess the safety of Bifidobacterium longum (B. longum) JDM301 based on complete genome sequences. METHODS: The complete genome sequences of JDM301 were determined using the GS 20 system. Putative virulence factors, putative antibiotic resistance genes and genes encoding enzymes responsible for harmful metabolites were identified by blast with virulence factors database, antibiotic resistance genes database and genes associated with harmful metabolites in previous reports. Minimum inhibitory concentration of 16 common antimicrobial agents was evaluated by E-test. RESULTS: JDM301 was shown to contain 36 genes associated with antibiotic resistance, 5 enzymes related to harmful metabolites and 162 nonspecific virulence factors mainly associated with transcriptional regulation, adhesion, sugar and amino acid transport. B. longum JDM301 was intrinsically resistant to ciprofloxacin, amikacin, gentamicin and streptomycin and susceptible to vancomycin, amoxicillin, cephalothin, chloramphenicol, erythromycin, ampicillin, cefotaxime, rifampicin, imipenem and trimethoprim-sulphamethoxazol. JDM301 was moderately resistant to bacitracin, while an earlier study showed that bifidobacteria were susceptible to this antibiotic. A tetracycline resistance gene with the risk of transfer was found in JDM301, which needs to be experimentally validated. CONCLUSION: The safety assessment of JDM301 using information derived from complete bacterial genome will contribute to a wider and deeper insight into the safety of probiotic bacteria. | 2012 | 22346255 |
| 6080 | 15 | 0.9741 | Metagenomic Insights into the Taxonomic and Functional Features of Traditional Fermented Milk Products from Russia. Fermented milk products (FMPs) contain probiotics that are live bacteria considered to be beneficial to human health due to the production of various bioactive molecules. In this study, nine artisanal FMPs (kefir, ayran, khurunga, shubat, two cottage cheeses, bryndza, khuruud and suluguni-like cheese) from different regions of Russia were characterized using metagenomics. A metagenomic sequencing of ayran, khurunga, shubat, khuruud and suluguni-like cheese was performed for the first time. The taxonomic profiling of metagenomic reads revealed that Lactococcus species, such as Lc. lactis and Lc. cremoris prevailed in khuruud, bryndza, one sample of cottage cheese and khurunga. The latter one together with suluguni-like cheese microbiome was dominated by bacteria, affiliated to Lactobacillus helveticus (32-35%). In addition, a high proportion of sequences belonging to the genera Lactobacillus, Lactococcus and Streptococcus but not classified at the species level were found in the suluguni-like cheese. Lactobacillus delbrueckii, as well as Streptococcus thermophilus constituted the majority in another cottage cheese, kefir and ayran metagenomes. The microbiome of shubat, produced from camel's milk, was significantly distinctive, and Lentilactobacillus kefiri, Lactobacillus kefiranofaciens and Bifidobacterium mongoliense represented the dominant components (42, 7.4 and 5.6%, respectively). In total, 78 metagenome-assembled genomes with a completeness ≥ 50.2% and a contamination ≤ 8.5% were recovered: 61 genomes were assigned to the Enterococcaceae, Lactobacillaceae and Streptococcaceae families (the Lactobacillales order within Firmicutes), 4 to Bifidobacteriaceae (the Actinobacteriota phylum) and 2 to Acetobacteraceae (the Proteobacteria phylum). A metagenomic analysis revealed numerous genes, from 161 to 1301 in different products, encoding glycoside hydrolases and glycosyltransferases predicted to participate in lactose, alpha-glucans and peptidoglycan hydrolysis as well as exopolysaccharides synthesis. A large number of secondary metabolite biosynthetic gene clusters, such as lanthipeptides, unclassified bacteriocins, nonribosomal peptides and polyketide synthases were also detected. Finally, the genes involved in the synthesis of bioactive compounds like β-lactones, terpenes and furans, nontypical for fermented milk products, were also found. The metagenomes of kefir, ayran and shubat was shown to contain either no or a very low count of antibiotic resistance genes. Altogether, our results show that traditional indigenous fermented products are a promising source of novel probiotic bacteria with beneficial properties for medical and food industries. | 2023 | 38276185 |
| 5396 | 16 | 0.9741 | Antibiotic Resistance of Coagulase-Negative Staphylococci and Lactic Acid Bacteria Isolated from Naturally Fermented Chinese Cured Beef. This study provided phenotypic and molecular analysis of the antibiotic resistance within coagulase-negative staphylococci and lactic acid bacteria isolated from naturally fermented Chinese cured beef. A total of 49 strains were isolated by selective medium and identified at the species level by 16S rRNA gene sequencing as follows: Staphylococcus carnosus (37), Lactobacillus plantarum (6), Weissella confusa (4), Lactobacillus sakei (1), and Weissella cibaria (1). All strains were typed by random amplified polymorphic DNA fingerprinting, and their antibiotic resistances profiles to 15 antibiotics were determined as the MIC by using the agar dilution method. All the tested strains were sensitive to ampicillin, and most of them were also sensitive to penicillin, gentamycin, neomycin, norfloxacin, and ciprofloxacin with low MICs. High resistance to streptomycin, vancomycin, erythromycin, roxithromycin, lincomycin, and kanamycin was widely observed, while the resistant levels to tetracycline, oxytetracycline, and chloramphenicol varied. The presence of corresponding resistance genes in resistant isolates was investigated by PCR, with the following genes detected: tet(M) gene in 9 S. carnosus strains and 1 W. confusa strain; erm(F) gene in 10 S. carnosus strains; ere(A) gene in 6 S. carnosus strains; ere(A) gene in 4 S. carnosus strains and 1 L. plantarum strain; and str(A) gene and str(B) gene in 3 S. carnosus strains. The results indicated that multiple antibiotic resistances were common in coagulase-negative staphylococci and lactic acid bacteria strains isolated from naturally fermented Chinese cured beef. Safety analysis and risk assessment should be performed for application in meat products. | 2018 | 30485765 |
| 2169 | 17 | 0.9741 | E-test antibiotics susceptibility of strict anaerobic bacteria. The E-test is convenient for testing susceptibility of anaerobes. From September 1998 to September 1999, 194 strains (105 Gram-positive bacteria, 89 Gram-negative bacteria) of clinically relevant samples were tested against five antibiotics benzylpenicillin, amoxicillin-clavulanic acid, clindamycin, metronidazole and imipenem on blood agar plates. Resistance to benzyl penicillin is widespread and Gram-negative bacteria and resistance to amoxicillin-clavulanic acid is exceptional. Metronidazole is very effective against anaerobes except non-spore-forming aerotolerant Gram-positive rods and Peptostreptococcus micros. | 2003 | 16887712 |
| 5162 | 18 | 0.9741 | Genomic identification and characterization of Streptococcus oralis group that causes intraamniotic infection. BACKGROUND: Intraamniotic infection is a cause of spontaneous preterm labor. Streptococcus mitis is a common pathogen identified in intraamniotic infection, with the possible route of hematogenous dissemination from the oral cavity or migration from the vaginal canal. However, there are a few reports on Streptococcus oralis, a member of the S. mitis group, as a cause of pathogen in intraamniotic infection. We reported herein whole genome sequencing and comparative genomic analysis of S. oralis strain RAOG5826 that causes intraamniotic infection. RESULTS: Streptococcus mitis was initially identified from amniotic fluid, vaginal swab, and fetal blood of a patient presenting with preterm prelabor rupture of membranes with intraamniotic infection by the use of conventional microbiological methods (biochemical phenotype, MALDI-ToF, 16 S rRNA). Subsequently, this strain was later identified as S. oralis RAOG5826 by whole-genome hybrid sequencing. Genes involved in macrolide and tetracycline resistance, namely ermB and tet(M), and mutations in penicillin-binding protein were present in the genome. Moreover, potential virulence genes were predicted and compared with other Streptococcal species. CONCLUSION: We reported a comprehensive genomic analysis of S. oralis, which causes intraamniotic infection. S. mitis was initially identified by conventional microbiological identification. However, whole-genome hybrid sequencing demonstrates S. oralis with complete profiles of antimicrobial resistance genes and potential virulence factors. This study highlights the limitations of traditional techniques and underscores the importance of genomic sequencing for accurate diagnosis and tailored antimicrobial treatment. The study also suggests that S. oralis may be an underestimated pathogen in intraamniotic infection. | 2025 | 41023353 |
| 5386 | 19 | 0.9741 | Antibiotic resistance of lactic acid bacteria isolated from Chinese yogurts. The aim of this study was to evaluate the susceptibility of 43 strains of lactic acid bacteria, isolated from Chinese yogurts made in different geographical areas, to 11 antibiotics (ampicillin, penicillin G, roxithromycin, chloramphenicol, tetracycline, chlortetracycline, lincomycin, kanamycin, streptomycin, neomycin, and gentamycin). The 43 isolates (18 Lactobacillus bulgaricus and 25 Streptococcus thermophilus) were identified at species level and were typed by random amplified polymorphic DNA analysis. Thirty-five genotypically different strains were detected and their antimicrobial resistance to 11 antibiotics was determined using the agar dilution method. Widespread resistance to ampicillin, chloramphenicol, chlortetracycline, tetracyclines, lincomycin, streptomycin, neomycin, and gentamycin was found among the 35 strains tested. All of the Strep. thermophilus strains tested were susceptible to penicillin G and roxithromycin, whereas 23.5 and 64.7% of Lb. bulgaricus strains, respectively, were resistant. All of the Strep. thermophilus and Lb. bulgaricus strains were found to be resistant to kanamycin. The presence of the corresponding resistance genes in the resistant isolates was investigated through PCR, with the following genes detected: tet(M) in 1 Lb. bulgaricus and 2 Strep. thermophilus isolates, ant(6) in 2 Lb. bulgaricus and 2 Strep. thermophilus isolates, and aph(3')-IIIa in 5 Lb. bulgaricus and 2 Strep. thermophilus isolates. The main threat associated with these bacteria is that they may transfer resistance genes to pathogenic bacteria, which has been a major cause of concern to human and animal health. To our knowledge, the aph(3')-IIIa and ant(6) genes were found in Lb. bulgaricus and Strep. thermophilus for the first time. Further investigations are required to analyze whether the genes identified in Lb. bulgaricus and Strep. thermophilus isolates might be horizontally transferred to other species. | 2012 | 22916881 |