FORMED - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
623200.9975Genetic manipulation of the restricted facultative methylotroph Hyphomicrobium X by the R-plasmid-mediated introduction of the Escherichia coli pdh genes. The inability of Hyphomicrobium X to grow on compounds such as pyruvate and succinate is most likely due to the absence of a functional pyruvate dehydrogenase (PDH) complex. Further support for this was sought by studying the effect of the introduction of the Escherichia coli pdh genes in Hyphomicrobium X on the pattern of substrate utilization by the latter organism. These genes were cloned by in vivo techniques using the broad-host range conjugative plasmid RP4::Mucts. Plasmid RP4 derivatives containing pdh genes were selected by their ability to complement a pyruvate dehydrogenase deletion mutant of E. coli, strain JRG746 recA (ace-1pd) delta 18. The plasmids thus obtained could be transferred through an intermediary host (C600 recA), selecting only for an antibiotic resistance coded for by RP4 and back into JRG746 or other E. coli pdh mutants, upon which they still conferred the wild type phenotype. Enzyme assays showed that the latter strains, when carrying plasmid RP4'pdh1 also possessed PDH complex activity. Conjugation between the auxotrophic E. coli JRG746 (RP4'pdh1) strain and Hyphomicrobium X on pyruvate minimal agar gave rise to progeny which, on the basis of its morphology (stalked bacteria), their ability to grow on C1-compounds and to denitrify (now also with pyruvate) were identified as hyphomicrobia. This Hyphomicrobium X transconjugant was also able to grow in minimal medium with succinate, but no other novel growth substrates have been identified so far.(ABSTRACT TRUNCATED AT 250 WORDS)19846393893
43910.9975Sequence and organization of pMAC, an Acinetobacter baumannii plasmid harboring genes involved in organic peroxide resistance. Acinetobacter baumannii 19606 harbors pMAC, a 9540-bp plasmid that contains 11 predicted open-reading frames (ORFs). Cloning and transformation experiments using Acinetobacter calcoaceticus BD413 mapped replication functions within a region containing four 21-bp direct repeats (ori) and ORF 1, which codes for a predicted replication protein. Subcloning and tri-parental mating experiments mapped mobilization functions to the product of ORF 11 and an adjacent predicted oriT. Three ORFs code for proteins that share similarity to hypothetical proteins encoded by plasmid genes found in other bacteria, while the predicted products of three others do not match any known sequence. The product of ORF 8 is similar to Ohr, a hydroperoxide reductase responsible for organic peroxide detoxification and resistance in bacteria. This ORF is immediately upstream of a coding region whose product is related to the MarR family of transcriptional regulators. Disk diffusion assays showed that A. baumannii 19606 is resistant to the organic peroxide-generating compounds cumene hydroperoxide (CHP) and tert-butyl hydroperoxide (t-BHP), although to levels lower than those detected in Pseudomonas aeruginosa PAO1. Cloning and introduction of the ohr and marR ORFs into Escherichia coli was associated with an increase in resistance to CHP and t-BHP. This appears to be the first case in which the genetic determinants involved in organic peroxide resistance are located in an extrachromosomal element, a situation that can facilitate the horizontal transfer of genetic elements coding for a function that protects bacterial cells from oxidative damage.200616530832
868620.9974Improving Cadmium Resistance in Escherichia coli Through Continuous Genome Evolution. Cadmium (Cd) is a heavy metal that is extremely toxic to many organisms; however, microbes are highly adaptable to extreme conditions, including heavy metal contamination. Bacteria can evolve in the natural environment, generating resistant strains that can be studied to understand heavy-metal resistance mechanisms, but obtaining such adaptive strains usually takes a long time. In this study, the genome replication engineering assisted continuous evolution (GREACE) method was used to accelerate the evolutionary rate of the Escherichia coli genome to screen for E. coli mutants with high resistance to cadmium. As a result, a mutant (8mM-CRAA) with a minimum inhibitory concentration (MIC) of 8 mM cadmium was generated; this MIC value was approximately eightfold higher than that of the E. coli BL21(DE3) wild-type strain. Sequencing revealed 329 single nucleotide polymorphisms (SNPs) in the genome of the E. coli mutant 8mM-CRAA. These SNPs as well as RNA-Seq data on gene expression induced by cadmium were used to analyze the genes related to cadmium resistance. Overexpression, knockout and mutation of the htpX (which encodes an integral membrane heat shock protein) and gor (which encodes glutathione reductase) genes revealed that these two genes contribute positively to cadmium resistance in E. coli. Therefore, in addition to the previously identified cadmium resistance genes zntA and capB, many other genes are also involved in bacterial cadmium resistance. This study assists us in understanding the mechanism of microbial cadmium resistance and facilitating the application of heavy-metal remediation.201930842762
18830.9974Resistance to ag(i) cations in bacteria: environments, genes and proteins. Bacterial resistance to Ag(I) has been reported periodically with isolates from many environments where toxic levels of silver might be expected to occur, but initial reports were limited to the occurrence of resistant bacteria. The availability of silver-resistance conferring DNA sequences now allow genetic and mechanistic studies that had basically been missing. The genes determining Ag(I) resistance were sequenced from a plasmid found in a burn ward isolate. The 14.2 kb determinant contains seven recognized genes, arranged in three mRNA transcriptional units. The silE gene determines an extracellular (periplasmic space) metal-binding protein of 123 amino acids, including ten histidine residues implicated in Ag(I) binding. SilE is homologous to PcoE, of copper resistance. The next two genes, silR and silS, determine a two protein, histidine-kinase membrane sensor and aspartyl phosphate transcriptional responder, similar to other two component systems such as CzcR and CzcS (for cadmium, zinc and cobalt resistance) and PcoR and PcoS (for copper resistance). The remaining four genes, silCBAP, are co-transcribed and appear to determine Ag(+) efflux, with SilCBA homologous to CzcCBA, a three component cation/proton antiporter, and SilP a novel P-type ATPase with a amino-terminal histidine-rich cation-specificity region. The effects of increasing Ag(+) concentrations and growth medium halides (Cl-, Br- and I-) have been characterized, with lower Cl- concentrations facilitating resistance and higher concentrations toxicity. The properties of this unique Ag(I)-binding SilE protein are being characterized. Sequences similar to the silver-resistance DNA are being characterized by Southern blot DNA/DNA hybridization, PCR in vitro DNA synthesis and DNA sequencing. More than 25 additional closely related sequences have been identified in bacteria from diverse sources. Initial DNA sequencing results shows approximately 5-20% differences in DNA sequences.199918475907
930440.9974Variation of the flagellin gene locus of Campylobacter jejuni by recombination and horizontal gene transfer. The capacity of Campylobacter jejuni to generate genetic diversity was determined for its flagellar region. Recombination within a genome, as well as recombination after the uptake of exogenous DNA, could be demonstrated. The subunit of the flagellar filament of C. jejuni is encoded by two tandem genes, flaA and flaB, which are highly similar and therefore subject to recombination. A spontaneous recombination within this locus was demonstrated in a bacterial clone containing an antibiotic-resistance gene inserted in flaA. A recombinant was isolated in which the antibiotic-resistance gene had been repositioned into flaB, indicating that genetic information can be exchanged between the two flagellin genes of C. jejuni. The occurrence of recombinational events after the uptake of exogenous DNA by naturally competent bacteria was demonstrated with two mutants containing different antibiotic-resistance markers in their flagellin genes. Double-resistant transformants were formed when purified chromosomal donor DNA was added to a recipient strain, when the two bacterial cultures were mixed under conditions that induce natural competence, or when the two strains were cocultured. Both mechanisms of recombination may be used by the pathogenic organism to escape the immunological responses of the host or otherwise adapt to the environment.19957894725
904250.9973Resistance of Francisella novicida to fosmidomycin associated with mutations in the glycerol-3-phosphate transporter. The methylerythritol phosphate (MEP) pathway is essential in most prokaryotes and some lower eukaryotes but absent from human cells, and is a validated target for antimicrobial drug development. The formation of MEP is catalyzed by 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR). MEP pathway genes have been identified in many category A and B biothreat agents, including Francisella tularensis, which causes the zoonosis tularemia. Fosmidomycin (Fos) inhibits purified Francisella DXR. This compound also inhibits the growth of F. tularensis NIH B38, F. novicida and F. tularensis subsp. holarctica LVS bacteria. Related compounds such as FR900098 and the lipophilic prodrug of FR900098 (compound 1) have been developed to improve the bioavailability of these DXR inhibitors. In performing disk-inhibition assays with these compounds, we observed breakthrough colonies of F. novicida in the presence of Fos, suggesting spontaneous development of Fos resistance (Fos(R)). Fos(R) bacteria had decreased sensitivity to both Fos and FR900098. The two most likely targets for the development of mutants would be the DXR enzyme itself or the glycerol-3-phosphate transporter (GlpT) that allows entry of Fos into the bacteria. Sensitivity of Fos(R)F. novicida bacteria to compound 1 was not abated suggesting that spontaneous resistance is not due to mutation of DXR. We thus predicted that the glpT transporter may be mutated leading to this resistant phenotype. Supporting this, transposon insertion mutants at the glpT locus were also found to be resistant to Fos. DNA sequencing of four different spontaneous Fos(R) colonies demonstrated a variety of deletions in the glpT coding region. The overall frequency of Fos(R) mutations in F. novicida was determined to be 6.3 × 10(-8). Thus we conclude that one mechanism of resistance of F. novicida to Fos is caused by mutations in GlpT. This is the first description of spontaneous mutations in Francisella leading to Fos(R).201222905031
45160.9973Functional Analysis of the Acinetobacter baumannii XerC and XerD Site-Specific Recombinases: Potential Role in Dissemination of Resistance Genes. Modules composed of a resistance gene flanked by Xer site-specific recombination sites, the vast majority of which were found in Acinetobacter baumannii, are thought to behave as elements that facilitate horizontal dissemination. The A. baumannii xerC and xerD genes were cloned, and the recombinant clones used to complement the cognate Escherichia coli mutants. The complemented strains supported the resolution of plasmid dimers, and, as is the case with E. coli and Klebsiella pneumoniae plasmids, the activity was enhanced when the cells were grown in a low osmolarity growth medium. Binding experiments showed that the partially purified A. baumannii XerC and XerD proteins (XerC(Ab) and XerD(Ab)) bound synthetic Xer site-specific recombination sites, some of them with a nucleotide sequence deduced from existing A. baumannii plasmids. Incubation with suicide substrates resulted in the covalent attachment of DNA to a recombinase, probably XerC(Ab), indicating that the first step in the recombination reaction took place. The results described show that XerC(Ab) and XerD(Ab) are functional proteins and support the hypothesis that they participate in horizontal dissemination of resistant genes among bacteria.202032668667
18970.9973Arsenate detoxification in a Pseudomonad hypertolerant to arsenic. Pseudomonas sp. strain As-1, obtained from an electroplating industrial effluent, was capable of growing aerobically in growth medium supplemented with up to 65 mM arsenate (As (V)), significantly higher concentrations than those tolerated by other reference arsenic resistant bacteria. The majority of the arsenic was detected in culture supernatants as arsenite (As (III)) and X-ray absorbance spectroscopy suggested that 30% of this cell-bound arsenic was As (V), 65% As (III) and 5% of arsenic was associated with sulphur. PCR analysis using primers designed against arsenic resistance genes of other Gram-negative bacteria confirmed the presence of an arsenic resistance operon comprising of three genes, arsR, arsB and arsC in order of predicted transcription, and consistent with a role in intracellular reduction of As (V) and efflux of As (III). In addition to this classical arsenic resistance mechanism, other biochemical responses to arsenic were implicated. Novel arsenic-binding proteins were purified from cellular fractions, while proteomic analysis of arsenic-induced cultures identified the upregulation of additional proteins not normally associated with the metabolism of arsenic. Cross-talk with a network of proteins involved in phosphate metabolism was suggested by these studies, consistent with the similarity between the phosphate and arsenate anions.200717160678
836480.9973Trimeric autotransporter adhesins in members of the Burkholderia cepacia complex: a multifunctional family of proteins implicated in virulence. Trimeric autotransporter adhesins (TAAs) are multimeric surface proteins exclusively found in bacteria. They are involved in various biological traits of pathogenic Gram-negative bacteria including adherence, biofilm formation, invasion, survival within eukaryotic cells, serum resistance, and cytotoxicity. TAAs have a modular architecture composed by a conserved membrane-anchored C-terminal domain and a variable number of stalk and head domains. In this study, a bioinformatic approach has been used to analyze the distribution and architecture of TAAs among Burkholderia cepacia complex (Bcc) genomes. Fifteen genomes were probed revealing a total of 74 encoding sequences. Compared with other bacterial species, the Bcc genomes contain a large number of TAAs (two genes to up to eight genes, such as in B. cenocepacia). Phylogenetic analysis showed that the TAAs grouped into at least eight distinct clusters. TAAs with serine-rich repeats are clearly well separated from others, thereby representing a different evolutionary lineage. Comparative gene mapping across Bcc genomes reveals that TAA genes are inserted within conserved synteny blocks. We further focused our analysis on the epidemic strain B. cenocepacia J2315 in which seven TAAs were annotated. Among these, three TAA-encoding genes (BCAM019, BCAM0223, and BCAM0224) are organized into a cluster and are candidates for multifunctional virulence factors. Here we review the current insights into the functional role of BCAM0224 as a model locus.201122919579
36390.9973Constitutive arsenite oxidase expression detected in arsenic-hypertolerant Pseudomonas xanthomarina S11. Pseudomonas xanthomarina S11 is an arsenite-oxidizing bacterium isolated from an arsenic-contaminated former gold mine in Salsigne, France. This bacterium showed high resistance to arsenite and was able to oxidize arsenite to arsenate at concentrations up to 42.72 mM As[III]. The genome of this strain was sequenced and revealed the presence of three ars clusters. One of them is located on a plasmid and is organized as an "arsenic island" harbouring an aio operon and genes involved in phosphorous metabolism, in addition to the ars genes. Neither the aioXRS genes nor a specific sigma-54-dependent promoter located upstream of aioBA genes, both involved in regulation of arsenite oxidase expression in other arsenite-oxidizing bacteria, could be identified in the genome. This observation is in accordance with the fact that no difference was observed in expression of arsenite oxidase in P. xanthomarina S11, whether or not the strain was grown in the presence of As[III].201525753102
437100.9973Cloning of genes responsible for acetic acid resistance in Acetobacter aceti. Five acetic acid-sensitive mutants of Acetobacter aceti subsp. aceti no. 1023 were isolated by mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. Three recombinant plasmids that complemented the mutations were isolated from a gene bank of the chromosome DNA of the parental strain constructed in Escherichia coli by using cosmid vector pMVC1. One of these plasmids (pAR1611), carrying about a 30-kilobase-pair (kb) fragment that conferred acetic acid resistance to all five mutants, was further analyzed. Subcloning experiments indicated that a 8.3-kb fragment was sufficient to complement all five mutations. To identify the mutation loci and genes involved in acetic acid resistance, insertional inactivation was performed by insertion of the kanamycin resistance gene derived from E. coli plasmid pACYC177 into the cloned 8.3-kb fragment and successive integration into the chromosome of the parental strain. The results suggested that three genes, designated aarA, aarB, and aarC, were responsible for expression of acetic acid resistance. Gene products of these genes were detected by means of overproduction in E. coli by use of the lac promoter. The amino acid sequence of the aarA gene product deduced from the nucleotide sequence was significantly similar to those of the citrate synthases (CSs) of E. coli and other bacteria. The A. aceti mutants defective in the aarA gene were found to lack CS activity, which was restored by introduction of a plasmid containing the aarA gene. A mutation in the CS gene of E. coli was also complemented by the aarA gene. These results indicate that aarA is the CS gene.19902156811
6270110.9972Arctic Psychrotolerant Pseudomonas sp. B14-6 Exhibits Temperature-Dependent Susceptibility to Aminoglycosides. Bacteria can evade antibiotics by acquiring resistance genes, as well as switching to a non-growing dormant state without accompanying genetic modification. Bacteria in this quiescent state are called persisters, and this non-inheritable ability to withstand multiple antibiotics is referred to as antibiotic tolerance. Although all bacteria are considered to be able to form antibiotic-tolerant persisters, the antibiotic tolerance of extremophilic bacteria is poorly understood. Previously, we identified the psychrotolerant bacterium Pseudomonas sp. B14-6 from the glacier foreland of Midtre Lovénbreen in High Arctic Svalbard. Herein, we investigated the resistance and tolerance of Pseudomonas sp. B14-6 against aminoglycosides at various temperatures. This bacterium was resistant to streptomycin and susceptible to apramycin, gentamicin, kanamycin, and tobramycin. The two putative aminoglycoside phosphotransferase genes aph1 and aph2 were the most likely contributors to streptomycin resistance. Notably, unlike the mesophilic Pseudomonas aeruginosa PA14, this cold-adapted bacterium demonstrated reduced susceptibility to all tested aminoglycosides in a temperature-dependent manner. Pseudomonas sp. B14-6 at a lower temperature formed the persister cells that shows tolerance to the 100-fold minimum inhibitory concentration (MIC) of gentamicin, as well as the partially tolerant cells that withstand 25-fold MIC gentamicin. The temperature-dependent gentamicin tolerance appears to result from reduced metabolic activity. Lastly, the partially tolerant Pseudomonas sp. B14-6 cells could slowly proliferate under the bactericidal concentrations of aminoglycosides. Our results demonstrate that Pseudomonas sp. B14-6 has a characteristic ability to form cells with a range of tolerance, which appears to be inversely proportional to its growth rate.202236009888
170120.9972Effect of arsenite and growth in biofilm conditions on the evolution of Thiomonas sp. CB2. Thiomonas bacteria are ubiquitous at acid mine drainage sites and play key roles in the remediation of water at these locations by oxidizing arsenite to arsenate, favouring the sorption of arsenic by iron oxides and their coprecipitation. Understanding the adaptive capacities of these bacteria is crucial to revealing how they persist and remain active in such extreme conditions. Interestingly, it was previously observed that after exposure to arsenite, when grown in a biofilm, some strains of Thiomonas bacteria develop variants that are more resistant to arsenic. Here, we identified the mechanisms involved in the emergence of such variants in biofilms. We found that the percentage of variants generated increased in the presence of high concentrations of arsenite (5.33 mM), especially in the detached cells after growth under biofilm-forming conditions. Analysis of gene expression in the parent strain CB2 revealed that genes involved in DNA repair were upregulated in the conditions where variants were observed. Finally, we assessed the phenotypes and genomes of the subsequent variants generated to evaluate the number of mutations compared to the parent strain. We determined that multiple point mutations accumulated after exposure to arsenite when cells were grown under biofilm conditions. Some of these mutations were found in what is referred to as ICE19, a genomic island (GI) carrying arsenic-resistance genes, also harbouring characteristics of an integrative and conjugative element (ICE). The mutations likely favoured the excision and duplication of this GI. This research aids in understanding how Thiomonas bacteria adapt to highly toxic environments, and, more generally, provides a window to bacterial genome evolution in extreme environments.202033034553
187130.9972Functional coexistence of twin arsenic resistance systems in Pseudomonas putida KT2440. The genome of the soil bacterium Pseudomonas putida KT2440 bears two virtually identical arsRBCH operons putatively encoding resistance to inorganic arsenic species. Single and double chromosomal deletions in each of these ars clusters of this bacterium were tested for arsenic sensitivity and found that the contribution of each operon to the resistance to the metalloid was not additive, as either cluster sufficed to endow cells with high-level resistance. However, otherwise identical traits linked to each of the ars sites diverged when temperature was decreased. Growth of the various mutants at 15°C (instead of the standard 30°C for P. putida) uncovered that ars2 affords a much higher resistance to As (III) than the ars1 counterpart. Reverse transcription polymerase chain reaction of arsB1 and arsB2 genes as well as lacZ fusions to the Pars1 and Pars2 promoters traced the difference to variations in transcription of the corresponding gene sets at each temperature. Functional redundancy may thus be selected as a stable condition - rather than just as transient state - if it affords one key activity to be expressed under a wider range of physicochemical settings. This seems to provide a straightforward solution to regulatory problems in environmental bacteria that thrive under changing scenarios.201524673935
8365140.9972Comparative genomic analysis of Acinetobacter strains isolated from murine colonic crypts. BACKGROUND: A restricted set of aerobic bacteria dominated by the Acinetobacter genus was identified in murine intestinal colonic crypts. The vicinity of such bacteria with intestinal stem cells could indicate that they protect the crypt against cytotoxic and genotoxic signals. Genome analyses of these bacteria were performed to better appreciate their biodegradative capacities. RESULTS: Two taxonomically different clusters of Acinetobacter were isolated from murine proximal colonic crypts, one was identified as A. modestus and the other as A. radioresistens. Their identification was performed through biochemical parameters and housekeeping gene sequencing. After selection of one strain of each cluster (A. modestus CM11G and A. radioresistens CM38.2), comparative genomic analysis was performed on whole-genome sequencing data. The antibiotic resistance pattern of these two strains is different, in line with the many genes involved in resistance to heavy metals identified in both genomes. Moreover whereas the operon benABCDE involved in benzoate metabolism is encoded by the two genomes, the operon antABC encoding the anthranilate dioxygenase, and the phenol hydroxylase gene cluster are absent in the A. modestus genomic sequence, indicating that the two strains have different capacities to metabolize xenobiotics. A common feature of the two strains is the presence of a type IV pili system, and the presence of genes encoding proteins pertaining to secretion systems such as Type I and Type II secretion systems. CONCLUSIONS: Our comparative genomic analysis revealed that different Acinetobacter isolated from the same biological niche, even if they share a large majority of genes, possess unique features that could play a specific role in the protection of the intestinal crypt.201728697749
8940150.9972Construction of aminoglycoside-sensitive Burkholderia cenocepacia strains for use in studies of intracellular bacteria with the gentamicin protection assay. Burkholderia cenocepacia is a multidrug-resistant opportunistic pathogen that infects the airways of patients with cystic fibrosis (CF) and can survive intracellularly in macrophages and epithelial cells. The gentamicin protection assay, which relies on the poor ability of gentamicin or other aminoglycosides to permeate eukaryotic cell membranes, is traditionally employed to quantify intracellular bacteria. However, the high resistance of these bacteria to aminoglycosides hampers the use of the gentamicin protection assay to investigate intracellular infection by B. cenocepacia. Here, we report the construction of gentamicin-sensitive strains of B. cenocepacia carrying a deletion of the BCAL1674, BCAL1675, and BCAL1676 genes that form an operon encoding an AmrAB-OprA-like efflux pump. We show that bacteria carrying this deletion are hypersensitive to gentamicin and also delay phagolysosomal fusion upon infection of RAW 264.7 murine macrophages, as previously demonstrated for the parental strain. We also demonstrate for the first time that low concentrations of gentamicin can be used to effectively kill extracellular bacteria and reliably quantify the intracellular infection by B. cenocepacia, which can replicate in RAW 264.7 macrophages.201020348312
262160.9972Genome scanning in Haemophilus influenzae for identification of essential genes. We have developed a method for identifying essential genes by using an in vitro transposition system, with a small (975 bp) insertional element containing an antibiotic resistance cassette, and mapping these inserts relative to the deduced open reading frames of Haemophilus influenzae by PCR and Southern analysis. Putative essential genes are identified by two methods: mutation exclusion or zero time analysis. Mutation exclusion consists of growing an insertional library and identifying open reading frames that do not contain insertional elements: in a growing population of bacteria, insertions in essential genes are excluded. Zero time analysis consists of monitoring the fate of individual insertions after transformation in a growing culture: the loss of inserts in essential genes is observed over time. Both methods of analysis permit the identification of genes required for bacterial survival. Details of the mutant library construction and the mapping strategy, examples of mutant exclusion, and zero time analysis are presented.199910438768
9041170.9972Spontaneous and evolutionary changes in the antibiotic resistance of Burkholderia cenocepacia observed by global gene expression analysis. BACKGROUND: Burkholderia cenocepacia is a member of the Burkholderia cepacia complex group of bacteria that cause infections in individuals with cystic fibrosis. B. cenocepacia isolate J2315 has been genome sequenced and is representative of a virulent, epidemic CF strain (ET12). Its genome encodes multiple antimicrobial resistance pathways and it is not known which of these is important for intrinsic or spontaneous resistance. To map these pathways, transcriptomic analysis was performed on: (i) strain J2315 exposed to sub-inhibitory concentrations of antibiotics and the antibiotic potentiator chlorpromazine, and (ii) on spontaneous mutants derived from J2315 and with increased resistance to the antibiotics amikacin, meropenem and trimethoprim-sulfamethoxazole. Two pan-resistant ET12 outbreak isolates recovered two decades after J2315 were also compared to identify naturally evolved gene expression changes. RESULTS: Spontaneous resistance in B. cenocepacia involved more gene expression changes and different subsets of genes than those provoked by exposure to sub inhibitory concentrations of each antibiotic. The phenotype and altered gene expression in the resistant mutants was also stable irrespective of the presence of the priming antibiotic. Both known and novel genes involved in efflux, antibiotic degradation/modification, membrane function, regulation and unknown functions were mapped. A novel role for the phenylacetic acid (PA) degradation pathway genes was identified in relation to spontaneous resistance to meropenem and glucose was found to repress their expression. Subsequently, 20 mM glucose was found to produce greater that 2-fold reductions in the MIC of multiple antibiotics against B. cenocepacia J2315. Mutation of an RND multidrug efflux pump locus (BCAM0925-27) and squalene-hopene cyclase gene (BCAS0167), both upregulated after chlorpromazine exposure, confirmed their role in resistance. The recently isolated outbreak isolates had altered the expression of multiple genes which mirrored changes seen in the antibiotic resistant mutants, corroborating the strategy used to model resistance. Mutation of an ABC transporter gene (BCAS0081) upregulated in both outbreak strains, confirmed its role in B. cenocepacia resistance. CONCLUSIONS: Global mapping of the genetic pathways which mediate antibiotic resistance in B. cenocepacia has revealed that they are multifactorial, identified potential therapeutic targets and also demonstrated that putative catabolite repression of genes by glucose can improve antibiotic efficacy.201121781329
6227180.9972Lactoferrin Disaggregates Pneumococcal Biofilms and Inhibits Acquisition of Resistance Through Its DNase Activity. Streptococcus pneumoniae colonizes the upper airways of children and the elderly. Colonization progresses to persistent carriage when S. pneumoniae forms biofilms, a feature required for the development of pneumococcal disease. Nasopharyngeal biofilms are structured with a matrix that includes extracellular DNA (eDNA), which is sourced from the same pneumococci and other bacteria. This eDNA also allows pneumococci to acquire new traits, including antibiotic resistance genes. In this study, we investigated the efficacy of lactoferrin (LF), at physiological concentrations found in secretions with bactericidal activity [i.e., colostrum (100 μM), tears (25 μM)], in eradicating pneumococcal biofilms from human respiratory cells. The efficacy of synthetic LF-derived peptides was also assessed. We first demonstrated that LF inhibited colonization of S. pneumoniae on human respiratory cells without affecting the viability of planktonic bacteria. LF-derived peptides were, however, bactericidal for planktonic pneumococci but they did not affect viability of pre-formed biofilms. In contrast, LF (40 and 80 μM) eradicated pneumococcal biofilms that had been pre-formed on abiotic surfaces (i.e., polystyrene) and on human pharyngeal cells, as investigated by viable counts and confocal microscopy. LF also eradicated biofilms formed by S. pneumoniae strains with resistance to multiple antibiotics. We investigated whether treatment with LF would affect the biofilm structure by analyzing eDNA. Surprisingly, in pneumococcal biofilms treated with LF, the eDNA was absent in comparison to the untreated control (∼10 μg/ml) or those treated with LF-derived peptides. EMSA assays showed that LF binds S. pneumoniae DNA and a time-course study of DNA decay demonstrated that the DNA is degraded when bound by LF. This LF-associated DNase activity inhibited acquisition of antibiotic resistance genes in both in vitro transformation assays and in a life-like bioreactor system. In conclusion, we demonstrated that LF eradicates pneumococcal-colonizing biofilms at a concentration safe for humans and identified a LF-associated DNAse activity that inhibited the acquisition of resistance.201931681240
6177190.9972Genes involved in intrinsic antibiotic resistance of Acinetobacter baylyi. Bacterial genes defining intrinsic resistance to antibiotics encode proteins that can be targeted by antibiotic potentiators. To find such genes, a transposon insertion library of Acinetobacter baylyi was screened with subinhibitory concentrations of various antibiotics to find supersusceptible mutants. A DNA microarray printer was used to replica plate 10,000 individual library clones to select mutants unable to grow at 1/10 the MICs of 12 different antibiotics. Transposon insertions in 11 genes were found to cause an eightfold or higher hypersusceptibility to at least one antibiotic. Most of the mutants identified exhibited hypersusceptibility to beta-lactam antibiotics. These included mutants with disruptions of genes encoding proteins involved in efflux (acrB and oprM) as well as genes pertaining to peptidoglycan synthesis and modification (ampD, mpl, and pbpG). However, disruptions of genes encoding proteins with seemingly unrelated functions (gph, argH, hisF, and ACIAD0795) can also render cells hypersusceptible to beta-lactam antibiotics. A knockout of gshA, involved in glutathione biosynthesis, enhanced the susceptibility to metronidazole, while a knockout of recD, involved in recombination and repair, made the bacteria hypersusceptible to ciprofloxacin. Disruption of acrB in Escherichia coli rendered the cells hypersusceptible to several antibiotics. However, knockout mutants of other homologous genes in E. coli showed no significant changes in antibiotic MICs, indicating that the intrinsic resistance genes are species specific.200616940057