FORK - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
523400.9693A Multidrug-Resistant Escherichia coli Caused the Death of the Chinese Soft-Shelled Turtle (Pelodiscus sinensis). The rapid increase in drug resistance in recent years has become a significant global public health concern. Escherichia coli are ubiquitous bacteria, widely distributed in various environments. This study isolated a bacterial strain (HD-593) from diseased Chinese soft-shelled turtles (Pelodiscus sinensis). The bacterium was identified based on morphology, biochemical tests, and 16S rRNA sequencing, confirming it as E. coli. Drug susceptibility tests revealed that the HD-593 strain was highly resistant to ceftriaxone, enrofloxacin, doxycycline, sulfadiazine, gentamicin, neomycin, florfenicol, carbenicillin, cefradine, erythromycin, penicillin, ampicillin, midecamycin, and streptomycin. Resistance gene analysis confirmed the presence of quinolone resistance genes (oqxA and oqxB), aminoglycoside resistance genes (aac(3)-II and aphA1), a β-lactam resistance gene (blaTEM), and an acylaminol resistance gene (floR) in HD-593. The median lethal dose (LD50) of HD-593 for P. sinensis was 6.53 × 10(5) CFU/g. Biochemical analysis of serum revealed that HD-593 infection caused a significant reduction in total protein, albumin, and globulin levels, while markedly increasing the levels of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase. Histopathological analysis revealed severe intestinal damage characterized by villi detachment and muscle cell necrosis. Additionally, extensive splenocyte necrosis with nuclear marginalization, glomerular swelling, and pronounced hepatic steatosis accompanied by distended sinusoids were observed. This study identified a multidrug-resistant E. coli strain from deceased P. sinensis, suggesting that drug resistance genes may circulate in aquaculture ecosystems, posing potential risks to aquaculture.202540431566
306410.9682High Diversity but Monodominance of Multidrug-Resistant Bacteria in Immunocompromised Pediatric Patients with Acute Lymphoblastic Leukemia Developing GVHD Are Not Associated with Changes in Gut Mycobiome. Graft-versus-host disease (GvHD) is a severe complication after hematopoietic stem cell transplantation (HSCT). Our study focused on identifying multidrug-resistant (MDR) gut bacteria associated with GvHD-prone guts and association with gut microbiota (GM) diversity, bacteriome, and mycobiome composition in post-HSCT patients. We examined 11 pediatric patients with acute lymphoblastic leukemia (ALL), including six with GvHD, within three time points: seven days pre-HSCT, seven days post-, and 28 days post-HSCT. The gut microbiome and its resistome were investigated using metagenomic sequencing, taxonomically classified with Kraken2, and statistically evaluated for significance using appropriate tests. We observed an increase in the abundance of MDR bacteria, mainly Enterococcus faecium strains carrying msr(C), erm(T), aac(6')-li, dfrG, and ant(6)-la genes, in GvHD patients one week post-HSCT. Conversely, non-GvHD patients had more MDR beneficial bacteria pre-HSCT, promoting immunosurveillance, with resistance genes increasing one-month post-HSCT. MDR beneficial bacteria included the anti-inflammatory Bacteroides fragilis, Ruminococcus gnavus, and Turicibacter, while most MDR bacteria represented the dominant species of GM. Changes in the gut mycobiome were not associated with MDR bacterial monodominance or GvHD. Significant α-diversity decline (Shannon index) one week and one month post-HSCT in GvHD patients (p < 0.05) was accompanied by increased Pseudomonadota and decreased Bacteroidota post-HSCT. Our findings suggest that MDR commensal gut bacteria may preserve diversity and enhance immunosurveillance, potentially preventing GvHD in pediatric ALL patients undergoing HSCT. This observation has therapeutic implications.202338136701
311220.9676Farm-to-fork changes in poultry microbiomes and resistomes in Maputo City, Mozambique. Increasing demand for poultry has spurred poultry production in low- and middle-income countries like Mozambique. Poultry may be an important source of foodborne, antimicrobial-resistant bacteria to consumers in settings with limited water, sanitation, and hygiene infrastructure. The Chicken Exposures and Enteric Pathogens in Children Exposed through Environmental Pathways (ChEEP ChEEP) study was conducted in Maputo City, Mozambique from 2019 to 2021 to quantify enteric pathogen exposures along the supply chain for commercial and local (i.e., scavenger) chicken breeds. Here, we performed metagenomic sequencing of total DNA from banked ChEEP ChEEP samples to characterize fecal and carcass microbiomes and resistome diversity between chicken breeds and along the supply chain. Fecal samples (n = 26) were collected from commercial and local chickens at production sites and markets and carcass (n = 49) and rinse bucket samples (n = 26) from markets. We conducted taxonomic profiling and identified antimicrobial resistance genes (ARGs) from metagenomic sequence data, focusing especially on potential human pathogens and "high-risk" ARGs. We estimated alpha diversity for each sample and compared by site and breed. We estimated Bray-Curtis dissimilarity between samples and examined clustering. We found that commercial and local chickens harbored distinct fecal potential pathogens and resistomes at production and market sites. Many potentially pathogenic bacteria and ARGs present in chicken fecal samples are also present on carcasses sold to consumers. Finally, commercial chicken carcasses contain high-risk ARGs that are not necessarily introduced from chicken feces. These results indicate markets are an important site of exposure to potentially pathogenic bacteria and high-risk ARGs. IMPORTANCE: While chicken eggs and meat are a critical protein source in low-income settings, antibiotics are routinely fed to chickens with consequences for selection of antimicrobial resistance. Evaluating how poultry gut bacterial communities, including potential human pathogens and high-risk antimicrobial resistance genes, differ from farm to market could help identify where to target interventions to minimize transmission risks to human populations. In this study in Maputo City, Mozambique, we found compositional differences between commercial and local chicken breeds at production and market sites. We also found that while all potentially pathogenic bacteria and many high-risk antimicrobial resistance genes persisted from production and market through processing, some resistance genes were detected on carcass samples only after processing, suggesting human or environmental contamination is occurring within markets. Overall, our findings indicate that open-air markets may represent a critical juncture for human exposures to pathogens and antimicrobial resistance genes from poultry and poultry products.202539699181
354830.9673From flagellar assembly to DNA replication: CJSe's role in mitigating microbial antibiotic resistance genes. The emergence of Antibiotic Resistance Genes (ARGs) in Campylobacter jejuni (CJ) poses a severe threat to food safety and human health. However, the specific impact of CJ and its variants on ARGs and other related factors remains to be further elucidated. Herein, integrated metagenomic sequencing and co-occurrence network analysis approach were employed to investigate the impact of CJ and CJ incorporated with biogenic selenium (CJSe) on ARGs, flagellar assembly pathways, microbial communities, and DNA replication pathways in chicken manure. Compared to the Control (CON) and CJ groups, the CJSe group exhibited 2.4-fold increase selenium levels (P < 0.01) in chicken manure. Notable differences were also observed between the CJ and CJSe groups, with sequence results showing a CJ > CJSe > CON trend in total ARG copy numbers. Furthermore, the CJSe group showed 31.6 % fewer flagellar assembly genes compared to the CJ group. Additionally, compared to the CJ group, CJSe inhibited pathways such as basal body/hook (e.g., FliH, FliO, FliQ reduced by 25-52 %) and stator (MotB downregulated by 42.3 %), suppressing flagellar assembly. We also found that both CJ and CJSe influenced bacterial DNA replication pathways, with the former increasing ARG-carrying bacteria and the latter, under selenium-induced selective pressure, reducing ARG-carrying bacteria. Moreover, compared to the CJ group, the CJSe group showed a significantly lower 9.72 % copy number of total archaeal DNA replication genes. Furthermore, through intricate co-occurrence network analysis, we discovered the complex interplay between changes in ARGs and bacterial and archaeal DNA replication dynamics within the microbial community. These findings indicate that CJSe mitigates the threat posed by CJ and reduces ARG prevalence, while its dual functionality enables applications in biofortified crop production and soil remediation in selenium-deficient regions, thereby advancing circular economy systems. While the current study demonstrates CJSe's dual functionality under controlled conditions, future work will implement a dedicated ecological risk assessment framework encompassing Se speciation/leaching tests and non-target organism assays to confirm environmental safety under field-relevant scenarios. This approach aligns with sustainable strategies for food security and public health safeguarding.202541108960
871440.9671Tales from the tomb: the microbial ecology of exposed rock surfaces. Although a broad diversity of eukaryotic and bacterial taxa reside on rock surfaces where they can influence the weathering of rocks and minerals, these communities and their contributions to mineral weathering remain poorly resolved. To build a more comprehensive understanding of the diversity, ecology and potential functional attributes of microbial communities living on rock, we sampled 149 tombstones across three continents and analysed their bacterial and eukaryotic communities via marker gene and shotgun metagenomic sequencing. We found that geographic location and climate were important factors structuring the composition of these communities. Moreover, the tombstone-associated microbial communities varied as a function of rock type, with granite and limestone tombstones from the same cemeteries harbouring taxonomically distinct microbial communities. The granite and limestone-associated communities also had distinct functional attributes, with granite-associated bacteria having more genes linked to acid tolerance and chemotaxis, while bacteria on limestone were more likely to be lichen associated and have genes involved in photosynthesis and radiation resistance. Together these results indicate that rock-dwelling microbes exhibit adaptations to survive the stresses of the rock surface, differ based on location, climate and rock type, and seem pre-disposed to different ecological strategies (symbiotic versus free-living lifestyles) depending on the rock type.201829235707
322050.9671Metabolically-active bacteria in reclaimed water and ponds revealed using bromodeoxyuridine DNA labeling coupled with 16S rRNA and shotgun sequencing. Understanding the complex microbiota of agricultural irrigation water is vital to multiple sectors of sustainable agriculture and public health. To date, microbiome characterization methods have provided comprehensive profiles of aquatic microbiotas, but have not described which taxa are likely metabolically-active. Here, we combined 5‑bromo‑2'-deoxyuridine (BrdU) labeling with 16S rRNA and shotgun sequencing to identify metabolically-active bacteria in reclaimed and agricultural pond water samples (n = 28) recovered from the Mid-Atlantic United States between March 2017 and January 2018. BrdU-treated samples were significantly less diverse (alpha diversity) compared to non-BrdU-treated samples. The most abundant taxa in the metabolically-active fraction of water samples (BrdU-treated samples) were unclassified Actinobacteria, Flavobacterium spp., Pseudomonas spp. and Aeromonas spp. Interestingly, we also observed that antimicrobial resistance and virulence gene profiles seemed to be more diverse and more abundant in non-BrdU-treated water samples compared to BrdU-treated samples. These findings raise the possibility that these genes may be associated more with relic (inactive) DNA present in the tested water types rather than viable, metabolically-active microorganisms. Our study demonstrates that the coupled use of BrdU labeling and sequencing can enhance understanding of the metabolically-active fraction of bacterial communities in alternative irrigation water sources. Agricultural pond and reclaimed waters are vital to the future of sustainable agriculture, and thus, the full understanding of the pathogenic potential of these waters is important to guide mitigation strategies that ensure appropriate water quality for intended purposes.202032726735
354060.9671Microbial contents of vacuum cleaner bag dust and emitted bioaerosols and their implications for human exposure indoors. Vacuum cleaners can release large concentrations of particles, both in their exhaust air and from resuspension of settled dust. However, the size, variability, and microbial diversity of these emissions are unknown, despite evidence to suggest they may contribute to allergic responses and infection transmission indoors. This study aimed to evaluate bioaerosol emission from various vacuum cleaners. We sampled the air in an experimental flow tunnel where vacuum cleaners were run, and their airborne emissions were sampled with closed-face cassettes. Dust samples were also collected from the dust bag. Total bacteria, total archaea, Penicillium/Aspergillus, and total Clostridium cluster 1 were quantified with specific quantitative PCR protocols, and emission rates were calculated. Clostridium botulinum and antibiotic resistance genes were detected in each sample using endpoint PCR. Bacterial diversity was also analyzed using denaturing gradient gel electrophoresis (DGGE), image analysis, and band sequencing. We demonstrated that emission of bacteria and molds (Penicillium/Aspergillus) can reach values as high as 1E5 cell equivalents/min and that those emissions are not related to each other. The bag dust bacterial and mold content was also consistent across the vacuums we assessed, reaching up to 1E7 bacterial or mold cell equivalents/g. Antibiotic resistance genes were detected in several samples. No archaea or C. botulinum was detected in any air samples. Diversity analyses showed that most bacteria are from human sources, in keeping with other recent results. These results highlight the potential capability of vacuum cleaners to disseminate appreciable quantities of molds and human-associated bacteria indoors and their role as a source of exposure to bioaerosols.201323934489
47470.9670Novel antibiotic resistance profiles in bacteria isolated from oil fly larvae Helaeomyia petrolei living in the La Brea Tar Pits. Larvae from the petroleum oil fly, Helaeomyia petrolei, live in the asphaltene and polyaromatic hydrocarbon rich asphalt seeps of Rancho La Brea, Los Angeles, California. These larvae pass high amounts of viscous asphalt through their digestive system, and their gut microbiota is exposed to these extreme conditions. Environmental stress response mechanisms can co-select for antibiotic resistance, and in the current study we used 16S rRNA and genomic sequencing along with the Comprehensive Antibiotic Resistance Database (CARD) tools to characterize antibiotic resistance profiles from six bacteria previously isolated from the oil fly larval intestinal tract, linking phenotypic and genotypic resistance profiles. The isolates contain a core set of antibiotic resistance determinants along with determinants that are rarely found in these species. Comparing these oil fly isolates to the phenotypic prevalence data generated by the CARD Resistance Gene Identifier revealed sixteen instances where the oil fly bacteria appeared to carry a resistance not seen in related taxa in the database, suggesting a novel suite of resistance families in the oil fly isolates compared to other members of the same taxa. Results highlight the functional duality of genes that simultaneously code for antibiotic resistance and survival under extreme conditions, and expand our understanding of the ecological and evolutionary role of antibiotic resistance genes in environmental habitats.202439718641
767180.9668Predicting the abundance of metal resistance genes in subtropical estuaries using amplicon sequencing and machine learning. Heavy metals are a group of anthropogenic contaminants in estuary ecosystems. Bacteria in estuaries counteract the highly concentrated metal toxicity through metal resistance genes (MRGs). Presently, metagenomic technology is popularly used to study MRGs. However, an easier and less expensive method of acquiring MRG information is needed to deepen our understanding of the fate of MRGs. Thus, this study explores the feasibility of using a machine learning approach-namely, random forests (RF)-to predict MRG abundance based on the 16S rRNA amplicon sequenced datasets from subtropical estuaries in China. Our results showed that the total MRG abundance could be predicted by RF models using bacterial composition at different taxonomic levels. Among them, the relative abundance of bacterial phyla had the highest predicted accuracy (71.7 %). In addition, the RF models constructed by bacterial phyla predicted the abundance of six MRG types and nine MRG subtypes with substantial accuracy (R(2) > 0.600). Five bacterial phyla (Firmicutes, Bacteroidetes, Patescibacteria, Armatimonadetes, and Nitrospirae) substantially determined the variations in MRG abundance. Our findings prove that RF models can predict MRG abundance in South China estuaries during the wet season by using the bacterial composition obtained by 16S rRNA amplicon sequencing.202236068766
767490.9668Insights into gut microbiomes in stem cell transplantation by comprehensive shotgun long-read sequencing. The gut microbiome is a diverse ecosystem, dominated by bacteria; however, fungi, phages/viruses, archaea, and protozoa are also important members of the gut microbiota. Exploration of taxonomic compositions beyond bacteria as well as an understanding of the interaction between the bacteriome with the other members is limited using 16S rDNA sequencing. Here, we developed a pipeline enabling the simultaneous interrogation of the gut microbiome (bacteriome, mycobiome, archaeome, eukaryome, DNA virome) and of antibiotic resistance genes based on optimized long-read shotgun metagenomics protocols and custom bioinformatics. Using our pipeline we investigated the longitudinal composition of the gut microbiome in an exploratory clinical study in patients undergoing allogeneic hematopoietic stem cell transplantation (alloHSCT; n = 31). Pre-transplantation microbiomes exhibited a 3-cluster structure, characterized by Bacteroides spp. /Phocaeicola spp., mixed composition and Enterococcus abundances. We revealed substantial inter-individual and temporal variabilities of microbial domain compositions, human DNA, and antibiotic resistance genes during the course of alloHSCT. Interestingly, viruses and fungi accounted for substantial proportions of microbiome content in individual samples. In the course of HSCT, bacterial strains were stable or newly acquired. Our results demonstrate the disruptive potential of alloHSCTon the gut microbiome and pave the way for future comprehensive microbiome studies based on long-read metagenomics.202438374282
7488100.9666Metagenomic insights into microorganisms and antibiotic resistance genes of waste antibiotic fermentation residues along production, storage and treatment processes. Antibiotic fermentation residue (AFR) is nutrient-rich solid waste generated from fermentative antibiotic production process. It is demonstrated that AFR contains high-concentration of remaining antibiotics, and thus may promote antibiotic resistance development in receiving environment or feeding farmed animals. However, the dominate microorganisms and antibiotic resistance genes (ARGs) in AFRs have not been adequately explored, hampering understanding on the potential antibiotic resistance risk development caused by AFRs. Herein, seven kinds of representative AFRs along their production, storage, and treatment processes were collected, and multiple methods including amplicon sequencing, metagenomic sequencing, and bioinformatic approaches were adopted to explore the biological characteristics of AFRs. As expected, antibiotic fermentation producer was found as the predominant species in raw AFRs, which were collected at the outlet of fermentation tanks. However, except for producer species, more environment-derived species persisted in stored AFRs, which were temporarily stored at a semi-open space. Lactobacillus genus, classified as Firmicutes phylum and Bacilli class, became predominant bacterial taxa in stored AFRs, which might attribute to its tolerance to high concentration of antibiotics. Results from metagenomic sequencing together with assembly and binning approaches showed that these newly-colonizing species (e.g., Lactobacillus genus) tended to carry ARGs conferring resistance to the remaining antibiotic. However, after thermal treatment, remaining antibiotic could be efficiently removed from AFRs, and microorganisms together with DNA could be strongly destroyed. In sum, the main risk from the AFRs was the remaining antibiotic, while environment-derived bacteria which tolerate extreme environment, survived in ARFs with high content antibiotics, and may carry ARGs. Thus, hydrothermal or other harmless treatment technologies are recommended to remove antibiotic content and inactivate bacteria before recycling of AFRs in pharmaceutical industry.202437923454
7727110.9666Psychrotrophic Bacteria Equipped with Virulence and Colonization Traits Populate the Ice Cream Manufacturing Environment. Several microbial taxa have been associated with food processing facilities, and they might resist by attaching on tools and equipment even after sanitation procedures, producing biofilms that adhere to the surfaces and might embed other microorganisms, including spoilers and pathogens. There is increasing evidence that these communities can be transferred to the final product. To explore the microbial contamination routes in a facility producing ice creams, we collected foods and environmental swabs from industrial surfaces of equipment and tools and performed taxonomic and functional analyses of the microbial DNA extracted from the environmental samples. Our results suggest that complex communities dominated by psychrotrophic bacteria (e.g., Pseudomonas and Acinetobacter spp.) inhabit the food processing environment, and we demonstrate that these communities might be transferred from the surfaces to the products. Functional analysis performed on environmental samples highlighted the presence of several genes linked to antimicrobial resistance and adherence on abiotic surfaces; such genes were more abundant on food contact (FC) than on other surfaces. Metagenome-assembled genomes (MAGs) of Pseudomonas stutzeri showed genes linked with biofilm formation and motility, which are surely linked to colonizing capabilities in the processing lines. The study highlights clear potential advantages of applying microbiome mapping in the food industry for source tracking of microbial contamination and for planning appropriate ad hoc sanitization strategies. IMPORTANCE Several microbial species might permanently establish in food processing facilities, thus contributing to food loss. In fact, food contact surfaces might transfer microorganisms to intermediates and products, potentially representing a hazard to human health. In this work, we provide evidence of the existence of complex microbial communities overcoming sanitation in an ice cream-producing facility. These communities harbored several genes that could potentially lead to attachment to surfaces and antimicrobial resistance. Also, prediction of routes of contamination showed that several potential spoilage taxa might end up in the final product. Importantly, in this work, we show that mapping the environmental microbiome is a high-resolution technique that might help food business operators ensure food quality and safety through detection of potentially hazardous microorganisms.202337432121
2591120.9666What samples are suitable for monitoring antimicrobial-resistant genes? Using NGS technology, a comparison between eDNA and mrDNA analysis from environmental water. INTRODUCTION: The rise in antimicrobial resistance (AMR) that is affecting humans, animals, and the environment, compromises the human immune system and represents a significant threat to public health. Regarding the impact on water sanitation, the risk that antimicrobial-resistant genes (ARGs) and antimicrobial-resistant bacteria in surface water in cities pose to human health remains unclear. To determine the prevalence of AMR in environmental surface water in Japan, we used DNA sequencing techniques on environmental water DNA (eDNA) and the DNA of multidrug-resistant bacteria (mrDNA). METHODS: The eDNA was extracted from four surface water samples obtained from the Tokyo area and subjected to high- throughput next-generation DNA sequencing using Illumina-derived shotgun metagenome analysis. The sequence data were analyzed using the AmrPlusPlus pipeline and the MEGARes database. Multidrug-resistant bacteria were isolated using a culture-based method from water samples and were screened by antimicrobial susceptibility testing (for tetracycline, ampicillin-sulbactam, amikacin, levofloxacin, imipenem, and clarithromycin). Of the 284 isolates, 22 were identified as multidrug-resistant bacteria. The mrDNA was sequenced using the Oxford nanopore MinION system and analyzed by NanoARG, a web service for detecting and contextualizing ARGs. RESULTS AND DISCUSSION: The results from eDNA and mrDNA revealed that ARGs encoding beta-lactams and multidrug resistance, including multidrug efflux pump genes, were frequently detected in surface water samples. However, mrDNA also revealed many sequence reads from multidrug-resistant bacteria, as well as nonspecific ARGs, whereas eDNA revealed specific ARGs such as pathogenic OXA-type and New Delhi metallo (NDM)-beta-lactamase ARGs. CONCLUSION: To estimate potential AMR pollution, our findings suggested that eDNA is preferable for detecting pathogen ARGs.202338179449
7669130.9666Evaluating the Potential Antibiotic Resistance Status in Environment Based on the Trait of Microbial Community. The overuse of antibiotics has promoted the propagation and dissemination of antibiotic resistance genes (ARGs) in environment. Due to the dense human population and intensive activities in coastal areas, the health risk of ARGs in coastal environment is becoming a severe problem. To date, there still lacks of a quantitative method to assess properly the gross antibiotic resistance at microbial community level. Here, we collected sediment samples from Hangzhou Bay (HB), Taizhou Bay (TB), and Xiangshan Bay (XB) of the East China Sea for community-level ARGs analysis. Based on the 16S rRNA genes and predictive metagenomics, we predicted the composition of intrinsic ARGs (piARGs) and some related functional groups. Firstly, a total of 40 piARG subtypes, belonging to nine drug classes and five resistance mechanisms, were obtained, among which the piARGs encoding multidrug efflux pumps were the most dominant in the three bays. Secondly, XB had higher relative abundances of piARGs and pathogens than the other two bays, which posed higher potential health risk and implied the heavier impact of long-term maricultural activities in this bay. Thirdly, the co-occurrence network analysis identified that there were more connections between piARGs and some potential pathogenic bacteria. Several piARG subtypes (e.g., tetA, aacA, aacC, and aadK) distributed widely in the microbial communities. And finally, the microbial diversity correlated negatively with the relative abundance of piARGs. Oil, salinity, and arsenic had significant effects on the variations of piARGs and potential pathogenic bacteria. The abundance-weighted average ribosomal RNA operon (rrn) copy number of microbial communities could be regarded as an indicator to evaluate the antibiotic resistance status. In conclusion, this study provides a new insight on how to evaluate antibiotic resistance status and their potential risk in environment based on a quantitative analysis of microbial communities.202033123107
6836140.9665Microbiome and antibiotic resistome in household dust from Beijing, China. We spend ever-increasing time indoors along with urbanization; however, the geographical distribution patterns of microbiome and antibiotic resistome, and their driving forces in household environment remains poorly characterized. Here, we surveyed the bacterial and fungal communities, and the resistome in settled dust gathered from 82 homes located across Beijing, China, employing Illumina sequencing and high-throughput quantitative PCR techniques. There was no clear geographical distribution pattern in dust-related bacterial communities although a slight but significant (P < 0.05) distance-decay relationship occurred in its community similarity; by contrast, a relatively distinct geographical clustering and a stronger distance-decay relationship were observed in fungal communities at the local scale. The cross-domain (bacteria versus fungi) relationships in the microbiome of the dust samples were mostly observed as robust co-occurrence correlations. The bacterial communities were dominated by Proteobacteria and Actinobacteria phyla, with human skin, soil and plants being potential major sources. The fungal communities largely comprised potential allergens (a median 61% of the fungal sequences), with Alternaria genus within Ascomycota phylum being the most predominant taxa. The profile of dust-related bacterial communities was mainly affected by housing factors related to occupants and houseplants, while that of fungal communities was determined by georeferenced environmental factors, particularly vascular plant diversity. Additionally, a great diversity (1.96 on average for Shannon index) and normalized abundance (2.22 copies per bacterial cell on average) of antibiotic resistance genes were detected across the dust samples, with the dominance of genes resistant to vancomycin and Macrolide-Lincosamide-Streptogramin B. The resistome profile exhibited no distinct geographical pattern, and was primarily driven by certain bacterial phyla and occupancy-related factors. Overall, we underline the significance of anthropogenic impacts and house location in structuring bacterial and fungal communities inside homes, respectively, and suggest that household dust is an overlooked reservoir for antibiotic resistance.202032248025
3162150.9664Metagenomic Characterization of the Microbiome and Resistome of Retail Ground Beef Products. Ground beef can be a reservoir for a variety of bacteria, including spoilage organisms, and pathogenic foodborne bacteria. These bacteria can exhibit antimicrobial resistance (AMR) which is a public health concern if resistance in pathogens leads to treatment failure in humans. Culture-dependent techniques are commonly used to study individual bacterial species, but these techniques are unable to describe the whole community of microbial species (microbiome) and the profile of AMR genes they carry (resistome), which is critical for getting a holistic perspective of AMR. The objective of this study was to characterize the microbiome and resistome of retail ground beef products labeled as coming from conventional or raised without antibiotics (RWA) production systems. Sixteen ground beef products were purchased from 6 retail grocery outlets in Fort Collins, CO, half of which were labeled as produced from cattle raised conventionally and half of products were from RWA production. Total DNA was extracted and isolated from each sample and subjected to 16S rRNA amplicon sequencing for microbiome characterization and target-enriched shotgun sequencing to characterize the resistome. Differences in the microbiome and resistome of RWA and conventional ground beef were analyzed using the R programming software. Our results suggest that the resistome and microbiome of retail ground beef products with RWA packaging labels do not differ from products that do not carry claims regarding antimicrobial drug exposures during cattle production. The resistome predominantly consisted of tetracycline resistance making up more than 90% of reads mapped to resistance gene accessions in our samples. Firmicutes and Proteobacteria predominated in the microbiome of all samples (69.6% and 29.0%, respectively), but Proteobacteria composed a higher proportion in ground beef from conventionally raised cattle. In addition, our results suggest that product management, such as packaging type, could exert a stronger influence on the microbiome than the resistome in consumer-ready products. Metagenomic analyses of ground beef is a promising tool to investigate community-wide shifts in retail ground beef. Importantly, however, results from metagenomic sequencing must be carefully considered in parallel with traditional methods to better characterize the risk of AMR in retail products.202033240224
3479160.9664Detecting antibiotic resistance genes and human potential pathogenic Bacteria in fishmeal by culture-independent method. Fishmeal is a fundamental ingredient of feedstuffs and is used globally in aquaculture. However, there are few data on the antibiotic resistance genes (ARGs) and human pathogenic bacteria in fishmeal and little understanding of the potential risks of fishmeal application in mariculture systems. Here, we investigated the high-throughput profiles of ARGs and human potential pathogenic bacteria (HPPB) in representative fishmeals (n = 5) and the potential impact of fishmeal on mariculture sediments. ARGs were quantified with microbial DNA quantitative PCR arrays and HPPB were analyzed with Illumina sequencing of 16S rRNA genes. The impact of the fishmeal on the aquaculture sediments was assessed in a microcosm study. Twenty-four unique ARGs (3-14 per sample) and 25 HPPB species were detected in the fishmeal samples. The most prevalent ARGs were fluoroquinolone resistance genes. The overall abundance of HPPB was 5.0-25.5%, and the HPPB species were dominated by Vibrio parahaemolyticus, Clostridium novyi, and Escherichia coli. In the mariculture microcosm sediment, fishmeal significantly increased the normalized abundance of the class I integrase gene (25.4-fold), which plays an important role in the dissemination of ARGs. Dosing with fishmeal also contributed to increases in a resident sulfanilamide resistance gene (sulI gene) and the emergence of a macrolide resistance gene (ermB gene) in the sediment. These findings demonstrated that fishmeal itself is an underestimated reservoir and source of ARGs and HPPBs, and that the application of fishmeal facilitates the dissemination of ARGs in aquaculture sediments. Our results extend our knowledge of the ARGs and HPPB within fishmeal and may provide a feasible and effective approach to the detection of ARGs and HPPB in fishmeal during food safety inspection. Graphical abstract ᅟ.201930707381
3155170.9664In silico mapping of microbial communities and stress responses in a porcine slaughterhouse and pork products through its production chain, and the efficacy of HLE disinfectant. The use of shotgun metagenomic sequencing to understand ecological-level spread of microbes and their genes has provided new insights for the prevention, surveillance and control of microbial contaminants in the slaughterhouse environment. Here, microbial samples were collected from products and surrounding areas though a porcine slaughter process; shotgun metagenomic DNA-sequencing of these samples revealed a high community diversity within the porcine slaughterhouse and pork products, in zones originating from animal arrival through to the sale zones. Bacteria were more prevalent in the first zones, such as arrival- and anesthesia-zones, and DNA viruses were prevalent in the scorching-and-whip zone, animal products and sale zone. Data revealed the dominance of Firmicutes and Proteobacteria phyla followed by Actinobacteria, with a clear shift in the relative abundance of lactic acid bacteria (mainly Lactobacillus sp.) from early slaughtering steps to Proteobacteria and then to viruses suggesting site-specific community compositions occur in the slaughterhouse. Porcine-type-C oncovirus was the main virus found in slaughterhouse, which causes malignant diseases in animals and humans. As such, to guarantee food safety in a slaughterhouse, a better decipher of ecology and adaptation strategies of microbes becomes crucial. Analysis of functional genes further revealed high abundance of diverse genes associated with stress, especially in early zones (animal and environmental surfaces of arrival zone with 57,710 and 40,806 genes, respectively); SOS responsive genes represented the most prevalent, possibly associated with genomic changes responsible of biofilm formation, stringent response, heat shock, antimicrobial production and antibiotic response. The presence of several antibiotic resistance genes suggests horizontal gene transfer, thus increasing the likelihood for resistance selection in human pathogens. These findings are of great concern, with the suggestion to focus control measures and establish good disinfection strategies to avoid gene spread and microbial contaminants (bacteria and viruses) from the animal surface into the food chain and environment, which was achieved by applying HLE disinfectant after washing with detergent.202032846568
3351180.9664Quantification of the mobility potential of antibiotic resistance genes through multiplexed ddPCR linkage analysis. There is a clear need for global monitoring initiatives to evaluate the risks of antibiotic resistance genes (ARGs) towards human health. Therefore, not only ARG abundances within a given environment, but also their potential mobility, hence their ability to spread to human pathogenic bacteria needs to be quantified. We developed a novel, sequencing-independent method for assessing the linkage of an ARG to a mobile genetic element by statistical analysis of multiplexed droplet digital PCR (ddPCR) carried out on environmental DNA sheared into defined, short fragments. This allows quantifying the physical linkage between specific ARGs and mobile genetic elements, here demonstrated for the sulfonamide ARG sul1 and the Class 1 integron integrase gene intI1. The method's efficiency is demonstrated using mixtures of model DNA fragments with either linked and unlinked target genes: Linkage of the two target genes can be accurately quantified based on high correlation coefficients between observed and expected values (R2) as well as low mean absolute errors (MAE) for both target genes, sul1 (R2 = 0.9997, MAE = 0.71%, n = 24) and intI1 (R2 = 0.9991, MAE = 1.14%, n = 24). Furthermore, we demonstrate that adjusting the fragmentation length of DNA during shearing allows controlling rates of false positives and false negative detection of linkage. The presented method allows rapidly obtaining reliable results in a labor- and cost-efficient manner.202336941120
8187190.9663Racial disparities in metastatic colorectal cancer outcomes revealed by tumor microbiome and transcriptome analysis with bevacizumab treatment. Background: Metastatic colorectal cancer (mCRC) is a heterogeneous disease, often associated with poor outcomes and resistance to therapies. The racial variations in the molecular and microbiological profiles of mCRC patients, however, remain under-explored. Methods: Using RNA-SEQ data, we extracted and analyzed actively transcribing microbiota within the tumor milieu, ensuring that the identified bacteria were not merely transient inhabitants but engaged in the tumor ecosystem. Also, we independently acquired samples from 12 mCRC patients, specifically, 6 White individuals and 6 of Black or African American descent. These samples underwent 16S rRNA sequencing. Results: Our study revealed notable racial disparities in the molecular signatures and microbiota profiles of mCRC patients. The intersection of these data showcased the potential modulating effects of specific bacteria on gene expression. Particularly, the bacteria Helicobacter cinaedi and Sphingobium herbicidovorans emerged as significant influencers, with strong correlations to the genes SELENBP1 and SNORA38, respectively. Discussion: These findings underscore the intricate interplay between host genomics and actively transcribing tumor microbiota in mCRC's pathogenesis. The identified correlations between specific bacteria and genes highlight potential avenues for targeted therapies and a more personalized therapeutic approach.202338357363