FOCUSED - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
664900.9987 The development of antibiotics has provided much success against infectious diseases in animals and humans. But the intensive and extensive use of antibiotics over the years has resulted in the emergence of drug-resistant bacterial pathogens. The existence of a reservoir(s) of antibiotic resistant bacteria and antibiotic resistance genes in an interactive environment of animals, plants, and humans provides the opportunity for further transfer and dissemination of antibiotic resistance. The emergence of antibiotic resistant bacteria has created growing concern about its impact on animal and human health. To specifically address the impact of antibiotic resistance resulting from the use of antibiotics in agriculture, the American Academy of Microbiology convened a colloquium, “Antibiotic Resistance and the Role of Antimicrobials in Agriculture: A Critical Scientific Assessment,” in Santa Fe, New Mexico, November 2–4, 2001. Colloquium participants included academic, industrial, and government researchers with a wide range of expertise, including veterinary medicine, microbiology, food science, pharmacology, and ecology. These scientists were asked to provide their expert opinions on the current status of antibiotic usage and antibiotic resistance, current research information, and provide recommendations for future research needs. The research areas to be addressed were roughly categorized under the following areas: ▪ Origins and reservoirs of resistance; ▪ Transfer of resistance; ▪ Overcoming/modulating resistance by altering usage; and ▪ Interrupting transfer of resistance. The consensus of colloquium participants was that the evaluation of antibiotic usage and its impact were complex and subject to much speculation and polarization. Part of the complexity stems from the diverse array of animals and production practices for food animal production. The overwhelming consensus was that any use of antibiotics creates the possibility for the development of antibiotic resistance, and that there already exist pools of antibiotic resistance genes and antibiotic resistant bacteria. Much discussion revolved around the measurement of antibiotic usage, the measurement of antibiotic resistance, and the ability to evaluate the impact of various types of usage (animal, human) on overall antibiotic resistance. Additionally, many participants identified commensal bacteria as having a possible role in the continuance of antibiotic resistance as reservoirs. Participants agreed that many of the research questions could not be answered completely because of their complexity and the need for better technologies. The concept of the “smoking gun” to indicate that a specific animal source was important in the emergence of certain antibiotic resistant pathogens was discussed, and it was agreed that ascribing ultimate responsibility is likely to be impossible. There was agreement that expanded and more improved surveillance would add to current knowledge. Science-based risk assessments would provide better direction in the future. As far as preventive or intervention activities, colloquium participants reiterated the need for judicious/prudent use guidelines. Yet they also emphasized the need for better dissemination and incorporation by end-users. It is essential that there are studies to measure the impact of educational efforts on antibiotic usage. Other recommendations included alternatives to antibiotics, such as commonly mentioned vaccines and probiotics. There also was an emphasis on management or production practices that might decrease the need for antibiotics. Participants also stressed the need to train new researchers and to interest students in postdoctoral work, through training grants, periodic workshops, and comprehensive conferences. This would provide the expertise needed to address these difficult issues in the future. Finally, the participants noted that scientific societies and professional organizations should play a pivotal role in providing technical advice, distilling and disseminating information to scientists, media, and consumers, and in increasing the visibility and funding for these important issues. The overall conclusion is that antibiotic resistance remains a complex issue with no simple answers. This reinforces the messages from other meetings. The recommendations from this colloquium provide some insightful directions for future research and action.200232687288
668610.9986The Impact of Wastewater on Antimicrobial Resistance: A Scoping Review of Transmission Pathways and Contributing Factors. BACKGROUND/OBJECTIVES: Antimicrobial resistance (AMR) is a global issue driven by the overuse of antibiotics in healthcare, agriculture, and veterinary settings. Wastewater and treatment plants (WWTPs) act as reservoirs for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). The One Health approach emphasizes the interconnectedness of human, animal, and environmental health in addressing AMR. This scoping review analyzes wastewater's role in the AMR spread, identifies influencing factors, and highlights research gaps to guide interventions. METHODS: This scoping review followed the PRISMA-ScR guidelines. A comprehensive literature search was conducted across the PubMed and Web of Science databases for articles published up to June 2024, supplemented by manual reference checks. The review focused on wastewater as a source of AMR, including hospital effluents, industrial and urban sewage, and agricultural runoff. Screening and selection were independently performed by two reviewers, with conflicts resolved by a third. RESULTS: Of 3367 studies identified, 70 met the inclusion criteria. The findings indicated that antibiotic residues, heavy metals, and microbial interactions in wastewater are key drivers of AMR development. Although WWTPs aim to reduce contaminants, they often create conditions conducive to horizontal gene transfer, amplifying resistance. Promising interventions, such as advanced treatment methods and regulatory measures, exist but require further research and implementation. CONCLUSIONS: Wastewater plays a pivotal role in AMR dissemination. Targeted interventions in wastewater management are essential to mitigate AMR risks. Future studies should prioritize understanding AMR dynamics in wastewater ecosystems and evaluating scalable mitigation strategies to support global health efforts.202540001375
650720.9985What Are the Drivers Triggering Antimicrobial Resistance Emergence and Spread? Outlook from a One Health Perspective. Antimicrobial resistance (AMR) has emerged as a critical global public health threat, exacerbating healthcare burdens and imposing substantial economic costs. Currently, AMR contributes to nearly five million deaths annually worldwide, surpassing mortality rates of any single infectious disease. The economic burden associated with AMR-related disease management is estimated at approximately $730 billion per year. This review synthesizes current research on the mechanisms and multifaceted drivers of AMR development and dissemination through the lens of the One Health framework, which integrates human, animal, and environmental health perspectives. Intrinsic factors, including antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs), enable bacteria to evolve adaptive resistance mechanisms such as enzymatic inactivation, efflux pumps, and biofilm formation. Extrinsic drivers span environmental stressors (e.g., antimicrobials, heavy metals, disinfectants), socioeconomic practices, healthcare policies, and climate change, collectively accelerating AMR proliferation. Horizontal gene transfer and ecological pressures further facilitate the spread of antimicrobial-resistant bacteria across ecosystems. The cascading impacts of AMR threaten human health and agricultural productivity, elevate foodborne infection risks, and impose substantial economic burdens, particularly in low- and middle-income countries. To address this complex issue, the review advocates for interdisciplinary collaboration, robust policy implementation (e.g., antimicrobial stewardship), and innovative technologies (e.g., genomic surveillance, predictive modeling) under the One Health paradigm. Such integrated strategies are essential to mitigate AMR transmission, safeguard global health, and ensure sustainable development.202540558133
663630.9985The Contribution of Dairy Bedding and Silage to the Dissemination of Genes Coding for Antimicrobial Resistance: A Narrative Review. Antimicrobial resistance (AMR) is a concern in the dairy industry. Recent studies have indicated that bedding serves as a reservoir for antimicrobial-resistant bacteria and antimicrobial-resistance genes (ARGs), while silage has been proposed as another possible source. The impact of AMR in dairy farming can be significant, resulting in decreased productivity and economic losses for farmers. Several studies have highlighted the safety implications of AMR bacteria and genes in bedding and silage, emphasizing the need for further research on how housing, bedding, and silage management affect AMR in farm environments. Exposure to sub-lethal concentrations of antibiotics, such as those from contaminated bedding and silage, can prompt bacteria to develop resistance mechanisms. Thus, even if antimicrobial usage is diminished, ARGs may be maintained in the dairy farm environment. By implementing proactive measures to tackle AMR in dairy farming, we can take steps to preserve the health and productivity of dairy cattle while also protecting public health. This involves addressing the prudent use of antibiotics during production and promoting animal welfare, hygiene, and management practices in bedding and farm environments to minimize the risk of AMR development and spread. This narrative review compiles the growing research, positioning the contribution of bedding and silage to the prevalence and dissemination of AMR, which can elicit insights for researchers and policymakers.202439335078
650840.9985Synergizing Ecotoxicology and Microbiome Data Is Key for Developing Global Indicators of Environmental Antimicrobial Resistance. The One Health concept recognises the interconnectedness of humans, plants, animals and the environment. Recent research strongly supports the idea that the environment serves as a significant reservoir for antimicrobial resistance (AMR). However, the complexity of natural environments makes efforts at AMR public health risk assessment difficult. We lack sufficient data on key ecological parameters that influence AMR, as well as the primary proxies necessary for evaluating risks to human health. Developing environmental AMR 'early warning systems' requires models with well-defined parameters. This is necessary to support the implementation of clear and targeted interventions. In this review, we provide a comprehensive overview of the current tools used globally for environmental AMR human health risk assessment and the underlying knowledge gaps. We highlight the urgent need for standardised, cost-effective risk assessment frameworks that are adaptable across different environments and regions to enhance comparability and reliability. These frameworks must also account for previously understudied AMR sources, such as horticulture, and emerging threats like climate change. In addition, integrating traditional ecotoxicology with modern 'omics' approaches will be essential for developing more comprehensive risk models and informing targeted AMR mitigation strategies.202439611949
653450.9985Antibiotic resistance dissemination in soil ecosystems: deep understanding for effective management and global health protection. Antibiotic resistance poses a significant threat to global health, extending beyond clinical settings into environmental reservoirs such as soil, where resistant bacteria persist and evolve. Current efforts focus on understanding the origins and implications of antibiotic resistance in soil ecosystems. It defines antibiotic resistance within an environmental context and highlights soil as a critical reservoir for antibiotic-resistant genes (ARGs). Key sources of antibiotics in soil are identified, including agricultural practices, medical waste, and municipal and industrial effluents. The classification and mechanisms of ARGs are outlined, along with their transmission pathways, particularly within soil biofilms, which play a crucial role in gene transfer and microbial protection. The interplay between soil microbial communities and antibiotic resistance is discussed, emphasizing its potential risks to human health, including infectious diseases and food safety concerns. Strategies for mitigating antibiotic resistance in soil are presented, focusing on optimizing antibiotic usage, developing alternatives, and enhancing degradation mechanisms. This review underscores the need for interdisciplinary research to deepen understanding of soil microbial diversity and its connection to antibiotic resistance, emphasizing integrated efforts to safeguard soil and human health.202541166035
666560.9985A One-Health Perspective of Antimicrobial Resistance (AMR): Human, Animals and Environmental Health. Antibiotics are essential for treating bacterial and fungal infections in plants, animals, and humans. Their widespread use in agriculture and the food industry has significantly enhanced animal health and productivity. However, extensive and often inappropriate antibiotic use has driven the emergence and spread of antimicrobial resistance (AMR), a global health crisis marked by the reduced efficacy of antimicrobial treatments. Recognized by the World Health Organization (WHO) as one of the top ten global public health threats, AMR arises when certain bacteria harbor antimicrobial resistance genes (ARGs) that confer resistance that can be horizontally transferred to other bacteria, accelerating resistance spread in the environment. AMR poses a significant global health challenge, affecting humans, animals, and the environment alike. A One-Health perspective highlights the interconnected nature of these domains, emphasizing that resistant microorganisms spread across healthcare, agriculture, and the environment. Recent scientific advances such as metagenomic sequencing for resistance surveillance, innovative wastewater treatment technologies (e.g., ozonation, UV, membrane filtration), and the development of vaccines and probiotics as alternatives to antibiotics in livestock are helping to mitigate resistance. At the policy level, global initiatives including the WHO Global Action Plan on AMR, coordinated efforts by (Food and Agriculture Organization) FAO and World Organisation for Animal Health (WOAH), and recommendations from the O'Neill Report underscore the urgent need for international collaboration and sustainable interventions. By integrating these scientific and policy responses within the One-Health framework, stakeholders can improve antibiotic stewardship, reduce environmental contamination, and safeguard effective treatments for the future.202541157271
653270.9985Antibiotic resistance in urban soils: Dynamics and mitigation strategies. Antibiotic resistance (AR) is a critical global health issue with significant clinical and economic implications. AR occurs when microorganisms develop mechanisms to withstand the effects of antibiotics, reducing treatment efficacy and increasing the risk of mortality and healthcare costs. While the connection between antibiotic use in clinical and agricultural settings and the emergence of AR is well-established, the role of urban soils as reservoirs and spreaders of AR is underexplored. This review examines the complex dynamics of AR in urban soils, highlighting the various sources of antibiotics, including domestic wastewater, industrial effluents, urban agricultural practices, but also microplastics and domestic animal excrements. The selective pressure exerted by these anthropogenic sources promotes the proliferation of antibiotic-resistant bacteria, particularly through horizontal gene transfer, which facilitates the transmission of resistance genes among soil microorganisms in urban environments. About that, the presence of antibiotics in urban soils poses a significant threat to public health by potentially transferring resistance genes to human pathogens through multiple pathways, including direct contact, food consumption, and water ingestion. Furthermore, AR in urban soils disrupts microbial community dynamics, impacting soil fertility, plant growth, and overall environmental quality. Therefore, this review aims to address gaps in understanding AR in urban soils, offering insights into its implications for human health and ecosystem integrity. By identifying these gaps and suggesting evidence-based strategies, this review proposes valid and sustainable solutions to mitigate and counteract the spread of AR in urban environments.202439384008
647280.9985Balancing water sustainability and public health goals in the face of growing concerns about antibiotic resistance. Global initiatives are underway to advance the sustainability of urban water infrastructure through measures such as water reuse. However, there are growing concerns that wastewater effluents are enriched in antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes, and thus could serve as a contributing factor to growing rates of antibiotic resistance in human infections. Evidence for the role of the water environment as a source and pathway for the spread of antimicrobial resistance is examined and key knowledge gaps are identified with respect to implications for sustainable water systems. Efforts on the part of engineers along with investment in research in epidemiology, risk assessment, water treatment and water delivery could advance current and future sustainable water strategies and help avoid unintended consequences.201424279909
650690.9985Mitigating antimicrobial resistance through effective hospital wastewater management in low- and middle-income countries. Hospital wastewater (HWW) is a significant environmental and public health threat, containing high levels of pollutants such as antibiotic-resistant bacteria (ARB), antibiotic-resistant genes (ARGs), antibiotics, disinfectants, and heavy metals. This threat is of particular concern in low- and middle-income countries (LMICs), where untreated effluents are often used for irrigating vegetables crops, leading to direct and indirect human exposure. Despite being a potential hotspot for the spread of antimicrobial resistance (AMR), existing HWW treatment systems in LMICs primarily target conventional pollutants and lack effective standards for monitoring the removal of ARB and ARGs. Consequently, untreated or inadequately treated HWW continues to disseminate ARB and ARGs, exacerbating the risk of AMR proliferation. Addressing this requires targeted interventions, including cost-effective treatment solutions, robust AMR monitoring protocols, and policy-driven strategies tailored to LMICs. This perspective calls for a paradigm shift in HWW management in LMIC, emphasizing the broader implementation of onsite treatment systems, which are currently rare. Key recommendations include developing affordable and contextually adaptable technologies for eliminating ARB and ARGs and enforcing local regulations for AMR monitoring and control in wastewater. Addressing these challenges is essential for protecting public health, preventing the environmental spread of resistance, and contributing to a global effort to preserve the efficacy of antibiotics. Recommendations include integrating scalable onsite technologies, leveraging local knowledge, and implementing comprehensive AMR-focused regulatory frameworks.202439944563
6660100.9985Antimicrobial Resistance and Its Drivers-A Review. Antimicrobial resistance (AMR) is a critical issue in health care in terms of mortality, quality of services, and financial damage. In the battle against AMR, it is crucial to recognize the impacts of all four domains, namely, mankind, livestock, agriculture, and the ecosystem. Many sociocultural and financial practices that are widespread in the world have made resistance management extremely complicated. Several pathways, including hospital effluent, agricultural waste, and wastewater treatment facilities, have been identified as potential routes for the spread of resistant bacteria and their resistance genes in soil and surrounding ecosystems. The overuse of uncontrolled antibiotics and improper treatment and recycled wastewater are among the contributors to AMR. Health-care organizations have begun to address AMR, although they are currently in the early stages. In this review, we provide a brief overview of AMR development processes, the worldwide burden and drivers of AMR, current knowledge gaps, monitoring methodologies, and global mitigation measures in the development and spread of AMR in the environment.202236290020
6535110.9984Occurrence and dissemination of antibiotics and antibiotic resistance in aquatic environment and its ecological implications: a review. The occurrence of antibiotics and antibiotic-resistant bacteria (ARBs), genes (ARGs), and mobile genetic elements (MGEs) in aquatic systems is growing global public health concern. These emerging micropollutants, stemming from improper wastewater treatment and disposal, highlight the complex and evolving nature of environmental pollution. Current literature reveals potential biases, such as a geographical focus on specific regions, leading to an insufficient understanding of the global distribution and dynamics of antibiotic resistance in aquatic systems. There is methodological inconsistency across studies, making it challenging to compare findings. Potential biases include sample collection inconsistencies, detection sensitivity variances, and data interpretation variability. Gaps in understanding include the need for comprehensive, standardized long-term monitoring programs, elucidating the environmental fate and transformation of antibiotics and resistance genes. This review summarizes current knowledge on the occurrence and dissemination of emerging micropollutants, their ecological impacts, and the global health implications of antimicrobial resistance. It highlights the need for interdisciplinary collaborations among researchers, policymakers, and stakeholders to address the challenges posed by antibiotic resistance in aquatic resistance in aquatic systems effectively. This review highlights widespread antibiotic and antibiotic resistance in aquatic environment, driven by human and agricultural activities. It underscores the ecological consequences, including disrupted microbial communities and altered ecosystem functions. The findings call for urgent measures to mitigate antibiotics pollution and manage antibiotic resistance spread in water bodies.202439028459
6533120.9984The Role of the Environment (Water, Air, Soil) in the Emergence and Dissemination of Antimicrobial Resistance: A One Health Perspective. Antimicrobial resistance (AMR) has emerged as a planetary health emergency, driven not only by the clinical misuse of antibiotics but also by diverse environmental dissemination pathways. This review critically examines the role of environmental compartments-water, soil, and air-as dynamic reservoirs and transmission routes for antibiotic-resistant bacteria (ARB) and resistance genes (ARGs). Recent metagenomic, epidemiological, and mechanistic evidence demonstrates that anthropogenic pressures-including pharmaceutical effluents, agricultural runoff, untreated sewage, and airborne emissions-amplify resistance evolution and interspecies gene transfer via horizontal gene transfer mechanisms, biofilms, and mobile genetic elements. Importantly, it is not only highly polluted rivers such as the Ganges that contribute to the spread of AMR; even low concentrations of antibiotics and their metabolites, formed during or after treatment, can significantly promote the selection and dissemination of resistance. Environmental hotspots such as European agricultural soils and airborne particulate zones near wastewater treatment plants further illustrate the complexity and global scope of pollution-driven AMR. The synergistic roles of co-selective agents, including heavy metals, disinfectants, and microplastics, are highlighted for their impact in exacerbating resistance gene propagation across ecological and geographical boundaries. The efficacy and limitations of current mitigation strategies, including advanced wastewater treatments, thermophilic composting, biosensor-based surveillance, and emerging regulatory frameworks, are evaluated. By integrating a One Health perspective, this review underscores the imperative of including environmental considerations in global AMR containment policies and proposes a multidisciplinary roadmap to mitigate resistance spread across interconnected human, animal, and environmental domains.202540867959
6530130.9984Microplastic-associated pathogens and antimicrobial resistance in environment. The ubiquitous use of microplastics and their release into the environment especially the water bodies by anthropogenic/industrial activities are the major resources for microplastic contamination. The widespread and often injudicious use of antimicrobial drugs or antibiotics in various sectors including human health and hygiene, agriculture, animal husbandry and food industries are leading to the release of antibiotics into the wastewater/sewage and other water bodies, particularly in urban setups and thus leads to the antimicrobial resistance (AMR) in the microbes. Microplastics are emerging as the hubs as well as effective carriers of these microbial pathogens beside their AMR-genes (ARGs) in marine, freshwater, sewage/wastewater, and urban river ecosystems. These drug resistant bacteria interact with microplastics forming synthetic plastispheres, the ideal niche for biofilm formations which in turn facilitates the transfer of ARGs via horizontal gene transfer and further escalates the occurrence and levels of AMR. Microplastic-associated AMR is an emerging threat for human health and healthcare besides being a challenge for the research community for effective management/address of this menace. In this review, we encompass the increasing prevalence of microplastics in environment, emphasizing mainly on water environments, how they act as centers and vectors of microbial pathogens with their associated bacterial assemblage compositions and ultimately lead to AMR. It further discusses the mechanistic insights on how microplastics act as hosts of biofilms (creating the plastisphere). We have also presented the modern toolbox used for microplastic-biofilm analyses. A review on potential strategies for addressing microplastic-associated AMR is given with recent success stories, challenges and future prospects.202234813845
6531140.9984A comprehensive framework of health risk assessment for antibiotic resistance in aquatic environments: Status, progress, and perspectives. Antibiotic resistance (AR), driven by antibiotics as emerging pollutants, has become a critical global health threat, jeopardizing both environmental and human health. The persistence and spread of AR in aquatic ecosystems are governed by the intricate interplay between antibiotics, antibiotic resistance genes (ARGs), and antibiotic-resistant bacteria (ARB), which collectively influences its occurrence, transportation, and fate in aquatic ecosystems. However, most assessments focus primarily on antibiotics and ARGs, often relying on single-factor criteria while overlooking critical influence factors such as ARG forms, non-antibiotic chemicals, antibiotic pressure, and microbial competition. Furthermore, many fail to incorporate potential future risks, limiting their predictive accuracy and overall effectiveness in addressing AR in aquatic environments. To bridge these research gaps, we introduce a comprehensive health risk assessment framework that integrates the interactions among antibiotics, ARGs, and ARB. The proposed approach comprises four steps: 1. Determining the type of water body; 2. Performing model simulations; 3. Assessing antibiotics and ARGs; and 4. Evaluating ARB. Finally, a comprehensive risk index for AR is established, along with a corresponding hierarchical risk ranking system. Moreover, to demonstrate the practical application of the framework, an assessment of antibiotic resistance risk was conducted using a typical lake in Northeast China as a case study, indicating the efficacy of the proposed framework in quantifying the multidimensional health risk of AR. This framework not only provides a crucial foundation for dynamic health risk assessment, but also paving the way for more effective mitigation strategies to safeguard both aquatic ecosystems and human health in the future.202540914069
6528150.9984Antimicrobial resistance in urban river ecosystems. Antimicrobial resistance (AMR) with the ability to thwart clinical therapies and escalate mortality rates is emerging as one of the most pressing global health and environmental concerns. Urban rivers as an important subsystem of the environment offer galore of ecological services which benefit the city dwellers. However, with increased urbanization, industrialization, and heavy discharge of anthropogenic waste harboring antibiotics, heavy metals, pesticides, antibiotic resistance genes (ARGs), antibiotic resistant bacteria (ARB), urban rivers are becoming major reservoirs of ARGs and a hotspot for accelerated selection of ARB. These ARGs in urban rivers have the potential of being transferred to clinically important pathogens. In addition, urban rivers also act as important vectors for AMR spread. This is mainly due to the direct exposure of humans and animals to the heavily contaminated river water and high mobility of organisms (aquatic animals, pathogenic, non-pathogenic bacteria) as well as the genetic elements including ARGs and mobile genetic elements (MGEs) in the river. However, in spite of recent advocacy for comprehensive research programs aimed to investigate the occurrence, extent and major drivers of AMR in urban rivers globally, such studies are missing largely. This review encompasses the issues of AMR, major drivers and their vital roles in the evolution and spread of ARB with an emphasis on sources and hotspots of diverse ARGs in urban rivers contributing to co-occurrence of ARGs and MGEs. Further, the causal factors leading to adverse effects of antibiotic-load to river organisms with an elaboration on the current measures to eradicate the ARB, ARGs, and remove antibiotics from the urban river ecosystems are also discussed. A perspective review of current and emerging strategies with potentials of combating AMR in urban river ecosystems including advanced water treatment methodologies and floating islands or constructed wetlands.202235926259
6714160.9984Differential Drivers of Antimicrobial Resistance across the World. Antimicrobial resistance (AMR) is one of the greatest threats faced by humankind. The development of resistance in clinical and hospital settings has been well documented ever since the initial discovery of penicillin and the subsequent introduction of sulfonamides as clinical antibiotics. In contrast, the environmental (i.e., community-acquired) dimensions of resistance dissemination have been only more recently delineated. The global spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) between air, water, soil, and food is now well documented, while the factors that affect ARB and ARG dissemination (e.g., water and air quality, antibiotic fluxes, urbanization, sanitation practices) in these and other environmental matrices are just now beginning to be more fully appreciated. In this Account, we discuss how the global perpetuation of resistance is dictated by highly interconnected socioeconomic risk factors and illustrate that development status should be more fully considered when developing global strategies to address AMR. We first differentiate low to middle income countries (LMICs) and high-income countries (HICs), then we summarize the modes of action of commercially available antibiotics, and then discuss the four primary mechanisms by which bacteria develop resistance to those antibiotics. Resistance is disseminated via both vertical gene transfer (VGT; parent to offspring) as well as by horizontal gene transfer (HGT; cell to cell transference of genetic material). A key challenge hindering attempts to control resistance dissemination is the presence of native, environmental bacteria that can harbor ARGs. Such environmental "resistomes" have potential to transfer resistance to pathogens via HGT. Of particular concern is the development of resistance to antibiotics of last-resort such as the cephalosporins, carbapenems, and polymyxins. We then illustrate how antibiotic use differs in LMICs relative to HICs in terms of the volumes of antibiotics used and their fate within local environments. Antibiotic use in HICs has remained flat over the past 15 years, while in LMICs use over the same period has increased substantially as a result of economic improvements and changes in diet. These use and fate differences impact local citizens and thus the local dissemination of AMR. Various physical, social, and economic circumstances within LMICs potentially favor AMR dissemination. We focus on three physical factors: changing population density, sanitation infrastructure, and solid-waste disposal. We show that high population densities in cities within LMICs that suffer from poor sanitation and solid-waste disposal can potentially impact the dissemination of resistance. In the final section, we discuss potential monitoring approaches to quantify the spread of resistance both within LMICs as well as in HICs. We posit that culture-based approaches, molecular approaches, and cutting-edge nanotechnology-based methods for monitoring ARB and ARGs should be considered both within HICs and, as appropriate, within LMICs.201930848890
6646170.9984Food animals and antimicrobials: impacts on human health. Antimicrobials are valuable therapeutics whose efficacy is seriously compromised by the emergence and spread of antimicrobial resistance. The provision of antibiotics to food animals encompasses a wide variety of nontherapeutic purposes that include growth promotion. The concern over resistance emergence and spread to people by nontherapeutic use of antimicrobials has led to conflicted practices and opinions. Considerable evidence supported the removal of nontherapeutic antimicrobials (NTAs) in Europe, based on the "precautionary principle." Still, concrete scientific evidence of the favorable versus unfavorable consequences of NTAs is not clear to all stakeholders. Substantial data show elevated antibiotic resistance in bacteria associated with animals fed NTAs and their food products. This resistance spreads to other animals and humans-directly by contact and indirectly via the food chain, water, air, and manured and sludge-fertilized soils. Modern genetic techniques are making advances in deciphering the ecological impact of NTAs, but modeling efforts are thwarted by deficits in key knowledge of microbial and antibiotic loads at each stage of the transmission chain. Still, the substantial and expanding volume of evidence reporting animal-to-human spread of resistant bacteria, including that arising from use of NTAs, supports eliminating NTA use in order to reduce the growing environmental load of resistance genes.201121976606
6446180.9984Ecological consequences of antimicrobial residues and bioactive chemicals on antimicrobial resistance in agroecosystems. BACKGROUND: The widespread use of antimicrobials in agriculture, coupled with bioactive chemicals like pesticides and growth-promoting agents, has accelerated the global crisis of antimicrobial resistance (AMR). Agroecosystems provides a platform in the evolution and dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which pose significant threats to both environmental and public health. AIM OF REVIEW: This review explores the ecological consequences of antimicrobial residues and bioactive chemicals in agroecosystems, with a focus on their role in shaping AMR. It delves into the mechanisms by which these substances enter agricultural environments, their interactions with soil microbiomes, and the subsequent impacts on microbial community structure. KEY SCIENTIFIC CONCEPTS OF REVIEW: Evidence indicates that the accumulation of antimicrobials promotes resistance gene transfer among microorganisms, potentially compromising ecosystem health and agricultural productivity. By synthesizing current research, we identify critical gaps in knowledge and propose strategies for mitigating the ecological risks associated with antimicrobial residues. Moreover, this review highlights the urgent need for integrated management approaches to preserve ecosystem health and combat the spread of AMR in agricultural settings.202539414225
6473190.9984The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes - A review. The use of reclaimed wastewater (RWW) for the irrigation of crops may result in the continuous exposure of the agricultural environment to antibiotics, antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). In recent years, certain evidence indicate that antibiotics and resistance genes may become disseminated in agricultural soils as a result of the amendment with manure and biosolids and irrigation with RWW. Antibiotic residues and other contaminants may undergo sorption/desorption and transformation processes (both biotic and abiotic), and have the potential to affect the soil microbiota. Antibiotics found in the soil pore water (bioavailable fraction) as a result of RWW irrigation may be taken up by crop plants, bioaccumulate within plant tissues and subsequently enter the food webs; potentially resulting in detrimental public health implications. It can be also hypothesized that ARGs can spread among soil and plant-associated bacteria, a fact that may have serious human health implications. The majority of studies dealing with these environmental and social challenges related with the use of RWW for irrigation were conducted under laboratory or using, somehow, controlled conditions. This critical review discusses the state of the art on the fate of antibiotics, ARB and ARGs in agricultural environment where RWW is applied for irrigation. The implications associated with the uptake of antibiotics by plants (uptake mechanisms) and the potential risks to public health are highlighted. Additionally, knowledge gaps as well as challenges and opportunities are addressed, with the aim of boosting future research towards an enhanced understanding of the fate and implications of these contaminants of emerging concern in the agricultural environment. These are key issues in a world where the increasing water scarcity and the continuous appeal of circular economy demand answers for a long-term safe use of RWW for irrigation.201728689129