# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3030 | 0 | 0.8328 | Mobile Genomic Island GEI-FN1A in Aeromonas salmonicida FN1 Contributes to the Spread of Antibiotic-Resistance Genes. Antibiotics are used to treat severe bacterial infections. However, owing to excessive antibiotic use, bacteria under high selective pressure for antibiotics develop resistance through spontaneous mutation or by acquiring antibiotic-resistance genes (ARGs) through horizontal gene transfer (HGT). Horizontal transfer of ARGs among bacteria in the environment can lead to the emergence of multidrug-resistant (MDR) bacteria that infect animals and humans, thus causing disease outbreaks. In this study, MDR strain FN1 was isolated from a feces-contaminated soil sample from a chicken farm under pressure from the antibiotic florfenicol (16 mg/L) and identified as Aeromonas salmonicida. Whole-genome sequencing and analysis revealed the 86.8-kb antibiotic-resistant genomic island, GEI-FN1A, in the FN1 genome. Genome annotation revealed that GEI-FN1A carried several ARGs, including two tetracycline-resistance genes [tetR and tet(A)], three aminoglycoside-resistance genes [aph(6), aph(3"), and aac(3)], one trimethoprim-resistance gene (dfrB4), two chloramphenicol/florfenicol-resistance genes (catB3 and floR), three macrolide-resistance genes [mphR(A), mrx(A), and mph(A)] and two sul1 genes. GEI-FN1A also contained genes encoding integrase, transposase, and recombinase, which mediate the horizontal transfer of MDR genes. These findings suggest that GEI-FN1A in A. salmonicida FN1 can potentially spread ARGs among environmental bacteria. | 2025 | 40553200 |
| 3031 | 1 | 0.8233 | Novel Mobilizable Genomic Island GEI-D18A Mediates Conjugational Transfer of Antibiotic Resistance Genes in the Multidrug-Resistant Strain Rheinheimera sp. D18. Aquatic environments act as reservoirs of antimicrobial-resistant bacteria and antimicrobial resistance (AMR) genes, and the dissemination of antibiotic resistance from these environments is of increasing concern. In this study, a multidrug-resistant bacterial strain, identified as Rheinheimera sp. D18, was isolated from the sea water of an industrial maricultural system in the Yellow Sea, China. Whole-genome sequencing of D18 revealed the presence of a novel 25.8 kb antibiotic resistance island, designated GEI-D18A, which carries several antibiotic resistance genes (ARGs), including aadA1, aacA3, tetR, tet(B), catA, dfrA37, and three sul1 genes. Besides, integrase, transposase, resolvase, and recombinase encoding genes were also identified in GEI-D18A. The transferability of GEI-D18A was confirmed by mating experiments between Rheinheimera sp. D18 and Escherichia coli 25DN, and efflux pump inhibitor assays also suggested that tet(B) in GEI-D18A was responsible for tetracycline resistance in both D18 and the transconjugant. This study represents the first characterization of a mobilizable antibiotic resistance island in a species of Rheinheimera and provides evidence that Rheinheimera spp. could be important reservoirs and vehicles for ARGs in the Yellow Sea area. | 2020 | 32318052 |
| 811 | 2 | 0.8220 | Genomic analysis of five antibiotic-resistant bacteria isolated from the environment. Our study presents the whole-genome sequences and annotation of five bacteria isolates, each demonstrating distinct antibiotic resistance. These isolates include Bacillus paranthracis RIT 841, Atlantibacter hermanii RIT 842, Pantoea leporis RIT 844, Enterococcus casseliflavus RIT 845, and Pseudomonas alkylphenolica RIT 846, underscoring the importance of understanding antimicrobial resistance. | 2024 | 39189722 |
| 827 | 3 | 0.8189 | Characterization of a ST137 multidrug-resistant Campylobacter jejuni strain with a tet(O)-positive genomic island from a bloodstream infection patient. Campylobacter jejuni (C. jejuni) is a major cause of gastroenteritis and rarely cause bloodstream infection. Herein, we characterized a multidrug-resistant C. jejuni strain LZCJ isolated from a tumor patient with bloodstream infection. LZCJ was resistant to norfloxacin, ampicillin, ceftriaxone, ciprofloxacin and tetracycline. It showed high survival rate in serum and acidic environment. Whole genome sequencing (WGS) analysis revealed that strain LZCJ had a single chromosome of 1,629,078 bp (30.6 % G + C content) and belonged to the ST137 lineage. LZCJ shared the highest identity of 99.66 % with the chicken-derived C. jejuni MTVDSCj20. Four antimicrobial resistance genes (ARGs) were detected, bla(OXA-61), tet(O), gyrA (T86I), and cmeR (G144D and S207G). In addition, a 12,746 bp genomic island GI_LZCJ carrying 15 open reading frames (ORFs) including the resistance gene tet(O) was identified. Sequence analysis found that the GI_LZCJ was highly similar to the duck-derived C. jejuni ZS004, but with an additional ISChh1-like sequence. 137 non-synonymous mutations in motility related genes (flgF, fapR, flgS), capsular polysaccharide (CPS) coding genes (kpsE, kpsF, kpsM, kpsT), metabolism associated genes (nuoF, nuoG, epsJ, holB), and transporter related genes (comEA, gene0911) were confirmed in LZCJ compared with the best closed chicken-derived strain MTVDSCj20. Our study showed that C. jejuni strain LZCJ was highly similar to the chicken-derived strain MTVDSCj20 but with a lot of SNPs involved in motility, CPS and metabolism coding genes. This strain possessed a tet(O)-positive genomic island GI_LZCJ, which was closed to duck-derived C. jejuni ZS004, but with an additional ISChh1-like sequence. The above data indicated that the LZCJ strain may originate from foodborne bacteria on animals and the importance of continuous surveillance for the spread of foodborne bacteria. | 2024 | 39208964 |
| 9871 | 4 | 0.8188 | An Integrative and Conjugative Element (ICE) Found in Shewanella halifaxensis Isolated from Marine Fish Intestine May Connect Genetic Materials between Human and Marine Environments. Integrative and conjugative elements (ICEs) play a role in the horizontal transfer of antibiotic resistance genes (ARGs). We herein report an ICE from Shewanella halifaxensis isolated from fish intestine with a similar structure to both a clinical bacterial ICE and marine bacterial plasmid. The ICE was designated ICEShaJpn1, a member of the SXT/R391 family of ICEs (SRIs). ICEShaJpn1 has a common core structure with SRIs of clinical and fish origins and an ARG cassette with the pAQU1 plasmid of Photobacterium damselae subsp. damselae, suggesting that the common core of SRIs is widely distributed and ARG cassettes are collected from regional bacteria. | 2022 | 36058879 |
| 1763 | 5 | 0.8179 | Multidrug Resistance Genes Carried by a Novel Transposon Tn7376 and a Genomic Island Named MMGI-4 in a Pathogenic Morganella morganii Isolate. Antimicrobial resistance in Morganella morganii is increasing in recent years, which is mainly introduced via extra genetic and mobile elements. The aim of our study is to analyze the multidrug resistance (MDR) and characterize the mobile genetic elements (MGEs) in M. morganii isolates. Here, we report the characteristic of a pathogenic M. morganii isolate containing multidrug resistance genes that are mainly carried by a novel transposon Tn7376 and a genomic island. Sequence analysis suggested that the Tn7376 could be generated through homologous recombination between two different IS26-bounded translocatable units (TUs), namely, module A (IS26-Hp-IS26-mph(A)-mrx(A)-mphR-IS6100-chrA-sul1-qacEΔ1) and module B (ISCR1-sul1-qacEΔ1-cmlA1-aadA1-aadB-intI1-IS26), and the genomic island named MMGI-4 might derive from a partial structure of different original genomic islands that also carried IS26-mediated TUs. Notably, a 2,518-bp sequence linked to the module A and B contains a 570-bp dfrA24 gene. To the best of our knowledge, this is the first report of the novel Tn7376 possessing a complex class 1 integron that carried an infrequent gene dfrA24 in M. morganii. IMPORTANCE Mobile genetic elements (MGEs), especially for IS26-bounded translocatable units, may act as a reservoir for a variety of antimicrobial resistance genes in clinically important pathogenic bacteria. We expounded this significant genetic characteristic by investigating a representative M. morganii isolate containing multidrug resistance genes, including the infrequent dfrA24. Our study suggested that these acquired resistance genes were mainly driven by IS26-flanked important MGEs, such as the novel Tn7376 and the MMGI-4. We demonstrated that IS26-related MGEs contributed to the emergence of the extra gene dfrA24 in M. morganii through some potential genetic events like recombination, transposition, and integration. Therefore, it is of importance to investigate persistently the prevalence these MEGs in the clinical pathogens to provide risk assessment of emergence and development of novel resistance genes. | 2022 | 35510850 |
| 1752 | 6 | 0.8179 | Genetic Characterization of a Linezolid- and Penicillin-Resistant Enterococcus hirae Isolate Co-Harboring poxtA and pbp5fm. Linezolid and penicillin are critical for treating multidrug resistant (MDR) Gram-positive infections, but the emergence of resistance to both seriously threatens public health. Here, we first report the cocarrying poxtA (oxazolidinone resistance) and pbp5fm (β-lactam resistance) genes by the plasmid in a strain of Enterococcus hirae HDC14-2 derived from porcine. The isolate also exhibits MDR phenotypes to phenicols, oxazolidinones, tetracyclines, β-lactams, aminoglycosides, macrolides, and lincosamides. Whole-genome sequencing (WGS) revealed these resistance genes, along with tet(L), tet(M), catA, erm(B), aac(6)-aph(2"), aadE, spw, lsa(E), lnu(B), sat4, and aphA3, were clustered in a novel MDR region flanked by IS1216 elements on plasmid pHDC14-2.133K. This IS1216-bounded MDR region formed translocatable units (TUs), including an IS1216-poxtA TU that was also identified on a secondary plasmid, pHDC14-2.27K. Functional assays demonstrated the excisability and mobility of these TUs, indicating its potential ability integration into other plasmids or chromosomes. Critically, electrotransformation confirmed the transfer of pHDC14-2.27K (poxtA-carrying) to Enterococcus faecalis JH2-2, with retained TU activity and minimal fitness cost. This study provides the evidence of colocalized poxtA and pbp5fm on plasmids in enterococci, highlighting their role in disseminating pan-resistance among bacteria. Although E. hirae is not an important pathogenic bacterium to humans and animals, but its potential risk to horizontally spread of these resistance genes important in medicine still cannot be ignored. | 2025 | 40692874 |
| 3484 | 7 | 0.8178 | Occurrence of human pathogenic bacteria carrying antibiotic resistance genes revealed by metagenomic approach: A case study from an aquatic environment. Antibiotic resistance genes (ARGs), human pathogenic bacteria (HPB), and HPB carrying ARGs are public issues that pose a high risk to aquatic environments and public health. Their diversity and abundance in water, intestine, and sediments of shrimp culture pond were investigated using metagenomic approach. A total of 19 classes of ARGs, 52 HPB species, and 7 species of HPB carrying ARGs were found. Additionally, 157, 104, and 86 subtypes of ARGs were detected in shrimp intestine, pond water, and sediment samples, respectively. In all the samples, multidrug resistance genes were the highest abundant class of ARGs. The dominant HPB was Enterococcus faecalis in shrimp intestine, Vibrio parahaemolyticus in sediments, and Mycobacterium yongonense in water, respectively. Moreover, E. faecalis (contig Intestine_364647) and Enterococcus faecium (contig Intestine_80272) carrying efrA, efrB and ANT(6)-Ia were found in shrimp intestine, Desulfosaricina cetonica (contig Sediment_825143) and Escherichia coli (contig Sediment_188430) carrying mexB and APH(3')-IIa were found in sediments, and Laribacter hongkongensis (contig Water_478168 and Water_369477), Shigella sonnei (contig Water_880246), and Acinetobacter baumannii (contig Water_525520) carrying sul1, sul2, ereA, qacH, OXA-21, and mphD were found in pond water. Mobile genetic elements (MGEs) analysis indicated that horizontal gene transfer (HGT) of integrons, insertion sequences, and plasmids existed in shrimp intestine, sediment, and water samples, and the abundance of integrons was higher than that of other two MGEs. The results suggested that HPB carrying ARGs potentially existed in aquatic environments, and that these contributed to the environment and public health risk evaluation. | 2019 | 30952342 |
| 3007 | 8 | 0.8169 | Analysis of the complete nucleotide sequence of an Actinobacillus pleuropneumoniae streptomycin-sulfonamide resistance plasmid, pMS260. pMS260 is an 8.1-kb non-conjugative but mobilizable plasmid that was isolated from Actinobacillus pleuropneumoniae and encodes streptomycin (SM) and sulfonamide (SA) resistances. The analysis of the complete nucleotide sequence of the plasmid revealed a high degree of similarity between pMS260 and the broad-host-range IncQ family plasmids. pMS260 had a single copy of an origin of vegetative replication (oriV). This sequence was identical to a functional oriV of the IncQ-like plasmid pIE1130 that had been exogenously isolated from piggery manure. However, pMS260 did not carry the second IncQ plasmid RSF1010-like oriV region present in pIE1130. A pIE1130-identical transfer origin was also found in pMS260. In addition, the deduced amino acid sequences from 10 open reading frames identified in pMS260 were entirely or nearly identical to those from genes for the replication, mobilization, and SM-SA resistance of pIE1130, indicating that pMS260 belongs to the IncQ-1 gamma subgroup. pMS260 is physically indistinguishable from pIE1130 apart from two DNA regions that contain the chloramphenicol and kanamycin resistance genes (catIII and aphI, respectively) and the second oriV-like region of pIE1130. The codon bias analysis of each gene of pIE1130 and the presence of potential recombination sites in the sulII-strA intergenic regions suggest that pIE1130 seems to have acquired the catIII and aphI genes more recently than the other genes of pIE1130. Therefore, pMS260 may be the ancestor of pIE1130. Information regarding the broad-host-range replicon of pMS260 will be useful in the development of genetic systems for a wide range of bacteria including A. pleuropneumoniae. | 2004 | 14711528 |
| 3036 | 9 | 0.8168 | Complete nucleotide sequences of 84.5- and 3.2-kb plasmids in the multi-antibiotic resistant Salmonella enterica serovar Typhimurium U302 strain G8430. The multi-antibiotic resistant (MR) Salmonella enterica serovar Typhimurium phage type U302 strain G8430 exhibits the penta-resistant ACSSuT-phenotype (ampicillin, chloramphenicol, streptomycin, sulfonamides and tetracycline), and is also resistant to carbenicillin, erythromycin, kanamycin, and gentamicin. Two plasmids, 3.2- and 84.5-kb in size, carrying antibiotic resistance genes were isolated from this strain, and the nucleotide sequences were determined and analyzed. The 3.2-kb plasmid, pU302S, belongs to the ColE1 family and carries the aph(3')-I gene (Kan(R)). The 84.5-kb plasmid, pU302L, is an F-like plasmid and contains 14 complete IS elements and multiple resistance genes including aac3, aph(3')-I, sulII, tetA/R, strA/B, bla(TEM-1), mph, and the mer operon. Sequence analyses of pU302L revealed extensive homology to various plasmids or transposons, including F, R100, pHCM1, pO157, and pCTX-M3 plasmids and TnSF1 transposon, in regions involved in plasmid replication/maintenance functions and/or in antibiotic resistance gene clusters. Though similar to the conjugative plasmids F and R100 in the plasmid replication regions, pU302L does not contain oriT and the tra genes necessary for conjugal transfer. This mosaic pattern of sequence similarities suggests that pU302L acquired the resistance genes from a variety of enteric bacteria and underscores the importance of a further understanding of horizontal gene transfer among the enteric bacteria. | 2007 | 16828159 |
| 5441 | 10 | 0.8166 | Presence of SXT integrating conjugative element in marine bacteria isolated from the mucus of the coral Fungia echinata from Andaman Sea. In this study, we characterize 18 cultivable bacteria associated within the mucus of the coral Fungia echinata from Andaman Sea, India. 16S rRNA gene sequence analysis showed that all the 18 strains isolated in this study from the coral mucus belong to the group Gammaproteobacteria and majority of them were identified as Vibrio core group. Our objective was to investigate the presence of the SXT/R391 integrating conjugative elements (ICEs) targeting integrase int(SXT) and SXT Hotspot IV genetic elements in these isolates. SXT/ICE initially reported in Vibrio cholerae contains many antibiotic and heavy metal resistance genes and acts as an effective tool for the horizontal transfer of resistance genes in other bacterial populations. Two of our strains, AN44 and AN60, were resistant to sulfamethoxazole, trimethoprim, chloramphenicol, and streptomycin, in addition to other antibiotics such as neomycin, ampicillin, rifampicin, and tetracycline. Using PCR followed by sequencing, we detected the SXT/ICE in these strains. The SXT integrase genes of AN44 and AN60 had a 99% and 100% identity with V. cholerae serogroup O139 strain SG24. This study provides the first evidence of the presence of SXT/R391 ICEs in Marinomonas sp. strain AN44 (JCM 18476(T) ) and Vibrio fortis strain AN60 (DSM 26067(T) ) isolated from the mucus of the coral F. echinata. | 2013 | 23083057 |
| 3023 | 11 | 0.8161 | ICEAplChn1, a novel SXT/R391 integrative conjugative element (ICE), carrying multiple antibiotic resistance genes in Actinobacillus pleuropneumoniae. SXT/R391 integrative conjugative elements (ICEs) are capable of self-transfer by conjugation and highly prevalent in various aquatic bacteria and Proteus species. In the present study, a novel SXT/R391 ICE, named ICEAplChn1, was identified in the multidrug resistant (MDR) Actinobacillus pleuropneumoniae strain app6. ICEAplChn1 was composed of the typical SXT/R391 backbone and insertion DNA at eight hotspots, including HS1, HS2, HS3, HS4, HS5, VRII, VRIII and a new variation region VRVI. Many of the insertion contents were not present in other reported SXT/R391 family members, including ICEApl2, a recently identified SXT/R391 ICE from a clinical isolate of A. pleuropneumoniae. Remarkably, the VRIII region had accumulated seven resistance genes tet(A), erm(42), floR, aphA6, strB (two copies), strA and sul2. Of them, erm(42) and aphA6 emerged for the first time not only in the SXT/R391 elements but also in A. pleuropneumoniae. Phylogenetic analysis showed considerable variation of the backbone sequence of ICEAplChn1, as compared to those of other SXT/R391 ICEs. A circular intermediate form of ICEAplChn1 was detected by nested PCR. However, the conjugation experiments using different bacteria as recipients failed. These findings demonstrated that SXT/R391 ICEs are able to adapt to a broader range of host bacterial species. The presence of the MDR gene cluster in ICEAplChn1 underlines that SXT/R391 ICE could serve as an important vector for the accumulation of antibiotic resistance genes. | 2018 | 29885796 |
| 5134 | 12 | 0.8159 | Genomic analysis and antibiotic resistance of a multidrug-resistant bacterium isolated from pharmaceutical wastewater treatment plant sludge. Pharmaceutical wastewater treatment plants (PWWTPs) serve as reservoirs for antibiotic-resistant bacteria (ARBs) and antibiotic resistance genes (ARGs). In this study, a multiantibiotic-resistant strain of Acinetobacter lwoffii (named N4) was isolated from the dewatered sludge of a PWWTP. N4 exhibited high resistance to both antibiotics and metals, with minimum inhibitory concentrations (MICs) of chloramphenicol and cefazolin reaching 1024 mg·L(-1) and MICs of Cu(2+) and Zn(2+) reaching 512 mg·L(-1). Co-sensitization experiments revealed that when antibiotics are co-existing with heavy metal ions (such as TET and Cd(2+), AMP and Cu(2+)) could enhance the resistance of N4 to them. Whole-genome sequencing of N4 revealed a genome size of 0.37 Mb encoding 3359 genes. Among these, 23 ARGs were identified, including dfrA26, bl2be(CTXM), catB3, qnrB, rosB, tlrC, smeD, smeE, mexE, ceoB, oprN, acrB, adeF, ykkC, ksgA and sul2, which confer resistance through mechanisms such as efflux pumps, enzyme modification and target bypass. Additionally, the N4 genome contained 187 genes associated with human disease and 249 virulence factors, underscoring its potential pathogenicity. Overall, this study provides valuable insights into ARBs in PWWTPs and highlights the potential risks posed by multidrug-resistant strains such as N4. | 2025 | 39626482 |
| 1535 | 13 | 0.8155 | Complete Genome Sequencing of Acinetobacter baumannii AC1633 and Acinetobacter nosocomialis AC1530 Unveils a Large Multidrug-Resistant Plasmid Encoding the NDM-1 and OXA-58 Carbapenemases. Carbapenem-resistant Acinetobacter spp. are considered priority drug-resistant human-pathogenic bacteria. The genomes of two carbapenem-resistant Acinetobacter spp. clinical isolates obtained from the same tertiary hospital in Terengganu, Malaysia, namely, A. baumannii AC1633 and A. nosocomialis AC1530, were sequenced. Both isolates were found to harbor the carbapenemase genes bla(NDM-1) and bla(OXA-58) in a large (ca. 170 kb) plasmid designated pAC1633-1 and pAC1530, respectively, that also encodes genes that confer resistance to aminoglycosides, sulfonamides, and macrolides. The two plasmids were almost identical except for the insertion of ISAba11 and an IS4 family element in pAC1633-1, and ISAba11 along with relBE toxin-antitoxin genes flanked by inversely orientated pdif (XerC/XerD) recombination sites in pAC1530. The bla(NDM-1) gene was encoded in a Tn125 composite transposon structure flanked by ISAba125, whereas bla(OXA-58) was flanked by ISAba11 and ISAba3 downstream and a partial ISAba3 element upstream within a pdif module. The presence of conjugative genes in plasmids pAC1633-1/pAC1530 and their discovery in two distinct species of Acinetobacter from the same hospital are suggestive of conjugative transfer, but mating experiments failed to demonstrate transmissibility under standard laboratory conditions. Comparative sequence analysis strongly inferred that pAC1633-1/pAC1530 was derived from two separate plasmids in an IS1006-mediated recombination or transposition event. A. baumannii AC1633 also harbored three other plasmids designated pAC1633-2, pAC1633-3, and pAC1633-4. Both pAC1633-3 and pAC1633-4 are cryptic plasmids, whereas pAC1633-2 is a 12,651-bp plasmid of the GR8/GR23 Rep3-superfamily group that encodes the tetA(39) tetracycline resistance determinant in a pdif module.IMPORTANCE Bacteria of the genus Acinetobacter are important hospital-acquired pathogens, with carbapenem-resistant A. baumannii listed by the World Health Organization as the one of the top priority pathogens. Whole-genome sequencing of carbapenem-resistant A. baumannii AC1633 and A. nosocomialis AC1530, which were isolated from the main tertiary hospital in Terengganu, Malaysia, led to the discovery of a large, ca. 170-kb plasmid that harbored genes encoding the New Delhi metallo-β-lactamase-1 (NDM-1) and OXA-58 carbapenemases alongside genes that conferred resistance to aminoglycosides, macrolides, and sulfonamides. The plasmid was a patchwork of multiple mobile genetic elements and comparative sequence analysis indicated that it may have been derived from two separate plasmids through an IS1006-mediated recombination or transposition event. The presence of such a potentially transmissible plasmid encoding resistance to multiple antimicrobials warrants vigilance, as its spread to susceptible strains would lead to increasing incidences of antimicrobial resistance. | 2021 | 33504662 |
| 5239 | 14 | 0.8154 | The mobile gene cassette carrying tetracycline resistance genes in Aeromonas veronii strain Ah5S-24 isolated from catfish pond sediments shows similarity with a cassette found in other environmental and foodborne bacteria. Aeromonas veronii is a Gram-negative bacterium ubiquitously found in aquatic environments. It is a foodborne pathogen that causes diarrhea in humans and hemorrhagic septicemia in fish. In the present study, we used whole-genome sequencing (WGS) to evaluate the presence of antimicrobial resistance (AMR) and virulence genes found in A. veronii Ah5S-24 isolated from catfish pond sediments in South-East, United States. We found cphA4, dfrA3, mcr-7.1, valF, bla (FOX-7), and bla (OXA-12) resistance genes encoded in the chromosome of A. veronii Ah5S-24. We also found the tetracycline tet(E) and tetR genes placed next to the IS5/IS1182 transposase, integrase, and hypothetical proteins that formed as a genetic structure or transposon designated as IS5/IS1182/hp/tet(E)/tetR/hp. BLAST analysis showed that a similar mobile gene cassette (MGC) existed in chromosomes of other bacteria species such as Vibrio parahaemolyticus isolated from retail fish at markets, Aeromonas caviae from human stool and Aeromonas media from a sewage bioreactor. In addition, the IS5/IS1182/hp/tet(E)/tetR/hp cassette was also found in the plasmid of Vibrio alginolyticus isolated from shrimp. As for virulence genes, we found the tap type IV pili (tapA and tapY), polar flagellae (flgA and flgN), lateral flagellae (ifgA and IfgL), and fimbriae (pefC and pefD) genes responsible for motility and adherence. We also found the hemolysin genes (hylII, hylA, and TSH), aerA toxin, biofilm formation, and quorum sensing (LuxS, mshA, and mshQ) genes. However, there were no MGCs encoding virulence genes found in A. veronii AhS5-24. Thus, our findings show that MGCs could play a vital role in the spread of AMR genes between chromosomes and plasmids among bacteria in aquatic environments. Overall, our findings are suggesting that MGCs encoding AMR genes could play a vital role in the spread of resistance acquired from high usage of antimicrobials in aquaculture to animals and humans. | 2023 | 37007502 |
| 5133 | 15 | 0.8154 | Draft genome sequence of Marinobacter sp. DUT-3, a manganese-oxidizing and potential antibiotic-resistant bacterium from Bohai coastal sediments. A manganese-oxidizing bacterium, Marinobacter sp. DUT-3, was isolated from Bohai coastal sediments. A total of 24 contigs with GC content of 57.91% and 3,817 protein-coding genes were obtained by genome sequencing. Isolation of this strain suggests potential for synergistic antibiotics removal via biogenic manganese oxides and intrinsic resistance. | 2025 | 41081498 |
| 3040 | 16 | 0.8152 | Similarity in the Structure of tetD-Carrying Mobile Genetic Elements in Bacterial Strains of Different Genera Isolated from Cultured Yellowtail. Structure analysis was performed on the antibiotic-resistance-gene region of conjugative plasmids of four fish farm bacteria.The kanamycin resistance gene, IS26, and tetracycline resistance gene (tetA(D)) were flanked by two IS26s in opposite orientation in Citrobacter sp. TA3 and TA6, and Alteromonas sp. TA55 from fish farm A. IS26-Inner was disrupted with ISRSB101. The chloramphenicol resistance gene, IS26 and tetA (D) were flanked by two IS26s in direct orientation in Salmonella sp. TC67 from farm C. Structures of tetA (D) and IS26 were identical among the four bacteria, but there was no insertion within the IS26-Inner of Salmonella sp. TC67. Horizontal gene transfer between the strains of two different genera in fish farm A was suggested by the structure homologies of mobile genetic elements and antibiotic resistance genes. | 2016 | 27667524 |
| 6381 | 17 | 0.8152 | Occurrence and distribution of antibiotic resistance genes in Elymus nutans silage from different altitudes on the Qinghai-Tibetan Plateau. INTRODUCTION: Antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) have attracted more attentions in fermented feed recently. However, little information is available on the occurrence and distribution of ARGs in ensiled forages in the alpine region of the Qinghai-Tibetan plateau (QTP) with an extremely harsh environment. METHODS: The study investigated the distribution and spread mechanism of ARB and ARGs in Elymus nutans silage along 2600 m (low), 3600 m (medium) and 4600 m (high) altitude in the QTP. RESULTS: The major ARG types in Elymus nutans silage were multidrug, aminoglycoside, bacitracin, beta-lactam and polymyxin, while tnpA and IS91 were the dominant mobile genetic elements (MGEs) subtypes in the Elymus nutans silage. The dominant ARGs were mainly carried by Pantoea, Enterobacter, Serratia, and Lelliottia. Although altitudinal gradient had no influence on the diversity or abundance of other ARGs and MGEs in the Elymus nutans silage (p > 0.05), the network co-occurrence patterns among ARGs, MGEs, and bacteria in high-altitude silage were more complex than that in low- and medium-altitude silages. The dominant clinical ARGs in the alpine silage were bacA and acrF, and the abundance of clinical ARGs decreased with prolonged fermentation time. DISCUSSION: This study provides important data on the status of ARGs in ensiled forage from the alpine region of the QTP. | 2025 | 40458713 |
| 9874 | 18 | 0.8151 | Genomic islands related to Salmonella genomic island 1; integrative mobilisable elements in trmE mobilised in trans by A/C plasmids. Salmonella genomic island 1 (SGI1), an integrative mobilisable element (IME), was first reported 20 years ago, in the multidrug resistant Salmonella Typhimurium DT104 clone. Since this first report, many variants and relatives have been found in Salmonella enterica and Proteus mirabilis. Thanks to whole genome sequencing, more and more complete sequences of SGI1-related elements (SGI1-REs) have been reported in these last few years among Gammaproteobacteria. Here, the genetic organisation and main features common to SGI1-REs are summarised to help to classify them. Their integrases belong to the tyrosine-recombinase family and target the 3'-end of the trmE gene. They share the same genetic organisation (integrase and excisionase genes, replicase module, SgaCD-like transcriptional activator genes, traN, traG, mpsB/mpsA genes) and they harbour AcaCD binding sites promoting their excision, replication and mobilisation in presence of A/C plasmid. SGI1-REs are mosaic structures suggesting that recombination events occurred between them. Most of them harbour a multiple antibiotic resistance (MAR) region and the plasticity of their MAR region show that SGI1-REs play a key role in antibiotic resistance and might help multiple antibiotic resistant bacteria to adapt to their environment. This might explain the emergence of clones with SGI1-REs. | 2021 | 33582118 |
| 5381 | 19 | 0.8150 | Draft genome sequence of Staphylococcus urealyticus strain MUWRP0921, isolated from the urine of an adult female Ugandan. Staphylococcus urealyticus bacteria are pathogenic among immune-compromised individuals. A strain (MUWRP0921) of Staphylococcus urealyticus with a genome of 2,708,354 bp was isolated from Uganda and carries genes that are associated with antibiotic resistance, including resistance to macrolides (erm(C) and mph(C')), aminoglycosides (aac(6")-aph(2")), tetracyclines (tet(K)), and trimethoprim (dfrG). | 2024 | 38078696 |