FMT - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
769500.9605Use of proximity ligation shotgun metagenomics to investigate the dynamics of plasmids and bacteriophages in the gut microbiome following fecal microbiota transplantation. Proximity ligation shotgun metagenomics facilitate the analysis of the relationships between mobile genetic elements, such as plasmids and bacteriophages, and their specific bacterial hosts. We applied this technique to investigate the changes in the fecal microbiome of patients receiving fecal microbiota transplantation (FMT) for recurrent Clostridioides difficile infections (rCDI). FMT was associated with successful engraftment of donor bacteria along with their associated bacteriophages. While fecal microbial diversity increased in all patients, the extent of specific bacterial taxa engraftment varied among individual patients. Interestingly, some donor bacteriophages remained closely linked to their original bacterial hosts, while others expanded their associations across different bacterial taxa. Notably, FMT partially reduced the content of vancomycin resistance and extended-spectrum beta-lactamase genes in the fecal microbiome of rCDI patients.202540948444
637810.9602Metagenomics reveals the divergence of gut microbiome composition and function in two common pika species (Ochotona curzoniae and Ochotona daurica) in China. Gut microbiome plays crucial roles in animal adaptation and evolution. However, research on adaptation and evolution of small wild high-altitude mammals from the perspective of gut microbiome is still limited. In this study, we compared differences in intestinal microbiota composition and function in Plateau pikas (Ochotona curzoniae) and Daurian pikas (O. daurica) using metagenomic sequencing. Our results showed that microbial community structure had distinct differences in different pika species. Prevotella, Methanosarcina, Rhizophagus, and Podoviridae were abundant bacteria, archaea, eukaryotes, and viruses in Plateau pikas, respectively. However, Prevotella, Methanosarcina, Ustilago, and Retroviridae were dominated in Daurian pikas. Functional pathways related to carbohydrate metabolism that refer to the utilization of pectin, hemicellulose, and debranching enzymes were abundant in Plateau pikas, while the function for degradation of chitin, lignin, and cellulose was more concentrated in Daurian pikas. Pika gut had abundant multidrug resistance genes, followed by glycopeptide and beta-lactamase resistance genes, as well as high-risk antibiotic resistance genes, such as mepA, tetM, and bacA. Escherichia coli and Klebsiella pneumoniae may be potential hosts of mepA. This research provided new insights for adaptation and evolution of wild animals from perspective of gut microbiome and broadened our understanding of high-risk antibiotic resistance genes and potential pathogens of wild animals.202439500545
332620.9589Antimicrobial Resistance Gene Acquisition and Depletion Following Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection. Fecal microbiota transplantation (FMT) may be a novel approach to eliminate multidrug-resistant bacteria from the gut and to prevent future infections. Using whole metagenome sequencing data from 8 FMT donor-recipient pairs, we identified 37 and 95 antimicrobial resistance genes that were acquired by or removed from FMT recipients, respectively.201829020222
835530.9589Ecology-relevant bacteria drive the evolution of host antimicrobial peptides in Drosophila. Antimicrobial peptides are host-encoded immune effectors that combat pathogens and shape the microbiome in plants and animals. However, little is known about how the host antimicrobial peptide repertoire is adapted to its microbiome. Here, we characterized the function and evolution of the Diptericin antimicrobial peptide family of Diptera. Using mutations affecting the two Diptericins (Dpt) of Drosophila melanogaster, we reveal the specific role of DptA for the pathogen Providencia rettgeri and DptB for the gut mutualist Acetobacter. The presence of DptA- or DptB-like genes across Diptera correlates with the presence of Providencia and Acetobacter in their environment. Moreover, DptA- and DptB-like sequences predict host resistance against infection by these bacteria across the genus Drosophila. Our study explains the evolutionary logic behind the bursts of rapid evolution of an antimicrobial peptide family and reveals how the host immune repertoire adapts to changing microbial environments.202337471548
377240.9585Bacterial avidins are a widely distributed protein family in Actinobacteria, Proteobacteria and Bacteroidetes. BACKGROUND: Avidins are biotin-binding proteins commonly found in the vertebrate eggs. In addition to streptavidin from Streptomyces avidinii, a growing number of avidins have been characterized from divergent bacterial species. However, a systematic research concerning their taxonomy and ecological role has never been done. We performed a search for avidin encoding genes among bacteria using available databases and classified potential avidins according to taxonomy and the ecological niches utilized by host bacteria. RESULTS: Numerous avidin-encoding genes were found in the phyla Actinobacteria and Proteobacteria. The diversity of protein sequences was high and several new variants of genes encoding biotin-binding avidins were found. The living strategies of bacteria hosting avidin encoding genes fall mainly into two categories. Human and animal pathogens were overrepresented among the found bacteria carrying avidin genes. The other widespread category were bacteria that either fix nitrogen or live in root nodules/rhizospheres of plants hosting nitrogen-fixing bacteria. CONCLUSIONS: Bacterial avidins are a taxonomically and ecologically diverse group mainly found in Actinobacteria, Proteobacteria and Bacteroidetes, associated often with plant invasiveness. Avidin encoding genes in plasmids hint that avidins may be horizontally transferred. The current survey may be used as a basis in attempts to understand the ecological significance of biotin-binding capacity.202133836663
371550.9583Deposition of resistant bacteria and resistome through FMT in germ-free piglets. Faecal microbiota transplantation (FMT) has received considerable attention in recent years due to its remarkable efficacy in restoring a normal gut microbiome. Here, we established the groups of post-FMT recipient piglets using germ-free piglets during early life to characterize the colonization of gut microbiota composition and the enrichment of resistance gene acquisition. By metagenomic analysis, we identified 115 bacterial phyla and 2111 bacterial genera that were acquired by the FMT recipients. We found that early-life microbial colonization and the spread of resistomes in recipient piglets were age dependent. A total of 425, 425 and 358 AR genes primarily belonging to 114, 114 and 102 different types were detected in the donors, post-FMT recipients in the FMT-3D group and post-FMT recipients in the FMT-15D group respectively. Genes that encoded tetracycline, macrolide and chloramphenicol resistance proteins were the most dominant AR genes, and the results corresponded with the exposure of antibiotic consumption at farm. Bacteroides, Escherichia, Clostridium, Parabacteroides, Treponema, Lactobacillus and Enterococcus were significantly correlated with the distribution of AR genes. More importantly, the relative abundance of AR genes was positively correlated with the levels of mobile genetic elements. Our results indicate that early-life microbial colonization can persistently shape the gut microbiota and antibiotic resistome.202133894059
937060.9576'Blooming' in the gut: how dysbiosis might contribute to pathogen evolution. Hundreds of bacterial species make up the mammalian intestinal microbiota. Following perturbations by antibiotics, diet, immune deficiency or infection, this ecosystem can shift to a state of dysbiosis. This can involve overgrowth (blooming) of otherwise under-represented or potentially harmful bacteria (for example, pathobionts). Here, we present evidence suggesting that dysbiosis fuels horizontal gene transfer between members of this ecosystem, facilitating the transfer of virulence and antibiotic resistance genes and thereby promoting pathogen evolution.201323474681
818770.9576Racial disparities in metastatic colorectal cancer outcomes revealed by tumor microbiome and transcriptome analysis with bevacizumab treatment. Background: Metastatic colorectal cancer (mCRC) is a heterogeneous disease, often associated with poor outcomes and resistance to therapies. The racial variations in the molecular and microbiological profiles of mCRC patients, however, remain under-explored. Methods: Using RNA-SEQ data, we extracted and analyzed actively transcribing microbiota within the tumor milieu, ensuring that the identified bacteria were not merely transient inhabitants but engaged in the tumor ecosystem. Also, we independently acquired samples from 12 mCRC patients, specifically, 6 White individuals and 6 of Black or African American descent. These samples underwent 16S rRNA sequencing. Results: Our study revealed notable racial disparities in the molecular signatures and microbiota profiles of mCRC patients. The intersection of these data showcased the potential modulating effects of specific bacteria on gene expression. Particularly, the bacteria Helicobacter cinaedi and Sphingobium herbicidovorans emerged as significant influencers, with strong correlations to the genes SELENBP1 and SNORA38, respectively. Discussion: These findings underscore the intricate interplay between host genomics and actively transcribing tumor microbiota in mCRC's pathogenesis. The identified correlations between specific bacteria and genes highlight potential avenues for targeted therapies and a more personalized therapeutic approach.202338357363
842480.9575Postseptational chromosome partitioning in bacteria. Mutations in the spoIIIE gene prevent proper partitioning of one chromosome into the developing prespore during sporulation but have no overt effect on partitioning in vegetatively dividing cells. However, the expression of spoIIIE in vegetative cells and the occurrence of genes closely related to spoIIIE in a range of nonsporulating eubacteria suggested a more general function for the protein. Here we show that SpoIIIE protein is needed for optimal chromosome partitioning in vegetative cells of Bacillus subtilis when the normal tight coordination between septation and nucleoid partitioning is perturbed or when septum positioning is altered. A functional SpoIIIE protein allows cells to recover from a state in which their chromosome has been trapped by a closing septum. By analogy to its function during sporulation, we suggest that SpoIIIE facilitates partitioning by actively translocating the chromosome out of the septum. In addition to enhancing the fidelity of nucleoid partitioning, SpoIIIE also seems to be required for maximal resistance to antibiotics that interfere with DNA metabolism. The results have important implications for our understanding of the functions of genes involved in the primary partitioning machinery in bacteria and of how septum placement is controlled.19957567988
34890.9575Conjugative DNA transfer in Streptomyces by TraB: is one protein enough? Antibiotic-producing soil bacteria of the genus Streptomyces form a huge natural reservoir of antibiotic resistance genes for the dissemination within the soil community. Streptomyces plasmids encode a unique conjugative DNA transfer system clearly distinguished from classical conjugation involving a single-stranded DNA molecule and a type IV protein secretion system. Only a single plasmid-encoded protein, TraB, is sufficient to translocate a double-stranded DNA molecule into the recipient in Streptomyces matings. TraB is a hexameric pore-forming ATPase that resembles the chromosome segregator protein FtsK and translocates DNA by recognizing specific 8-bp repeats present in the plasmid clt locus. Mobilization of chromosomal genes does not require integration of the plasmid, because TraB also recognizes clt-like sequences distributed all over the chromosome.201223082971
8620100.9574Changes in Microbiome Confer Multigenerational Host Resistance after Sub-toxic Pesticide Exposure. The gut is a first point of contact with ingested xenobiotics, where chemicals are metabolized directly by the host or microbiota. Atrazine is a widely used pesticide, but the role of the microbiome metabolism of this xenobiotic and the impact on host responses is unclear. We exposed successive generations of the wasp Nasonia vitripennis to subtoxic levels of atrazine and observed changes in the structure and function of the gut microbiome that conveyed atrazine resistance. This microbiome-mediated resistance was maternally inherited and increased over successive generations, while also heightening the rate of host genome selection. The rare gut bacteria Serratia marcescens and Pseudomonas protegens contributed to atrazine metabolism. Both of these bacteria contain genes that are linked to atrazine degradation and were sufficient to confer resistance in experimental wasp populations. Thus, pesticide exposure causes functional, inherited changes in the microbiome that should be considered when assessing xenobiotic exposure and as potential countermeasures to toxicity.202032023487
575110.9572Identification and characterization of uvrA, a DNA repair gene of Deinococcus radiodurans. Deinococcus radiodurans is extraordinarily resistant to DNA damage, because of its unusually efficient DNA repair processes. The mtcA+ and mtcB+ genes of D. radiodurans, both implicated in excision repair, have been cloned and sequenced, showing that they are a single gene, highly homologous to the uvrA+ genes of other bacteria. The Escherichia coli uvrA+ gene was expressed in mtcA and mtcB strains, and it produced a high degree of complementation of the repair defect in these strains, suggesting that the UvrA protein of D. radiodurans is necessary but not sufficient to produce extreme DNA damage resistance. Upstream of the uvrA+ gene are two large open reading frames, both of which are directionally divergent from the uvrA+ gene. Evidence is presented that the proximal of these open reading frames may be irrB+.19968955293
9985120.9571Identification of the First Gene Transfer Agent (GTA) Small Terminase in Rhodobacter capsulatus and Its Role in GTA Production and Packaging of DNA. Genetic exchange mediated by viruses of bacteria (bacteriophages) is the primary driver of rapid bacterial evolution. The priority of viruses is usually to propagate themselves. Most bacteriophages use the small terminase protein to identify their own genome and direct its inclusion into phage capsids. Gene transfer agents (GTAs) are descended from bacteriophages, but they instead package fragments of the entire bacterial genome without preference for their own genes. GTAs do not selectively target specific DNA, and no GTA small terminases are known. Here, we identified the small terminase from the model Rhodobacter capsulatus GTA, which then allowed prediction of analogues in other species. We examined the role of the small terminase in GTA production and propose a structural basis for random DNA packaging.IMPORTANCE Random transfer of any and all genes between bacteria could be influential in the spread of virulence or antimicrobial resistance genes. Discovery of the true prevalence of GTAs in sequenced genomes is hampered by their apparent similarity to bacteriophages. Our data allowed the prediction of small terminases in diverse GTA producer species, and defining the characteristics of a "GTA-type" terminase could be an important step toward novel GTA identification. Importantly, the GTA small terminase shares many features with its phage counterpart. We propose that the GTA terminase complex could become a streamlined model system to answer fundamental questions about double-stranded DNA (dsDNA) packaging by viruses that have not been forthcoming to date.201931534034
6448130.9570The resistance within: Antibiotic disruption of the gut microbiome and resistome dynamics in infancy. Intestinal host-microbiota interactions during the first year of life are critical for infant development. Early-life antibiotic exposures disrupt stereotypical gut microbiota maturation and adversely affect childhood health. Furthermore, antibiotics increase the abundance of resistant bacteria and enrich the resistome-the compendium of antibiotic resistance genes-within the gut microbiota. Here, we discuss acute and persistent impacts of antibiotic exposure during infancy on pediatric health, the gut microbiome, and, particularly, the resistome. Reviewing our current understanding of antibiotic resistance acquisition and dissemination within and between microbiomes, we highlight open questions, which are imperative to resolve in the face of rising bacterial resistance.202235550670
9074140.9569BacAnt: A Combination Annotation Server for Bacterial DNA Sequences to Identify Antibiotic Resistance Genes, Integrons, and Transposable Elements. Whole genome sequencing (WGS) of bacteria has become a routine method in diagnostic laboratories. One of the clinically most useful advantages of WGS is the ability to predict antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs) in bacterial sequences. This allows comprehensive investigations of such genetic features but can also be used for epidemiological studies. A plethora of software programs have been developed for the detailed annotation of bacterial DNA sequences, such as rapid annotation using subsystem technology (RAST), Resfinder, ISfinder, INTEGRALL and The Transposon Registry. Unfortunately, to this day, a reliable annotation tool of the combination of ARGs and MGEs is not available, and the generation of genbank files requires much manual input. Here, we present a new webserver which allows the annotation of ARGs, integrons and transposable elements at the same time. The pipeline generates genbank files automatically, which are compatible with Easyfig for comparative genomic analysis. Our BacAnt code and standalone software package are available at https://github.com/xthua/bacant with an accompanying web application at http://bacant.net.202134367079
3325150.9569Long-term beneficial effect of faecal microbiota transplantation on colonisation of multidrug-resistant bacteria and resistome abundance in patients with recurrent Clostridioides difficile infection. BACKGROUND: Multidrug-resistant (MDR) bacteria are a growing global threat, especially in healthcare facilities. Faecal microbiota transplantation (FMT) is an effective prevention strategy for recurrences of Clostridioides difficile infections and can also be useful for other microbiota-related diseases. METHODS: We study the effect of FMT in patients with multiple recurrent C. difficile infections on colonisation with MDR bacteria and antibiotic resistance genes (ARG) on the short (3 weeks) and long term (1-3 years), combining culture methods and faecal metagenomics. RESULTS: Based on MDR culture (n = 87 patients), we notice a decrease of 11.5% in the colonisation rate of MDR bacteria after FMT (20/87 before FMT = 23%, 10/87 3 weeks after FMT). Metagenomic sequencing of patient stool samples (n = 63) shows a reduction in relative abundances of ARGs in faeces, while the number of different resistance genes in patients remained higher compared to stools of their corresponding healthy donors (n = 11). Furthermore, plasmid predictions in metagenomic data indicate that patients harboured increased levels of resistance plasmids, which appear unaffected by FMT. In the long term (n = 22 patients), the recipients' resistomes are still donor-like, suggesting the effect of FMT may last for years. CONCLUSIONS: Taken together, we hypothesise that FMT restores the gut microbiota to a composition that is closer to the composition of healthy donors, and potential pathogens are either lost or decreased to very low abundances. This process, however, does not end in the days following FMT. It may take months for the gut microbiome to re-establish a balanced state. Even though a reservoir of resistance genes remains, a notable part of which on plasmids, FMT decreases the total load of resistance genes.202438419010
351160.9569Rapid and efficient cloning of proviral flanking fragments by kanamycin resistance gene complementation. We have developed a technique for the rapid cloning of unknown flanking regions of transgenic DNA. We complemented a truncated kanamycin resistance gene of a bacterial plasmid with a neomycin resistance gene fragment from a gene transfer vector. Optimized transformation conditions allowed us to directly select for kanamycin-resistant bacteria. We cloned numerous proviral flanking fragments from growth factor-independent cell mutants that were obtained after infection with a replication incompetent retroviral vector and identified integrations into the cyclin D2 and several unknown genomic sequences. We anticipate that our method could be adapted to various vector systems that are used to tag and identify genes and to map genomes.19999863001
8349170.9569Bdelloid rotifers deploy horizontally acquired biosynthetic genes against a fungal pathogen. Coevolutionary antagonism generates relentless selection that can favour genetic exchange, including transfer of antibiotic synthesis and resistance genes among bacteria, and sexual recombination of disease resistance alleles in eukaryotes. We report an unusual link between biological conflict and DNA transfer in bdelloid rotifers, microscopic animals whose genomes show elevated levels of horizontal gene transfer from non-metazoan taxa. When rotifers were challenged with a fungal pathogen, horizontally acquired genes were over twice as likely to be upregulated as other genes - a stronger enrichment than observed for abiotic stressors. Among hundreds of upregulated genes, the most markedly overrepresented were clusters resembling bacterial polyketide and nonribosomal peptide synthetases that produce antibiotics. Upregulation of these clusters in a pathogen-resistant rotifer species was nearly ten times stronger than in a susceptible species. By acquiring, domesticating, and expressing non-metazoan biosynthetic pathways, bdelloids may have evolved to resist natural enemies using antimicrobial mechanisms absent from other animals.202439025839
9238180.9568Sexual isolation and speciation in bacteria. Like organisms from all other walks of life, bacteria are capable of sexual recombination. However, unlike most plants and animals, bacteria recombine only rarely, and when they do they are extremely promiscuous in their choice of sexual partners. There may be no absolute constraints on the evolutionary distances that can be traversed through recombination in the bacterial world, but interspecies recombination is reduced by a variety of factors, including ecological isolation, behavioral isolation, obstacles to DNA entry, restriction endonuclease activity, resistance to integration of divergent DNA sequences, reversal of recombination by mismatch repair, and functional incompatibility of recombined segments. Typically, individual bacterial species are genetically variable for most of these factors. Therefore, natural selection can modulate levels of sexual isolation, to increase the transfer of genes useful to the recipient while minimizing the transfer of harmful genes. Interspecies recombination is optimized when recombination involves short segments that are just long enough to transfer an adaptation, without co-transferring potentially harmful DNA flanking the adaptation. Natural selection has apparently acted to reduce sexual isolation between bacterial species. Evolution of sexual isolation is not a milestone toward speciation in bacteria, since bacterial recombination is too rare to oppose adaptive divergence between incipient species. Ironically, recombination between incipient bacterial species may actually foster the speciation process, by prohibiting one incipient species from out-competing the other to extinction. Interspecific recombination may also foster speciation by introducing novel gene loci from divergent species, allowing invasion of new niches.200212555790
605190.9568Conservation and diversity of the IrrE/DdrO-controlled radiation response in radiation-resistant Deinococcus bacteria. The extreme radiation resistance of Deinococcus bacteria requires the radiation-stimulated cleavage of protein DdrO by a specific metalloprotease called IrrE. DdrO is the repressor of a predicted radiation/desiccation response (RDR) regulon, composed of radiation-induced genes having a conserved DNA motif (RDRM) in their promoter regions. Here, we showed that addition of zinc ions to purified apo-IrrE, and short exposure of Deinococcus cells to zinc ions, resulted in cleavage of DdrO in vitro and in vivo, respectively. Binding of IrrE to RDRM-containing DNA or interaction of IrrE with DNA-bound DdrO was not observed. The data are in line with IrrE being a zinc peptidase, and indicate that increased zinc availability, caused by oxidative stress, triggers the in vivo cleavage of DdrO unbound to DNA. Transcriptomics and proteomics of Deinococcus deserti confirmed the IrrE-dependent regulation of predicted RDR regulon genes and also revealed additional members of this regulon. Comparative analysis showed that the RDR regulon is largely well conserved in Deinococcus species, but also showed diversity in the regulon composition. Notably, several RDR genes with an important role in radiation resistance in Deinococcus radiodurans, for example pprA, are not conserved in some other radiation-resistant Deinococcus species.201728397370