# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6005 | 0 | 0.9217 | Antimicrobial activity of Pediococcus pentosaceus strains against diarrheal pathogens isolated from pigs and effect on paracellular permeability of HT-29 cells. This study aimed to investigate lactic acid bacteria with antimicrobial activities against infectious diarrheal pathogens in pigs and their genetic characteristics. Acid-resistant lactic acid bacteria were examined for bile resistance, pancreatic enzyme resistance, gelatinase and urease activities, and antibiotic resistance. Subsequently, selected isolates were examined for antimicrobial activities against Campylobacter coli, Clostridium perfringens, Escherichia coli, and Salmonella Typhimurium, and their effects on paracellular permeability and the expression of tight junction protein-encoding genes in HT-29 cells were assessed. Whole genome sequencing was performed to identify the genes related to safety and antibacterial activity. Of the 51 isolates examined, 12 were resistant to bile and pancreatin and did not produce gelatinase and urease. Of these 12, isolates 19, 20, 30, 36, and 67 showed tetracycline resistance and isolates 15, 19, and 38W showed antimicrobial activity against infectious diarrheal bacteria. Treatment with isolate 38W significantly reduced the paracellular permeability induced by E. coli in HT-29 cells and alleviated the expression of tight junction protein-encoding genes (claudin-1, occludin, and ZO-1) induced by E. coli inoculation. Isolates 15, 19, and 38W were named as Pediococcus pentosaceus SMFM2016-NK1, SMFM2016-YK1, and SMFM2016-WK1, respectively. Bacteriocin-related genes were YheH, ytrF, BceA, BceB, and MccF in SMFM2016-NK1; YheH, ytrF, BceA, BceB, entK, lcnA, MccF, and skgD in SMFM2016-YK1; and YheH, ytrF, BceA, BceB, and MccF in SMFM2016-WK1. SMFM2016-YK1 harbored the tetM gene. These results indicate that P. pentosaceus SMFM2016-WK1 might control diarrheal pathogens isolated from pigs. However, a further study is necessary because the results were obtained only from in vitro experiment. | 2025 | 40873998 |
| 805 | 1 | 0.9186 | LexR Positively Regulates the LexABC Efflux Pump Involved in Self-Resistance to the Antimicrobial Di-N-Oxide Phenazine in Lysobacter antibioticus. Myxin, a di-N-oxide phenazine isolated from the soil bacterium Lysobacter antibioticus, exhibits potent activity against various microorganisms and has the potential to be developed as an agrochemical. Antibiotic-producing microorganisms have developed self-resistance mechanisms to protect themselves from autotoxicity. Antibiotic efflux is vital for such protection. Recently, we identified a resistance-nodulation-division (RND) efflux pump, LexABC, involved in self-resistance against myxin in L. antibioticus. Expression of its genes, lexABC, was induced by myxin and was positively regulated by the LysR family transcriptional regulator LexR. The molecular mechanisms, however, have not been clear. Here, LexR was found to bind to the lexABC promoter region to directly regulate expression. Moreover, myxin enhanced this binding. Molecular docking and surface plasmon resonance analysis showed that myxin bound LexR with valine and lysine residues at positions 146 (V146) and 195 (K195), respectively. Furthermore, mutation of K195 in vivo led to downregulation of the gene lexA. These results indicated that LexR sensed and bound with myxin, thereby directly activating the expression of the LexABC efflux pump and increasing L. antibioticus resistance against myxin. IMPORTANCE Antibiotic-producing bacteria exhibit various sophisticated mechanisms for self-protection against their own secondary metabolites. RND efflux pumps that eliminate antibiotics from cells are ubiquitous in Gram-negative bacteria. Myxin is a heterocyclic N-oxide phenazine with potent antimicrobial and antitumor activities produced by the soil bacterium L. antibioticus. The RND pump LexABC contributes to the self-resistance of L. antibioticus against myxin. Herein, we report a mechanism involving the LysR family regulator LexR that binds to myxin and directly activates the LexABC pump. Further study on self-resistance mechanisms could help the investigation of strategies to deal with increasing bacterial antibiotic resistance and enable the discovery of novel natural products with resistance genes as selective markers. | 2023 | 37166326 |
| 8797 | 2 | 0.9186 | Presence of quorum-sensing systems associated with multidrug resistance and biofilm formation in Bacteroides fragilis. Bacteroides fragilis constitutes 1-2% of the natural microbiota of the human digestive tract and is the predominant anaerobic opportunistic pathogen in gastrointestinal infections. Most bacteria use quorum sensing (QS) to monitor cell density in relation to other cells and their environment. In Gram-negative bacteria, the LuxRI system is common. The luxR gene encodes a transcriptional activator inducible by type I acyl-homoserine lactone autoinducers (e.g., N-[3-oxohexanoyl] homoserine lactone and hexanoyl homoserine lactone [C6-HSL]). This study investigated the presence of QS system(s) in B. fragilis. The genome of American-type culture collection strain no. ATCC25285 was searched for QS genes. The strain was grown to late exponential phase in the presence or absence of synthetic C6-HSL and C8-HSL or natural homoserine lactones from cell-free supernatants from spent growth cultures of other bacteria. Growth, susceptibility to antimicrobial agents, efflux pump gene (bmeB) expression, and biofilm formation were measured. Nine luxR and no luxI orthologues were found. C6-HSL and supernatants from Yersinia enterocolitica, Vibrio cholerae, and Pseudomonas aeruginosa caused a significant (1) reduction in cellular density and (2) increases in expression of four putative luxR genes, bmeB3, bmeB6, bmeB7, and bmeB10, resistance to various antibiotics, which was reduced by carbonyl cyanide-m-chlorophenyl hydrazone (CCCP, an uncoupler that dissipates the transmembrane proton gradient, which is also the driving force of resistance nodulation division efflux pumps) and (3) increase in biofilm formation. Susceptibility of ATCC25285 to C6-HSL was also reduced by CCCP. These data suggest that (1) B. fragilis contains putative luxR orthologues, which could respond to exogenous homoserine lactones and modulate biofilm formation, bmeB efflux pump expression, and susceptibility to antibiotics, and (2) BmeB efflux pumps could transport homoserine lactones. | 2008 | 18188535 |
| 5375 | 3 | 0.9185 | Mechanism of Eravacycline Resistance in Clinical Enterococcus faecalis Isolates From China. Opportunistic infections caused by multidrug-resistant Enterococcus faecalis strains are a significant clinical challenge. Eravacycline (Erava) is a synthetic fluorocycline structurally similar to tigecycline (Tige) that exhibits robust antimicrobial activity against Gram-positive bacteria. This study investigated the in vitro antimicrobial activity and heteroresistance risk of Eravacycline (Erava) in clinical E. faecalis isolates from China along with the mechanism of Erava resistance. A total of 276 non-duplicate E. faecalis isolates were retrospectively collected from a tertiary care hospital in China. Heteroresistance to Erava and the influence of tetracycline (Tet) resistance genes on Erava susceptibility were examined. To clarify the molecular basis for Erava resistance, E. faecalis variants exhibiting Erava-induced resistance were selected under Erava pressure. The relative transcript levels of six candidate genes linked to Erava susceptibility were determined by quantitative reverse-transcription PCR, and their role in Erava resistance and heteroresistance was evaluated by in vitro overexpression experiments. We found that Erava minimum inhibitory concentrations (MICs) against clinical E. faecalis isolates ranged from ≤0.015 to 0.25 mg/l even in strains harboring Tet resistance genes. The detection frequency of Erava heteroresistance in isolates with MICs ≤ 0.06, 0.125, and 0.25 mg/l were 0.43% (1/231), 7.5% (3/40), and 0 (0/5), respectively. No mutations were detected in the 30S ribosomal subunit gene in Erava heteroresistance-derived clones, although mutations in this subunit conferred cross resistance to Tige in Erava-induced resistant E. faecalis. Overexpressing RS00630 (encoding a bone morphogenetic protein family ATP-binding cassette transporter substrate-binding protein) in E. faecalis increased the frequency of Erava and Tige heteroresistance, whereas RS12140, RS06145, and RS06880 overexpression conferred heteroresistance to Tige only. These results indicate that Erava has potent in vitro antimicrobial activity against clinical E. faecalis isolates from China and that Erava heteroresistance can be induced by RS00630 overexpression. | 2020 | 32523563 |
| 8796 | 4 | 0.9184 | Divergent Roles of Escherichia Coli Encoded Lon Protease in Imparting Resistance to Uncouplers of Oxidative Phosphorylation: Roles of marA, rob, soxS and acrB. Uncouplers of oxidative phosphorylation dissipate the proton gradient, causing lower ATP production. Bacteria encounter several non-classical uncouplers in the environment, leading to stress-induced adaptations. Here, we addressed the molecular mechanisms responsible for the effects of uncouplers in Escherichia coli. The expression and functions of genes involved in phenotypic antibiotic resistance were studied using three compounds: two strong uncouplers, i.e., Carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and 2,4-Dinitrophenol (DNP), and one moderate uncoupler, i.e., Sodium salicylate (NaSal). Quantitative expression studies demonstrated induction of transcripts encoding marA, soxS and acrB with NaSal and DNP, but not CCCP. Since MarA and SoxS are degraded by the Lon protease, we investigated the roles of Lon using a lon-deficient strain (Δlon). Compared to the wild-type strain, Δlon shows compromised growth upon exposure to NaSal or 2, 4-DNP. This sensitivity is dependent on marA but not rob and soxS. On the other hand, the Δlon strain shows enhanced growth in the presence of CCCP, which is dependent on acrB. Interestingly, NaSal and 2,4-DNP, but not CCCP, induce resistance to antibiotics, such as ciprofloxacin and tetracycline. This study addresses the effects of uncouplers and the roles of genes involved during bacterial growth and phenotypic antibiotic resistance. Strong uncouplers are often used to treat wastewater, and these results shed light on the possible mechanisms by which bacteria respond to uncouplers. Also, the rampant usage of some uncouplers to treat wastewater may lead to the development of antibiotic resistance. | 2024 | 38372817 |
| 8791 | 5 | 0.9181 | Synergistic biocontrol of Bacillus subtilis and Pseudomonas fluorescens against early blight disease in tomato. Early blight of tomato caused by Alternaria solani results in significant crop losses. In this study, Bacillus subtilis J3 and Pseudomonas fluorescens J8 were co-cultured as a synthetic microbial community (BCA) for synergistic biocontrol of A. solani, and the inhibition mechanism was investigated. BCA presented an inhibition ration against A. solani at 94.91%, which lowered the disease incidence by 38.26-42.87%; reduced peroxidase, catalase, superoxide dismutase activity of tomatoes by 73.11-90.22%; and promoted the biomass by 66.91-489.21%. With BCA protection, the relative expression of tomato resistance genes (including gPAL2, SWRKY, PR-10, and CHI) in roots and leaves was 12.83-90.70% lower than without protection. BCA also significantly altered the rhizosphere and phyllosphere microbial community. The abundance of potentially beneficial bacteria, including Bacillus, Pseudomonas, Arthrobacter, Lysobacter, and Rhizobium, elevated by 6.58-192.77%. They were negatively correlated with resistance gene expression, indicating their vital involvement in disease control. These results provided essential information on the synergistic biocontrol mechanism of bacteria against pathogens, which could contribute to developing novel biocontrol strategies. KEY POINTS: • Bacillus and Pseudomonas present a synergistic biocontrol effect against A. solani. • Biocontrol prevents pathogen damage and improves tomato growth and systemic resistance. • Beneficial bacteria thrive in the rhizosphere is the key to microbial regulation. | 2023 | 37540249 |
| 328 | 6 | 0.9178 | Multiresistance genes of Rhizobium etli CFN42. Multidrug efflux pumps of bacteria are involved in the resistance to various antibiotics and toxic compounds. In Rhizobium etli, a mutualistic symbiont of Phaseolus vulgaris (bean), genes resembling multidrug efflux pump genes were identified and designated rmrA and rmrB. rmrA was obtained after the screening of transposon-generated fusions that are inducible by bean-root released flavonoids. The predicted gene products of rmrAB shared significant homology to membrane fusion and major facilitator proteins, respectively. Mutants of rmrA formed on average 40% less nodules in bean, while mutants of rmrA and rmrB had enhanced sensitivity to phytoalexins, flavonoids, and salicylic acid, compared with the wild-type strain. Multidrug resistance genes emrAB from Escherichia coli complemented an rmrA mutant from R. etli for resistance to high concentrations of naringenin. | 2000 | 10796024 |
| 741 | 7 | 0.9177 | Resistance mechanisms adopted by a Salmonella Typhimurium mutant against bacteriophage. Bacteriophages have key roles in regulating bacterial populations in most habitats. A Salmonella Typhimurium mutant (N18) with impaired sensitivity to phage fmb-p1 was obtained and examined, the adsorption efficiency of fmb-p1 to N18 was reduced to 6%, compared to more than 97% for wild type S. Typhimurium CMCC50115. Reduced adsorption was accompanied by a reduction of 90% in the LPS content compared to wild type. Electron microscopy showed phage scattered around N18 with minimal engagement, while the phage were efficiently adsorbed to the wild type with tails oriented towards the bacterial surface. Evidence suggests fmb-p1 can slightly infect N18 and this does not give rise to an increase of phage titer. RT-qPCR data show that several Salmonella genes involved in lipopolysaccharide synthesis and five virulence related genes were down-regulated upon exposure of N18 to phage fmb-p1. In contrast, phage resistance related genes such as the SOS response, restriction-modification (RM), and Cas1 gene were up-regulated in N18. These data suggest that although inefficient adsorption and entry is the primary mechanism of resistance, transcriptional responses to phage exposure indicate that alternative resistance mechanisms against phage infection are also brought to bear, including digestion of phage nucleic acids and activation of the SOS. These findings may help develop strategies for biocontrol of Salmonella where multi-resistant bacteria are encountered or emerge in applications for food production, bioremediation or wastewater treatment. | 2019 | 31539557 |
| 6190 | 8 | 0.9177 | Identifying Escherichia coli genes involved in intrinsic multidrug resistance. Multidrug resistance is a major cause of clinical failure in treating bacterial infections. Increasing evidence suggests that bacteria can resist multiple antibiotics through intrinsic mechanisms that rely on gene products such as efflux pumps that expel antibiotics and special membrane proteins that block the penetration of drug molecules. In this study, Escherichia coli was used as a model system to explore the genetic basis of intrinsic multidrug resistance. A random mutant library was constructed in E. coli EC100 using transposon mutagenesis. The library was screened by growth measurement to identify the mutants with enhanced or reduced resistance to chloramphenicol (Cm). Out of the 4,000 mutants screened, six mutants were found to be more sensitive to Cm and seven were more resistant compared to the wild-type EC100. Mutations in 12 out of the 13 mutants were identified by inverse polymerase chain reaction. Mutants of the genes rob, garP, bipA, insK, and yhhX were more sensitive to Cm compared to the wild-type EC100, while the mutation of rhaB, yejM, dsdX, nagA, yccE, atpF, or htrB led to higher resistance. Overexpression of rob was found to increase the resistance of E. coli biofilms to tobramycin (Tob) by 2.7-fold, while overexpression of nagA, rhaB, and yccE significantly enhanced the susceptibility of biofilms by 2.2-, 2.5-, and 2.1-fold respectively. | 2008 | 18807027 |
| 6370 | 9 | 0.9176 | Inhibitory effects of silybin on the efflux pump of methicillin‑resistant Staphylococcus aureus. Bacterial multidrug resistance efflux systems serve an important role in antimicrobial resistance. Thus, identifying novel and effective efflux pump inhibitors that are safe with no adverse side effects is urgently required. Silybin is a flavonolignan component of the extract from the milk thistle seed. To order to investigate the mechanism by which silybin inhibits the efflux system of methicillin‑resistant Staphylococcus aureus (MRSA), antimicrobial susceptibility testing and the double‑plate method were used to evaluate the effect of silybin on MRSA41577. The ability of silybin to inhibit the efflux of ciprofloxacin from MRSA was evaluated by performing a fluorescence assay. Reverse transcription‑quantitative polymerase chain reaction analysis revealed that silybin reduced the expression of the quinolone resistance protein NorA (norA) and quaternary ammonium resistance proteins A/B (qacA/B) efflux genes in MRSA. This suggested that silybin may effectively inhibit the efflux system of MRSA41577. Compared with the control, MRSA41577 treated with silybin for 16 h exhibited a 36 and 49% reduction in the expression of norA and qacA/B, respectively. Inhibition of the expression of these genes by silybin restored the sensitivity of MRSA41577 to antibiotics, indicating that efflux pump inhibitors, which act by inhibiting the efflux system of MRSA, may disrupt the MRSA resistance to antibiotics, rendering the bacteria sensitive to these drugs. | 2018 | 29845191 |
| 8475 | 10 | 0.9174 | Antibacterial Activity of Endophytic Bacteria Against Sugar Beet Root Rot Agent by Volatile Organic Compound Production and Induction of Systemic Resistance. The volatile organic compounds (VOCs) produced by endophytic bacteria have a significant role in the control of phytopathogens. In this research, the VOCs produced by the endophytic bacteria Streptomyces sp. B86, Pantoea sp. Dez632, Pseudomonas sp. Bt851, and Stenotrophomonas sp. Sh622 isolated from healthy sugar beet (Beta vulgaris) and sea beet (Beta maritima) were evaluated for their effects on the virulence traits of Bacillus pumilus Isf19, the causal agent of harvested sugar beet root rot disease. The gas chromatographymass spectrometry (GC-MS) analysis revealed that B86, Dez632, Bt851, and Sh622 produced 15, 28, 30, and 20 VOCs, respectively, with high quality. All antagonistic endophytic bacteria produced VOCs that significantly reduced soft root symptoms and inhibited the growth of B. pumilus Isf19 at different levels. The VOCs produced by endophytic bacteria significantly reduced swarming, swimming, and twitching motility by B. pumilus Isf19, which are important to pathogenicity. Our results revealed that VOCs produced by Sh622 and Bt851 significantly reduced attachment of B. pumilus Isf19 cells to sugar beetroots, and also all endophytic bacteria tested significantly reduced chemotaxis motility of the pathogen toward root extract. The VOCs produced by Dez632 and Bt851 significantly upregulated the expression levels of defense genes related to soft rot resistance. Induction of PR1 and NBS-LRR2 genes in sugar beetroot slices suggests the involvement of SA and JA pathways, respectively, in the induction of resistance against pathogen attack. Based on our results, the antibacterial VOCs produced by endophytic bacteria investigated in this study can reduce soft rot incidence. | 2022 | 35722285 |
| 8442 | 11 | 0.9172 | Staphylococcus epidermidis undergoes global changes in gene expression during biofilm maturation in platelet concentrates. BACKGROUND: Staphylococcus epidermidis forms surface-attached aggregates (biofilms) when grown in platelet concentrates (PCs). Comparative transcriptome analyses were undertaken to investigate differential gene expression of S. epidermidis biofilms grown in PCs. STUDY DESIGN AND METHODS: Two S. epidermidis strains isolated from human skin (AZ22 and AZ39) and one strain isolated from contaminated PCs (ST02) were grown in glucose-supplemented Trypticase Soy Broth (TSBg) and PCs. RNA was extracted and sequenced using Illumina HiSeq. Differential expression analysis was done using DESeq, and significantly differentially expressed genes (DEGs) were selected. DEGs were subjected to Kyoto encyclopedia of genes and genomes and Gene Ontology analyses. Differential gene expression was validated with quantitative reverse transcription-PCR. RESULTS: A total of 436, 442, and 384 genes were expressed in AZ22, AZ39, and ST02, respectively. DEG analysis showed that 170, 172, and 117 genes were upregulated in PCs in comparison to TSBg, whereas 120, 135, and 89 genes were downregulated (p < .05) in mature biofilms of AZ22, AZ39, and ST02, respectively. Twenty-seven DEGs were shared by all three strains. While 76 DEGs were shared by AZ22 and AZ39, only 34 and 21 DEGs were common between ST02, and AZ22 and AZ39, respectively. Significant transcriptional expression changes were observed in genes involved in platelet-bacteria interaction, biofilm formation, production of virulence factors, and resistance to antimicrobial peptides and antibiotics. CONCLUSION: Differential gene expression in S. epidermidis is triggered by the stressful PC storage environment. Upregulation of virulence and antimicrobial resistance genes could have clinical implications for transfusion patients. | 2021 | 33904608 |
| 1254 | 12 | 0.9172 | Genetic diversity and antimicrobial resistance of Staphylococcus aureus from recurrent tonsillitis in children. The aim of this study was to analyze the prevalence of Staphylococcus aureus in the tonsils of children subjected tonsillectomy due to recurrent tonsilitis and to determine the spa types of the pathogens, carriage of virulence genes and antimicrobial resistance profiles. The study included 73 tonsillectomized children. Bacteria, including S. aureus were isolated from tonsillar surface prior to tonsillectomy, recovered from tonsillar core at the time of the surgery, and from posterior pharynx 2-4 weeks after the procedure. Staphylococcus aureus isolates were compared by spa typing, tested for antimicrobial susceptibility and for the presence of superantigenic toxin genes (sea-seu, eta, etb, tst, lukS/lukF-PV) by multiplex polymerase chain reaction. Seventy-three patients (mean 7.1 ± 4.1 years, 61.6% male) were assessed. The most commonly isolated bacteria were S. aureus. The largest proportion of staphylococcal isolates originated from tonsillar core (63%), followed by tonsillar surface (45.1%) and posterior pharynx in tonsillectomized children (18.2%, p = 0.007). Five (6.3%) isolates were identified as MRSA (mecA-positive). Up to 67.5% of the isolates synthesized penicillinases (blaZ-positive isolates), and 8.8% displayed MLS(B) resistance. The superantigenic toxin genes were detected in more than half of examined isolates (56.3%). spa types t091, t084, and t002, and clonal complexes (CCs) CC7, CC45, and CC30 turned out to be most common. Staphylococcus aureus associated with RT in children showed pathogenicity potential and considerable genetic diversity, and no clones were found to be specific for this condition although further studies are needed. | 2020 | 31692060 |
| 5448 | 13 | 0.9169 | Virulence gene profiles, biofilm formation, and antimicrobial resistance of Vibrio cholerae non-O1/non-O139 bacteria isolated from West Bengal, India. Vibrio cholerae is the causative agent of acute dehydrating diarrhoeal disease cholera. Among 71 V. cholerae non-O1/non-O139 isolates, all yielded negative results for ctxA, ctxB and tcpA genes in PCR assay. Few strains were positive for stn (28.38%), and ompU (31.08%) genes. While all isolates were negative for ace gene, only two were positive for zot gene. All strains expressed toxR and toxT genes. It was also found that all isolates were slime-producer and these were capable of forming moderate to high biofilm. Biofilm formation was controlled positively by the transcriptional regulators VpsR and VpsT and was regulated negatively by HapR, as well as CRP regulatory complex. These isolates were resistant to ampicillin, furazolidone, doxycycline, vancomycin, erythromycin, while these were susceptible to ciprofloxacin, gentamycin, kanamycin, polymixin B, norfloxacin, chloramphenicol, sulphamethoxazole-trimethoprim, tetracycline, nalidixic acid, and streptomycin. Indeed, 69.01% isolates were resistant to multiple antibiotics (MAR: resistance to 3 or more antibiotics). Treatment protocols for cholera patients should be based on local antibiogram data. | 2018 | 30582054 |
| 9046 | 14 | 0.9169 | Burkholderia pseudomallei resistance to antibiotics in biofilm-induced conditions is related to efflux pumps. Burkholderia pseudomallei, the causative agent of melioidosis, has been found to increase its resistance to antibiotics when growing as a biofilm. The resistance is related to several mechanisms. One of the possible mechanisms is the efflux pump. Using bioinformatics analysis, it was found that BPSL1661, BPSL1664 and BPSL1665 were orthologous genes of the efflux transporter encoding genes for biofilm-related antibiotic resistance, PA1874-PA1877 genes in Pseudomonas aeruginosa strain PAO1. Expression of selected encoding genes for the efflux transporter system during biofilm formation were investigated. Real-time reverse transcriptase PCR expression of amrB, cytoplasmic membrane protein of AmrAB-OprA efflux transporter encoding gene, was slightly increased, while BPSL1665 was significantly increased during growth of bacteria in biofilm formation. Minimum biofilm inhibition concentration and minimum biofilm eradication concentration (MBEC) of ceftazidime (CTZ), doxycycline (DOX) and imipenem were found to be 2- to 1024-times increased when compared to their MICs for of planktonic cells. Inhibition of the efflux transporter by adding phenylalanine arginine β-napthylamide (PAβN), a universal efflux inhibitor, decreased 2 to 16 times as much as MBEC in B. pseudomallei biofilms with CTZ and DOX. When the intracellular accumulation of antibiotics was tested to reveal the pump inhibition, only the concentrations of CTZ and DOX increased in PAβN treated biofilm. Taken together, these results indicated that BPSL1665, a putative precursor of the efflux pump gene, might be related to the adaptation of B. pseudomallei in biofilm conditions. Inhibition of efflux pumps may lead to a decrease of resistance to CTZ and DOX in biofilm cells. | 2016 | 27702426 |
| 6371 | 15 | 0.9169 | Bioactive compounds from the African medicinal plant Cleistochlamys kirkii as resistance modifiers in bacteria. Cleistochlamys kirkii (Benth) Oliv. (Annonaceae) is a medicinal plant traditionally used in Mozambique to treat infectious diseases. The aim of this study was to find resistance modifiers in C. kirkii for Gram-positive and Gram-negative model bacterial strains. One of the most important resistance mechanisms in bacteria is the efflux pump-related multidrug resistance. Therefore, polycarpol (1), three C-benzylated flavanones (2-4), and acetylmelodorinol (5) were evaluated for their multidrug resistance-reverting activity on methicillin-susceptible and methicillin-resistant Staphylococcus aureus and Escherichia coli AG100 and AG100 A strains overexpressing and lacking the AcrAB-TolC efflux pump system. The combined effects of antibiotics and compounds (2 and 4) were also assessed by using the checkerboard microdilution method in both S. aureus strains. The relative gene expression of the efflux pump genes was determined by real-time reverse transcriptase quantitative polymerase chain reaction. The inhibition of quorum sensing was also investigated. The combined effect of the antibiotics and compound 2 or 4 on the methicillin-sensitive S. aureus resulted in synergism. The most active compounds 2 and 4 increased the expression of the efflux pump genes. These results suggested that C. kirkii constituents could be effective adjuvants in the antibiotic treatment of infections. | 2018 | 29464798 |
| 9044 | 16 | 0.9169 | Impairment of novel non-coding small RNA00203 inhibits biofilm formation and reduces biofilm-specific antibiotic resistance in Acinetobacter baumannii. Small RNAs (sRNAs) are post-transcriptional regulators of many biological processes in bacteria, including biofilm formation and antibiotic resistance. The mechanisms by which sRNA regulates the biofilm-specific antibiotic resistance in Acinetobacter baumannii have not been reported to date. This study aimed to investigate the influence of sRNA00203 (53 nucleotides) on biofilm formation, antibiotic susceptibility, and expression of genes associated with biofilm formation and antibiotic resistance. The results showed that deletion of the sRNA00203-encoding gene decreased the biomass of biofilm by 85%. Deletion of the sRNA00203-encoding gene also reduced the minimum biofilm inhibitory concentrations for imipenem and ciprofloxacin 1024- and 128-fold, respectively. Knocking out of sRNA00203 significantly downregulated genes involved in biofilm matrix synthesis (pgaB), efflux pump production (novel00738), lipopolysaccharide biosynthesis (novel00626), preprotein translocase subunit (secA) and the CRP transcriptional regulator. Overall, the suppression of sRNA00203 in an A. baumannii ST1894 strain impaired biofilm formation and sensitized the biofilm cells to imipenem and ciprofloxacin. As sRNA00203 was found to be conserved in A. baumannii, a therapeutic strategy targeting sRNA00203 may be a potential solution for the treatment of biofilm-associated infections caused by A. baumannii. To the best of the authors' knowledge, this is the first study to show the impact of sRNA00203 on biofilm formation and biofilm-specific antibiotic resistance in A. baumannii. | 2023 | 37315907 |
| 6359 | 17 | 0.9167 | Drug resistance of oral bacteria to new antibacterial dental monomer dimethylaminohexadecyl methacrylate. Only two reports exist on drug-resistance of quaternary ammonium monomers against oral bacteria; both studies tested planktonic bacteria for 10 passages, and neither study tested biofilms or resins. The objectives of this study were to investigate the drug-resistance of Streptococcus mutans, Streptococcus sanguinis and Streptococcus gordonii against dimethylaminohexadecyl methacrylate (DMAHDM), and to evaluate biofilms on resins with repeated exposures for 20 passages for the first time. DMAHDM, dimethylaminododecyl methacrylate (DMADDM) and chlorhexidine (CHX) were tested with planktonic bacteria. Biofilms were grown on a resin containing 3% DMAHDM. Minimum-inhibitory concentrations were measured. To detect drug-resistance, the survived bacteria from the previous passage were used as inoculum for the next passage for repeated exposures. S. gordonii developed drug-resistance against DMADDM and CHX, but not against DMAHDM. Biofilm colony-forming units (CFU) on DMAHDM-resin was reduced by 3-4 log; there was no difference from passages 1 to 20 (p > 0.1). No drug-resistance to DMAHDM was detected for all three bacterial species. In conclusion, this study showed that DMAHDM induced no drug-resistance, and DMAHDM-resin reduced biofilm CFU by 3-4 log, with no significant change from 1 to 20 passages. DMAHDM with potent antibacterial activities and no drug-resistance is promising for dental applications. | 2018 | 29615732 |
| 1299 | 18 | 0.9166 | Prevalence, Drug Resistance, and Virulence Genes of Potential Pathogenic Bacteria in Pasteurized Milk of Chinese Fresh Milk Bar. Fresh Milk Bar (FMB), an emerging dairy retail franchise, is used to instantly produce and sell pasteurized milk and other dairy products in China. However, the quality and safety of pasteurized milk in FMB have received little attention. The objective of this study was to investigate the prevalence, antimicrobial resistance, and virulence genes of Escherichia coli, Staphylococcus aureus, and Streptococcus in 205 pasteurized milk samples collected from FMBs in China. Four (2.0%) isolates of E. coli, seven (3.4%) isolates of S. aureus, and three (1.5%) isolates of Streptococcus agalactiae were isolated and identified. The E. coli isolates were resistant to amikacin (100%), streptomycin (50%), and tetracycline (50%). Their detected resistance genes include aac(3)-III (75%), blaTEM (25%), aadA (25%), aac(3)-II (25%), catI (25%), and qnrB (25%). The S. aureus isolates were mainly resistant to penicillin G (71.4%), trimethoprim-sulfamethoxazole (71.4%), kanamycin (57.1%), gentamicin (57.1%), amikacin (57.1%), and clindamycin (57.1%). blaZ (42.9%), mecA (28.6%), ermB (14.3%), and ermC (14.3%) were detected as their resistance genes. The Streptococcus strains were mainly resistant to tetracycline (66.7%) and contained the resistance genes pbp2b (33.3%) and tetM (33.3%). The virulence genes eae and stx2 were only found in one E. coli strain (25%), sec was detected in two S. aureus strains (28.6%), and bca was detected in one S. agalactiae strain (33.3%). The results of this study indicate that bacteria with drug resistance and virulence genes isolated from the pasteurized milk of FMB are a potential risk to consumers' health. | 2021 | 34129676 |
| 6375 | 19 | 0.9163 | Role of ppGpp-regulated efflux genes in Acinetobacter baumannii. OBJECTIVES: Treatment of infections caused by Acinetobacter baumannii nosocomial strains has become increasingly problematic owing to their resistance to antibiotics. ppGpp is a secondary messenger involved in growth control and various stress responses in bacteria. The mechanism for inhibition of antibiotic resistance via ppGpp is still unidentified in various pathogenic bacteria including A. baumannii. Here, we investigated the effects of ppGpp on efflux pump (EP)-related genes in A. baumannii. METHODS: ppGpp-deficient and -complementary strains were constructed by conjugation and we confirmed (p)ppGpp measurements by thin-layer chromatography. We observed that the ppGpp-deficient strain (ΔA1S_0579) showed abnormal stretching patterns by transmission electron microscopy analysis. The MICs of antimicrobial agents for the WT A. baumannii (ATCC 17978), ppGpp-deficient and complementary strains were determined by the Etest and broth dilution assay methods. The expression levels of EP-related genes were determined by quantitative RT-PCR. RESULTS: We observed morphological differences between a ppGpp-deficient strain (ΔA1S_0579) and the WT strain. Dramatic reductions of MICs in the ppGpp-deficient strain compared with the WT were observed for gentamicin (2.6-fold), tetracycline (3.9-fold), erythromycin (4-fold) and trimethoprim (>4-fold). Expression of the EP-related genes abeB (2.8-fold), tet(A) (2.3-fold), adeB (10.0-fold), adeI (9.9-fold), adeJ (11.8-fold) and adeK (14.4-fold) was also decreased in the ppGpp-deficient strain. CONCLUSIONS: This study demonstrates that ppGpp regulates EP-related gene expression in A. baumannii, affecting antibiotic susceptibility. To date, treatment for MDR A. baumannii has had no new antimicrobial agents, so the A1S_0579 gene could be a novel therapeutic target for rational drug design by affecting ppGpp production. | 2020 | 32049284 |