# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7677 | 0 | 0.9964 | Genomic evidence for flies as carriers of zoonotic pathogens on dairy farms. Dairy farms are major reservoirs of zoonotic bacterial pathogens, which harbor antimicrobial resistance genes (ARGs), and raise critical questions about their dissemination on and off the farm environment. Here, we investigated the role of coprophagous muscid flies (Diptera: Muscidae) as carriers of zoonotic pathogens and antimicrobial resistance. We collected cow manure and flies on a dairy farm and used shotgun metagenomics to identify the presence of clinically relevant bacteria, virulence factors, and ARGs in both environments. Our results reveal that, although the fly microbiome is largely composed of manure-associated taxa, they also harbor specific insect-associated bacteria, which may be involved in nutrient provisioning to the host. Furthermore, we identifed shared ARGs, virulence factors, and zoonotic pathogens enriched within the fly gastrointestinal tract (GIT). Our study illustrates the potential flow of pathogenic microorganisms from manure to coprophagous flies, suggesting that flies may pose an important zoonotic threat on dairy farms. | 2025 | 40537478 |
| 7648 | 1 | 0.9961 | Bacterial Associations Across House Fly Life History: Evidence for Transstadial Carriage From Managed Manure. House flies (Diptera: Muscidae; Musca domestica L.) associate with microbe-rich substrates throughout life history. Because larvae utilize bacteria as a food source, most taxa present in the larval substrate, e.g., manure, are digested or degraded. However, some species survive and are present as third-instar larvae begin pupation. During metamorphosis, many bacteria are again lost during histolysis of the larval gut and subsequent remodeling to produce the gut of the imago. It has been previously demonstrated that some bacterial species survive metamorphosis, being left behind in the puparium, present on the body surface, or in the gut of the emerged adult. We used a combined culture-molecular approach to identify viable microbes from managed manure residue and a wild population of house fly larvae, pupae, puparia, and adults to assess transstadial carriage. All larval (10/10), pupal (10/10), and puparial (10/10) cultures were positive for bacteria. Several bacterial species that were present in larvae also were present either in pupae or puparia. Four viable bacterial species were detectable in 6 of 10 imagoes reared from manure. Of note is the apparent transstadial carriage of Bacillus sonorensis, which has been associated with milk spoilage at dairies, and Alcaligenes faecalis, which can harbor numerous antibiotic resistance genes on farms. The potential of newly emerged flies to harbor and disseminate bacteria from managed manure on farms is an understudied risk that deserves further evaluation. | 2016 | 26798138 |
| 3464 | 2 | 0.9961 | Persistence of Marine Bacterial Plasmid in the House Fly (Musca domestica): Marine-Derived Antimicrobial Resistance Genes Have a Chance of Invading the Human Environment. The house fly is known to be a vector of antibiotic-resistant bacteria (ARB) in animal farms. It is also possible that the house fly contributes to the spread of ARB and antibiotic resistance genes (ARGs) among various environments. We hypothesized that ARB and ARGs present in marine fish and fishery food may gain access to humans via the house fly. We show herein that pAQU1, a marine bacterial ARG-bearing plasmid, persists in the house fly intestine for 5 days after fly ingestion of marine bacteria. In the case of Escherichia coli bearing the same plasmid, the persistence period exceeded 7 days. This interval is sufficient for transmission to human environments, meaning that the house fly is capable of serving as a vector of marine-derived ARGs. Time course monitoring of the house fly intestinal microflora showed that the initial microflora was occupied abundantly with Enterobacteriaceae. Experimentally ingested bacteria dominated the intestinal environment immediately following ingestion; however, after 72 h, the intestinal microflora recovered to resemble that observed at baseline, when diverse genera of Enterobacteriaceae were seen. Given that pAQU1 in marine bacteria and E. coli were detected in fly excrement (defined here as any combination of feces and regurgitated material) at 7 days post-bacterial ingestion, we hypothesize that the house fly may serve as a vector for transmission of ARGs from marine items and fish to humans via contamination with fly excrement. | 2024 | 38191744 |
| 7717 | 3 | 0.9961 | Altered microbiota, antimicrobial resistance genes, and functional enzyme profiles in the rumen of yak calves fed with milk replacer. Yaks, as ruminants inhabiting high-altitude environments, possess a distinct rumen microbiome and are resistant to extreme living conditions. This study investigated the microbiota, resistome, and functional gene profiles in the rumen of yaks fed milk or milk replacer (MR), providing insights into the regulation of the rumen microbiome and the intervention of antimicrobial resistance in yaks through dietary methods. The abundance of Prevotella members increased significantly in response to MR. Tetracycline resistance was the most predominant. The rumen of yaks contained multiple antimicrobial resistance genes (ARGs) originating from different bacteria, which could be driven by MR, and these ARGs displayed intricate and complex interactions. MR also induced changes in functional genes. The enzymes associated with fiber degradation and butyrate metabolism were activated and showed close correlations with Prevotella members and butyrate concentration. This study allows us to deeply understand the ruminal microbiome and ARGs of yaks and their relationship with rumen bacteria in response to different milk sources. | 2024 | 38014976 |
| 7637 | 4 | 0.9958 | High-sugar, high-fat, and high-protein diets promote antibiotic resistance gene spreading in the mouse intestinal microbiota. Diet can not only provide nutrition for intestinal microbiota, it can also remodel them. However, is unclear whether and how diet affects the spread of antibiotic resistance genes (ARGs) in the intestinal microbiota. Therefore, we employed selected high-sugar, high-fat, high-protein, and normal diets to explore the effect. The results showed that high-sugar, high-fat, and high-protein diets promoted the amplification and transfer of exogenous ARGs among intestinal microbiota, and up-regulated the expression of trfAp and trbBp while significantly altered the intestinal microbiota and its metabolites. Inflammation-related products were strongly correlated with the spread of ARGs, suggesting the intestinal microenvironment after diet remodeling might be conducive to the spreading of ARGs. This may be attributed to changes in bacterial membrane permeability, the SOS response, and bacterial composition and diversity caused by diet-induced inflammation. In addition, acceptor bacteria (zygotes) screened by flow cytometry were mostly Proteobacteria, Firmicutes and Actinobacteria, and most were derived from dominant intestinal bacteria remodeled by diet, indicating that the transfer of ARGs was closely linked to diet, and had some selectivity. Metagenomic results showed that the gut resistance genome could be affected not only by diet, but by exogenous antibiotic resistant bacteria (ARB). Many ARG markers coincided with bacterial markers in diet groups. Therefore, dominant bacteria in different diets are important hosts of ARGs in specific dietary environments, but the many pathogenic bacteria present may cause serious harm to human health. | 2022 | 35030982 |
| 7636 | 5 | 0.9958 | Environmental concentrations of antibiotics alter the zebrafish gut microbiome structure and potential functions. A paradoxical impact of high rates of production and consumption of antibiotics is their widespread release in the environment. Consequently, low concentrations of antibiotics and their byproducts have been routinely identified from various environmental settings especially from aquatic environments. However, the impact of such low concentrations of antibiotics on the exposed host especially in early life remains poorly understood. We exposed zebrafish to two different environmental concentrations of oxytetracycline and sulfamethoxazole, from larval stage to adulthood (∼120 days) and characterized their impact on the taxonomic diversity, antibiotic resistance genes, and metabolic pathways of the gut microbiome using metagenomic shotgun sequencing and analysis. Long term exposure of environmental concentrations of oxytetracycline and sulfamethoxazole significantly impacted the taxonomic composition and metabolic pathways of zebrafish gut microbiome. The antibiotic exposed samples exhibited significant enrichment of multiple flavobacterial species, including Flavobacterium sp. F52, Flavobacterium johnsoniae and Flavobacterium sp. Fl, which are well known pathogenic bacteria. The relative abundance of antibiotic resistance genes, especially several tetratcycline and sulfonamide resistance genes were significantly higher in the exposed samples and showed a linear correlation with the antibiotic concentrations. Furthermore, several metabolic pathways, including folate biosynthesis, oxidative phosphorylation, and biotin metabolism pathways, showed significant enrichment in the antibiotic exposed samples. Collectively, our results suggest that early life exposure of the environmental concentrations of antibiotics can increase the abundance of unfavorable bacteria, antibiotic resistance genes and associated pathways in the gut microbiome of zebrafish. | 2021 | 33725532 |
| 3465 | 6 | 0.9958 | Role of Flies in the Maintenance of Antimicrobial Resistance in Farm Environments. Flies play an important role as vectors in the transmission of antimicrobial-resistant bacteria (ARB) and are hypothesized to transfer ARB between internal and external livestock housing areas. The aim of this study was to understand the role that flies may play in the maintenance of ARB in the farm environment. We first evaluated the fate of ingested antimicrobial-resistant Escherichia coli harboring a plasmid containing antimicrobial-resistance genes (ARGs) throughout the housefly (Musca domestica) life cycle, from adult to the subsequent F1 generation. Antimicrobial-resistant E. coli was isolated from different life cycle stages and ARG carriage quantified. The ingested E. coli persisted throughout the fly life cycle, and ARG carriage was maintained at a constant level in the housefly microbiota. To clarify the transmission of ARB from flies to livestock, 30-day-old chickens were inoculated with maggots containing antimicrobial-resistant E. coli. Based on the quantification of bacteria isolated from cecal samples, antimicrobial-resistant E. coli persisted in these chickens for at least 16 days. These results suggest that flies act as a reservoir of ARB throughout their life cycle and may therefore be involved in the maintenance and circulation of ARB in the farm environment. | 2019 | 29708845 |
| 9626 | 7 | 0.9958 | Daphnia as a refuge for an antibiotic resistance gene in an experimental freshwater community. Mechanisms that enable the maintenance of antibiotic resistance genes in the environment are still greatly unknown. Here we show that the tetracycline resistance gene tet(A) is largely removed from the pelagic aquatic bacterial community through filter feeding by Daphnia obtusa while it becomes detectable within the microbiome of the daphniids themselves, where it was not present prior to the experiment. We moreover show that a multitude of Daphnia-associated bacterial taxa are potential carriers of tet(A) and postulated that the biofilm-like structures, where bacteria grow in, may enable horizontal transfer of such genes. This experiment highlights the need to take ecological interactions and a broad range of niches into consideration when studying and discussing the fate of antibiotic resistance genes in nature. | 2016 | 27459256 |
| 7526 | 8 | 0.9958 | Fluorescent tag reveals the potential mechanism of how indigenous soil bacteria affect the transfer of the wild fecal antibiotic resistance plasmid pKANJ7 in different habitat soils. Plasmids have increasingly become a point of concern since they act as a vital medium for the dissemination of antibiotic resistance genes (ARGs). Although indigenous soil bacteria are critical hosts for these plasmids, the mechanisms driving the transfer of antibiotic resistance plasmids (ARPs) have not been well researched. In this study, we tracked and visualized the colonization of the wild fecal antibiotic resistance plasmid pKANJ7 in indigenous bacteria of different habitat soils (unfertilized soil (UFS), chemical fertilized soil (CFS), and manure fertilized soil (MFS)). The results showed that plasmid pKANJ7 mainly transferred to the dominant genera in the soil and genera that were highly related to the donor. More importantly, plasmid pKANJ7 also transferred to intermediate hosts which aid in the survival and persistence of these plasmids in soil. Nitrogen levels also raised the plasmid transfer rate (14th day: UFS: 0.09%, CFS: 1.21%, MFS: 4.57%). Lastly, our structural equation model (SEM) showed that dominant bacteria shifts caused by nitrogen and loam were the major driver shaping the difference in the transfer of plasmid pKANJ7. Overall, our findings enhance the mechanistic understanding of indigenous soil bacteria's role in plasmid transfer and inform potential methods to prevent the transmission of plasmid-borne resistance in the environment. | 2023 | 37209559 |
| 7419 | 9 | 0.9958 | The bacterial microbiota in florfenicol contaminated soils: The antibiotic resistome and the nitrogen cycle. Soil antibiotic resistome and the nitrogen cycle are affected by florfenicol addition to manured soils but their interactions have not been fully described. In the present study, antibiotic resistance genes (ARGs) and nitrogen cycle genes possessed by soil bacteria were characterized using real-time fluorescence quantification PCR (qPCR) and metagenomic sequencing in a short-term (30 d) soil model experiment. Florfenicol significantly changed in the abundance of genes conferring resistance to aminoglycosides, β-lactams, tetracyclines and macrolides. And the abundance of Sphingomonadaceae, the protein metabolic and nitrogen metabolic functions, as well as NO reductase, nitrate reductase, nitrite reductase and N(2)O reductase can also be affected by florfenicol. In this way, ARG types of genes conferring resistance to aminoglycosides, β-lactamases, tetracyclines, colistin, fosfomycin, phenicols and trimethoprim were closely associated with multiple nitrogen cycle genes. Actinobacteria, Chlorobi, Firmicutes, Gemmatimonadetes, Nitrospirae, Proteobacteria and Verrucomicrobia played an important role in spreading of ARGs. Moreover, soil physicochemical properties were important factors affecting the distribution of soil flora. This study provides a theoretical basis for further exploration of the transmission regularity and interference mechanism of ARGs in soil bacteria responsible for nitrogen cycle. | 2020 | 32023788 |
| 3867 | 10 | 0.9958 | Functional metagenomics reveals diverse beta-lactamases in a remote Alaskan soil. Despite the threat posed by antibiotic resistance in infectious bacteria, little is known about the diversity, distribution and origins of resistance genes, particularly among the as yet unculturable environmental bacteria. One potentially rich but largely unstudied environmental reservoir is soil. The complexity of its microbial community coupled with its high density of antibiotic-producing bacteria makes the soil a likely origin for diverse antibiotic resistance determinants. To investigate antibiotic resistance genes among uncultured bacteria in an undisturbed soil environment, we undertook a functional metagenomic analysis of a remote Alaskan soil. We report that this soil is a reservoir for beta-lactamases that function in Escherichia coli, including divergent beta-lactamases and the first bifunctional beta-lactamase. Our findings suggest that even in the absence of selective pressure imposed by anthropogenic activity, the soil microbial community in an unpolluted site harbors unique and ancient beta-lactam resistance determinants. Moreover, despite their evolutionary distance from previously known genes, the Alaskan beta-lactamases confer resistance on E. coli without manipulating its gene expression machinery, demonstrating the potential for soil resistance genes to compromise human health, if transferred to pathogens. | 2009 | 18843302 |
| 3861 | 11 | 0.9958 | Dietary intake of enrofloxacin promotes the spread of antibiotic resistance from food to simulated human gut. Antibiotic residues are commonly found in food. The effect of dietary exposure to veterinary antibiotics on the transmission of antibiotic resistant bacteria and antibiotic resistance genes from food to humans is unknown. We found that dietary exposure to enrofloxacin reduced microbial diversity, interactions and the immune responses, weakened the colonization resistance of the resident microbiota, and promoted the colonization of exogenous Escherichia coli K-12 MG1655 in the simulated human intestine both in vitro and in vivo experiments in mice. In addition to the growth advantages for potential most likely bacterial hosts of ARGs under enrofloxacin exposure, the dietary exposure to enrofloxacin promoted horizontal transfer of resistance plasmids and altered the simulated human gut antibiotic resistome in a time-dependent manner. Collectively, these findings demonstrated that dietary intake of enrofloxacin promoted the colonization of E. coli K-12 MG1655 in the simulated human intestine and the horizontal transfer of antibiotic resistance genes, highlighting the risk of antibiotic resistance transmission from food to humans mediated by dietary exposure to veterinary antibiotics. | 2025 | 40121546 |
| 3868 | 12 | 0.9958 | Warming is Associated With More Encoded Antimicrobial Resistance Genes and Transcriptions Within Five Drug Classes in Soil Bacteria: A Case Study and Synthesis. The effect of warming on anti-microbial resistance (AMR) genes in the environment has critical implications for public health but is little studied. We collected published soil bacterial genomes from the BV-BRC database and tested the correlation between reported optimal growth temperature and the number of encoded AMR genes. Furthermore, we tested the relationship between temperature and AMR gene transcription in a natural ecosystem by analysing soil transcriptomes from a warming manipulation experiment in an Alaskan boreal forest. We hypothesised that there is a positive relationship between warming and AMR prevalence in gene content in bacterial genomes and transcriptomic sequences, and that this effect would vary by drug class. Regarding the bacterial genomes, we found a positive relationship between the fraction of encoded AMR genes and the reported optimal temperature of soil bacteria. The drug classes tetracycline and lincosamide/macrolide/streptogramin had the strongest positive relationship with reported optimal temperature. For the case study in a natural ecosystem, we found 61 significantly upregulated AMR gene-associated transcripts spanning eight drug classes in warmed plots. In the Alaskan soil samples, we found that warming elicited the strongest positive effect on transcripts targeting lincosamide/streptogramin, beta-lactam and phenicol/quinolone antibiotics. Overall, higher temperatures were linked to AMR gene prevalence. | 2025 | 40262767 |
| 7684 | 13 | 0.9958 | Trophic level and proteobacteria abundance drive antibiotic resistance levels in fish from coastal New England. BACKGROUND: The natural marine environment represents a vast reservoir of antimicrobial resistant bacteria. The wildlife that inhabits this environment plays an important role as the host to these bacteria and in the dissemination of resistance. The relationship between host diet, phylogeny, and trophic level and the microbiome/resistome in marine fish is not fully understood. To further explore this relationship, we utilize shotgun metagenomic sequencing to define the gastrointestinal tract microbiomes of seven different marine vertebrates collected in coastal New England waters. RESULTS: We identify inter and intraspecies differences in the gut microbiota of these wild marine fish populations. Furthermore, we find an association between antibiotic resistance genes and host dietary guild, which suggests that higher trophic level organisms have a greater abundance of resistance genes. Additionally, we demonstrate that antibiotic resistance gene burden is positively correlated with Proteobacteria abundance in the microbiome. Lastly, we identify dietary signatures within the gut of these fish and find evidence of possible dietary selection for bacteria with specific carbohydrate utilization potential. CONCLUSIONS: This work establishes a link between host lifestyle/dietary guild, and microbiome composition and the abundance of antibiotic resistance genes within the gastrointestinal tract of marine organisms. We expand the current understanding of marine organism-associated microbial communities and their role as reservoirs of antimicrobial resistance genes. | 2023 | 36879316 |
| 7685 | 14 | 0.9957 | Gut heavy metal and antibiotic resistome of humans living in the high Arctic. Contaminants, such as heavy metals (HMs), accumulate in the Arctic environment and the food web. The diet of the Indigenous Peoples of North Greenland includes locally sourced foods that are central to their nutritional, cultural, and societal health but these foods also contain high concentrations of heavy metals. While bacteria play an essential role in the metabolism of xenobiotics, there are limited studies on the impact of heavy metals on the human gut microbiome, and it is so far unknown if and how Arctic environmental contaminants impact the gut microbes of humans living in and off the Arctic environment. Using a multiomics approach including amplicon, metagenome, and metatranscriptome sequencing, we identified and assembled a near-complete (NC) genome of a mercury-resistant bacterial strain from the human gut microbiome, which expressed genes known to reduce mercury toxicity. At the overall ecological level studied through α- and β-diversity, there was no significant effect of heavy metals on the gut microbiota. Through the assembly of a high number of NC metagenome-assembled genomes (MAGs) of human gut microbes, we observed an almost complete overlap between heavy metal-resistant strains and antibiotic-resistant strains in which resistance genes were all located on the same genetic elements. | 2024 | 39539714 |
| 5891 | 15 | 0.9957 | Culturable bacteria in adults of a Southeast Asian black fly, Simulium tani (Diptera:Simuliidae). Although the microbiome of blood-feeding insects serves an integral role in host physiology, both beneficial and pathogenic, little is known of the microbial community of black flies. An investigation, therefore, was undertaken to identify culturable bacteria from one of Malaysia's most common black flies, Simulium tani Takaoka and Davies, using 16S rDNA sequencing, and then evaluate the isolates for antibiotic resistance and virulence genes. A total of 20 isolates representing 11 bacterial species in four genera were found. Five isolates showed β-hemolysis on Columbia agar, and virulence genes were found in three of these isolates. Some degree of resistance to six of the 12 tested antibiotics was found among the isolates. The baseline data from this study suggest rich opportunities for comparative studies exploring the diversity and roles of the microbiome of S. tani and other Southeast Asian black flies. | 2021 | 33878305 |
| 3715 | 16 | 0.9957 | Deposition of resistant bacteria and resistome through FMT in germ-free piglets. Faecal microbiota transplantation (FMT) has received considerable attention in recent years due to its remarkable efficacy in restoring a normal gut microbiome. Here, we established the groups of post-FMT recipient piglets using germ-free piglets during early life to characterize the colonization of gut microbiota composition and the enrichment of resistance gene acquisition. By metagenomic analysis, we identified 115 bacterial phyla and 2111 bacterial genera that were acquired by the FMT recipients. We found that early-life microbial colonization and the spread of resistomes in recipient piglets were age dependent. A total of 425, 425 and 358 AR genes primarily belonging to 114, 114 and 102 different types were detected in the donors, post-FMT recipients in the FMT-3D group and post-FMT recipients in the FMT-15D group respectively. Genes that encoded tetracycline, macrolide and chloramphenicol resistance proteins were the most dominant AR genes, and the results corresponded with the exposure of antibiotic consumption at farm. Bacteroides, Escherichia, Clostridium, Parabacteroides, Treponema, Lactobacillus and Enterococcus were significantly correlated with the distribution of AR genes. More importantly, the relative abundance of AR genes was positively correlated with the levels of mobile genetic elements. Our results indicate that early-life microbial colonization can persistently shape the gut microbiota and antibiotic resistome. | 2021 | 33894059 |
| 7519 | 17 | 0.9957 | Priority establishment of soil bacteria in rhizosphere limited the spread of tetracycline resistance genes from pig manure to soil-plant systems based on synthetic communities approach. The spread of antibiotic resistance genes (ARGs) in agroecosystems through the application of animal manure is a global threat to human and environmental health. However, the adaptability and colonization ability of animal manure-derived bacteria determine the spread pathways of ARG in agroecosystems, which have rarely been studied. Here, we performed an invasion experiment by creating a synthetic communities (SynCom) with ten isolates from pig manure and followed its assembly during gnotobiotic cultivation of a soil-Arabidopsis thaliana (A. thaliana) system. We found that Firmicutes in the SynCom were efficiently filtered out in the rhizosphere, thereby limiting the entry of tetracycline resistance genes (TRGs) into the plant. However, Proteobacteria and Actinobacteria in the SynCom were able to establish in all compartments of the soil-plant system thereby spreading TRGs from manure to soil and plant. The presence of native soil bacteria prevented the establishment of manure-borne bacteria and effectively reduced the spread of TRGs. Achromobacter mucicolens and Pantoea septica were the main vectors for the entry of tetA into plants. Furthermore, doxycycline stress promoted the horizontal gene transfer (HGT) of the conjugative resistance plasmid RP4 within the SynCom in A. thaliana by upregulating the expression of HGT-related mRNAs. Therefore, this study provides evidence for the dissemination pathways of ARGs in agricultural systems through the invasion of manure-derived bacteria and HGT by conjugative resistance plasmids and demonstrates that the priority establishment of soil bacteria in the rhizosphere limited the spread of TRGs from pig manure to soil-plant systems. | 2024 | 38728817 |
| 3856 | 18 | 0.9957 | Food-borne microbes influence conjugative transfer of antimicrobial resistance plasmids in pre-disturbed gut microbiome. Ingestion of antibiotic-resistant bacteria following antibiotic treatments may lead to the transfer of antimicrobial resistance genes (ARGs) within a disturbed gut microbiota. However, it remains unclear whether and how microbes present in food matrices influence ARG transfer. Thus, a previously established mouse model, which demonstrated the conjugative transfer of a multi-drug resistance plasmid (pIncA/C) from Salmonella Heidelberg (donor) to Salmonella Typhimurium (recipient), was used to assess the effects of food-borne microbes derived from fresh carrots on pIncA/C transfer. Mice were pre-treated with ampicillin, streptomycin, sulfamethazine, or left untreated as a control to facilitate bacterial colonization. Contrary to previous findings where high-density colonization of the donor and recipient bacteria occurred in the absence of food-borne microbes, the presence of these microbes resulted in a low abundance of S. Typhimurium and no detection of S. Typhimurium transconjugants in the fecal samples from any of the mice. However, in mice pre-treated with streptomycin, a significant reduction in microbial species richness allowed for the significant enrichment of Enterobacteriaceae and pIncA/C transfer to bacteria from the genera Escherichia, Enterobacter, Citrobacter, and Proteus. These findings suggest that food-borne microbes may enhance ARG dissemination by influencing the population dynamics of bacterial hosts within a pre-disturbed gut microbiome. | 2025 | 40315481 |
| 7536 | 19 | 0.9957 | The effects of tetracycline concentrations on tetracycline resistance genes and their bacterial hosts in the gut passages of earthworms (Eisenia fetida) feeding on domestic sludge. Vermi-composting is considered to be a feasible method for reducing tetracycline resistance genes (TRGs) in the sludge. Nevertheless, the way different gut passages of earthworm might affect the fates of TRGs and whether this process is affected by tetracycline (TC) concentrations need to be further investigated. In this study, we examined the effects of TC concentrations on changes in TRGs and bacterial communities in gut passages of earthworm were determined by using quantitative PCR and Illumina high-throughput sequencing. TRGs and intI1 were mainly reduced in the hindgut under the TC concentrations ranging from 0 to 25 mg/kg, while they were enriched under higher TC stress exposure. Consequently, we suggest the TC limitation of 25 mg/kg in the domestic sludge (DS) for vermi-composting. Although the predominant genera were TC sensitive under TC stress, many bacterial hosts harboring multiple TRGs (especially those in the hindgut) should be paid further attention to. In the foregut, five genera with abundant tetracycline-resistant bacteria (TRB) were specialized taxa. Among these genera, Unclassified_Solirubrobacterales and Pirellulaceae were probably related to the digestion processes. Other unclassified taxa related to the TRGs were probably derived from the DS. Five genera with abundant TRB were shared in the gut passages, and three specialized genera in the hindgut. These genera could spread TRGs and intI1 to the environment. These results suggest that vermi-composting is a feasible approach for TRG control in the DS containing TC concentration that does not exceed 25 mg/kg. Fates of TRGs and intI1 widely differ in the gut passages, showing inevitable connections with bacterial communities. | 2019 | 31637618 |