# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1324 | 0 | 0.9908 | Molecular characterization of antimicrobial resistance in enterococci and Escherichia coli isolates from European wild rabbit (Oryctolagus cuniculus). A total of 44 Escherichia coli and 64 enterococci recovered from 77 intestinal samples of wild European rabbits in Portugal were analyzed for resistance to antimicrobial agents. Resistance in E. coli isolates was observed for ampicillin, tetracycline, sulfamethoxazole/trimethoprim, streptomycin, gentamicin, tobramycin, nalidixic acid, ciprofloxacin and chloramphenicol. None of the E. coli isolates produced extended-spectrum beta-lactamases (ESBLs). The bla(TEM), aadA, aac(3)-II, tet(A) and/or tet(B), and the catA genes were demonstrated in all ampicillin, streptomycin, gentamicin, tetracycline, and chloramphenicol-resistant isolates respectively, and the sul1 and/or sul2 and/or sul3 genes in 4 of 5 sulfamethoxazole/trimethoprim resistant isolates. Of the enterococcal isolates, Enterococcus faecalis was the most prevalent detected species (39 isolates), followed by E. faecium (21 isolates) and E. hirae (4 isolates). More than one-fourth (29.7%) of the isolates were resistant to tetracycline; 20.3% were resistant to erythromycin, 14.1% were resistant to ciprofloxacin and 10.9% were resistant to high-level-kanamycin. Lower level of resistance (<10%) was detected for ampicillin, quinupristin/dalfopristin and high-level-gentamicin, -streptomycin. No vancomycin-resistance was detected in the enterococci isolates. Resistance genes detected included aac(6')-aph(2''), ant(6)-Ia, tet(M) and/or tet(L) in all gentamicin, streptomycin and tetracycline-resistant isolates respectively. The aph(3')-IIIa gene was detected in 6 of 7 kanamycin-resistant isolates, the erm(B) gene in 11 of 13 erythromycin-resistant isolates and the vat(D) gene in the quinupristin/dalfopristin-resistant E. faecium isolate. This survey showed that faecal bacteria such as E. coli and enterococci of wild rabbits could be a reservoir of antimicrobial resistance genes. | 2010 | 20624632 |
| 1264 | 1 | 0.9908 | Characterization of mannitol-fermenting methicillin-resistant staphylococci isolated from pigs in Nigeria. This study was conducted to determine the species distribution, antimicrobial resistance pheno- and genotypes and virulence traits of mannitol-positive methicillin-resistant staphylococci (MRS) isolated from pigs in Nsukka agricultural zone, Nigeria. Twenty mannitol-positive methicillin-resistant coagulase-negative staphylococcal (MRCoNS) strains harboring the mecA gene were detected among the 64 Staphylococcus isolates from 291 pigs. A total of 4 species were identified among the MRCoNS isolates, namely, Staphylococcus sciuri (10 strains), Staphylococcus lentus (6 strains), Staphylococcus cohnii (3 strains) and Staphylococcus haemolyticus (one strain). All MRCoNS isolates were multidrug-resistant. In addition to β-lactams, the strains were resistant to fusidic acid (85%), tetracycline (75%), streptomycin (65%), ciprofloxacin (65%), and trimethoprim/sulphamethoxazole (60%). In addition to the mecA and blaZ genes, other antimicrobial resistance genes detected were tet(K), tet(M), tet(L), erm(B), erm(C), aacA-aphD, aphA3, str, dfrK, dfrG, cat pC221, and cat pC223. Thirteen isolates were found to be ciprofloxacin-resistant, and all harbored a Ser84Leu mutation within the QRDR of the GyrA protein, with 3 isolates showing 2 extra substitutions, Ser98Ile and Arg100Lys (one strain) and Glu88Asp and Asp96Thr (2 strains). A phylogenetic tree of the QRDR nucleotide sequences in the gyrA gene revealed a high nucleotide diversity, with several major clusters not associated with the bacterial species. Our study highlights the possibility of transfer of mecA and other antimicrobial resistance genes from MRCoNS to pathogenic bacteria, which is a serious public health and veterinary concern. | 2015 | 26413075 |
| 1236 | 2 | 0.9907 | Molecular characterization of antimicrobial resistance in Gram-negative bacteria isolated from bovine mastitis in Egypt. The aim of this study was to characterize the genetic basis of multidrug resistance in Gram-negative bacteria isolated from bovine mastitis cases in Egypt. Multidrug resistance phenotypes were found in 34 of 112 (30.4%) Gram-negative bacterial isolates, which harbored at least one antimicrobial resistance gene. The most prevalent multidrug-resistant (MDR) species were Enterobacter cloacae (8 isolates, 7.1%), Klebsiella pneumoniae (7 isolates, 6.3%), Klebsiella oxytoca (7 isolates, 6.3%), Escherichia coli (5 isolates, 4.5%), and Citrobacter freundii (3 isolates, 2.7%). The most commonly observed resistance phenotypes were against ampicillin (97.0%), streptomycin (94.1%), tetracycline (91.2%), trimethoprim-sulfamethoxazole (88.2%), nalidixic acid (85.3%), and chloramphenicol (76.5%). Class 1 integrons were detected in 28 (25.0%) isolates. The gene cassettes within class 1 integrons included those encoding resistance to trimethoprim (dfrA1, dfrA5, dfrA7, dfrA12, dfrA15, dfrA17, and dfrA25), aminoglycosides (aadA1, aadA2, aadA5, aadA7, aadA12, aadA22, and aac(3)-Id), chloramphenicol (cmlA), erythromycin (ereA2), and rifampicin (arr-3). Class 2 integrons were identified in 6 isolates (5.4%) with three different profiles. Furthermore, the β-lactamase encoding genes, bla(TEM), bla(SHV), bla(CTX-M), and bla(OXA), the plasmid-mediated quinolone resistance genes, qnr and aac(6)-Ib-cr, and the florfenicol resistance gene, floR, were also identified. To the best of our knowledge, the results identified class 2 integrons, qnr and aac(6)-Ib-cr from cases of mastitis for the first time. This is the first report of molecular characterization for antimicrobial resistance in Gram-negative bacteria isolated from bovine mastitis in Africa. | 2011 | 21338385 |
| 1296 | 3 | 0.9907 | Prevalence and antimicrobial resistance of Salmonellaisolates from goose farms in Northeast China. BACKGROUND: Salmonella is one of the most important enteric pathogenic bacteria that threatened poultry health. AIMS: This study aimed to investigate the prevalence and antimicrobial resistance of Salmonella isolates in goose farms. METHODS: A total of 244 cloacal swabs were collected from goose farms to detect Salmonella in Northeast China. Antimicrobial susceptibility, and resistance gene distribution of Salmonella isolates were investigated. RESULTS: Twenty-one Salmonella isolates were identified. Overall prevalence of Salmonella in the present study was 8.6%. Among the Salmonella isolates, the highest resistance frequencies belonged to amoxicillin (AMX) (85.7%), tetracycline (TET) and trimethoprim/sulfamethoxazole (SXT) (81%), followed by chloramphenicol (CHL) (76.2%), florfenicol (FLO) (71.4%), kanamycin (KAN) (47.6%), and gentamycin (GEN) (38.1%). Meanwhile, only 4.8% of the isolates were resistant to ciprofloxacin (CIP) and cefotaxime (CTX). None of the isolates was resistant to cefoperazone (CFP) and colistin B (CLB). Twenty isolates (95%) were simultaneously resistant to at least two antimicrobials. Ten resistance genes were detected among which the bla (TEM-1), cmlA, aac(6')-Ib-cr, sul1, sul2, sul3, and mcr-1.1 were the most prevalent, and presented in all 21 isolates followed by tetB (20/21), qnrB (19/21), and floR (15/21). CONCLUSION: Results indicated that Salmonella isolates from goose farms in Northeast China exhibited multi-drug resistance (MDR), harboring multiple antimicrobial resistance genes. Our results will be useful to design prevention and therapeutic strategies against Salmonella infection in goose farms. | 2020 | 33584841 |
| 1295 | 4 | 0.9907 | Phenotypic and genotypic characterisation of antimicrobial resistance in faecal bacteria from 30 Giant pandas. To study the prevalence of antimicrobial resistance in faecal bacteria from Giant pandas in China, 59 isolates were recovered from faecal pats of 30 Giant pandas. Antimicrobial susceptibility testing of the isolates was performed by the standardised disk diffusion method (Kirby-Bauer). Of the 59 study isolates, 32.20% were resistant to at least one antimicrobial and 16.95% showed multidrug-resistant phenotypes. Thirteen drug resistance genes [aph(3')-IIa, aac(6')-Ib, ant(3'')-Ia, aac(3)-IIa, sul1, sul2, sul3, tetA, tetC, tetM, cat1, floR and cmlA] were analysed using four primer sets by multiplex polymerase chain reaction (PCR). The detection frequency of the aph(3')-IIa gene was the highest (10.17%), followed by cmlA (8.47%). The genes aac(6')-Ib, sul2 and tetA were not detected. PCR products were confirmed by DNA sequence analysis. The results revealed that multidrug resistance was widely present in bacteria isolated from Giant pandas. | 2009 | 19168331 |
| 5387 | 5 | 0.9906 | Assessment of antibiotic susceptibility within lactic acid bacteria strains isolated from wine. Susceptibility to 12 antibiotics was tested in 75 unrelated lactic acid bacteria strains of wine origin of the following species: 38 Lactobacillus plantarum, 3 Lactobacillus hilgardii, 2 Lactobacillus paracasei, 1 Lactobacillus sp, 21 Oenococcus oeni, 4 Pediococcus pentosaceus, 2 Pediococcus parvulus, 1 Pediococcus acidilactici, and 3 Leuconostoc mesenteroides. The Minimal Inhibitory Concentrations of the different antibiotics that inhibited 50% of the strains of the Lactobacillus, Leuconostoc and Pediococcus genera were, respectively, the following ones: penicillin (2, < or =0.5, and < or =0.5 microg/ml), erythromycin (< or =0.5 microg/ml), chloramphenicol (4 microg/ml), ciprofloxacin (64, 8, and 128 microg/ml), vancomycin (> or =128 microg/ml), tetracycline (8, 2, and 8 microg/ml), streptomycin (256, 32, and 512 microg/ml), gentamicin (64, 4, and 128 microg/ml), kanamycin (256, 64, and 512 microg/ml), sulfamethoxazole (> or =1024 microg/ml), and trimethoprim (16 microg/ml). All 21 O. oeni showed susceptibility to erythromycin, tetracycline, rifampicin and chloramphenicol, and exhibited resistance to aminoglycosides, vancomycin, sulfamethoxazole and trimethoprim, that could represent intrinsic resistance. Differences were observed among the O. oeni strains with respect to penicillin or ciprofloxacin susceptibility. Antibiotic resistance genes were studied by PCR and sequencing, and the following genes were detected: erm(B) (one P. acidilactici), tet(M) (one L. plantarum), tet(L) (one P. parvulus), aac(6')-aph(2") (four L. plantarum, one P. parvulus, one P. pentosaceus and two O. oeni), ant(6) (one L. plantarum, and two P. parvulus), and aph(3')-IIIa (one L. plantarum and one O. oeni). This is the first time, to our knowledge, that ant(6), aph(3')-IIIa and tet(L) genes are found in Lactobacillus and Pediococcus strains and antimicrobial resistance genes are reported in O. oeni strains. | 2006 | 16876896 |
| 1265 | 6 | 0.9906 | Coagulase-negative staphylococci (CoNS) isolated from ready-to-eat food of animal origin--phenotypic and genotypic antibiotic resistance. The aim of this work was to study the pheno- and genotypical antimicrobial resistance profile of coagulase negative staphylococci (CoNS) isolated from 146 ready-to-eat food of animal origin (cheeses, cured meats, sausages, smoked fishes). 58 strains were isolated, they were classified as Staphylococcus xylosus (n = 29), Staphylococcus epidermidis (n = 16); Staphylococcus lentus (n = 7); Staphylococcus saprophyticus (n = 4); Staphylococcus hyicus (n = 1) and Staphylococcus simulans (n = 1) by phenotypic and genotypic methods. Isolates were tested for resistance to erythromycin, clindamycin, gentamicin, cefoxitin, norfloxacin, ciprofloxacin, tetracycline, tigecycline, rifampicin, nitrofurantoin, linezolid, trimetoprim, sulphamethoxazole/trimethoprim, chloramphenicol, quinupristin/dalfopristin by the disk diffusion method. PCR was used for the detection of antibiotic resistance genes encoding: methicillin resistance--mecA; macrolide resistance--erm(A), erm(B), erm(C), mrs(A/B); efflux proteins tet(K) and tet(L) and ribosomal protection proteins tet(M). For all the tet(M)-positive isolates the presence of conjugative transposons of the Tn916-Tn1545 family was determined. Most of the isolates were resistant to cefoxitin (41.3%) followed by clindamycin (36.2%), tigecycline (24.1%), rifampicin (17.2%) and erythromycin (13.8%). 32.2% staphylococcal isolates were multidrug resistant (MDR). All methicillin resistant staphylococci harboured mecA gene. Isolates, phenotypic resistant to tetracycline, harboured at least one tetracycline resistance determinant on which tet(M) was most frequent. All of the isolates positive for tet(M) genes were positive for the Tn916-Tn1545 -like integrase family gene. In the erythromycin-resistant isolates, the macrolide resistance genes erm(C) or msr(A/B) were present. Although coagulase-negative staphylococci are not classical food poisoning bacteria, its presence in food could be of public health significance due to the possible spread of antibiotic resistance. | 2015 | 25475289 |
| 1222 | 7 | 0.9906 | Molecular Characterization and the Antimicrobial Resistance Profile of Salmonella spp. Isolated from Ready-to-Eat Foods in Ouagadougou, Burkina Faso. The emergence of antimicrobial-resistantfood-borne bacteria is a great challenge to public health. This study was conducted to characterize and determine the resistance profile of Salmonella strains isolated from foods including sesames, ready-to-eat (RTE) salads, mango juices, and lettuce in Burkina Faso. One hundred and forty-eight biochemically identified Salmonella isolates were characterized by molecular amplification of Salmonella marker invA and spiC, misL, orfL, and pipD virulence genes. After that, all confirmed strains were examined for susceptibility to sixteen antimicrobials, and PCR amplifications were used to identify the following resistance genes: bla (TEM), temA, temB, StrA, aadA, sul1, sul2, tet(A), and tet(B). One hundred and eight isolates were genetically confirmed as Salmonella spp. Virulence genes were observed in 57.4%, 55.6%, 49.1%, and 38% isolates for pipD, SpiC, misL, and orfL, respectively. Isolates have shown moderate resistance to gentamycin (26.8%), ampicillin (22.2%), cefoxitin (19.4%), and nalidixic acid (18.5%). All isolates were sensitive to six antibiotics, including cefotaxime, ceftazidime, aztreonam, imipenem, meropenem, and ciprofloxacin. Among the 66 isolates resistant to at least one antibiotic, 11 (16.7%) were multidrug resistant. The Multiple Antimicrobial Resistance (MAR) index of Salmonella serovars ranged from 0.06 to 0.53. PCR detected 7 resistance genes (tet(A), tet(B), bla (TEM), temB, sul1, sul2, and aadA) in drug-resistant isolates. These findings raise serious concerns because ready-to-eat food in Burkina Faso could serve as a reservoir for spreading antimicrobial resistance genes worldwide. | 2022 | 36406904 |
| 1309 | 8 | 0.9905 | Phenotypic and genotypic antimicrobial resistance patterns of Escherichia coli isolated from dairy cows with mastitis. Pulsed field gel electrophoresis (PFGE) patterns, susceptibility to 26 antimicrobial agents used in veterinary and human medicine, and prevalence of antimicrobial resistance genes of Escherichia coli isolated from cows with mastitis were evaluated. Among 135 E. coli isolates, PFGE analysis revealed 85 different genetic patterns. All E. coli were resistant to two or more antimicrobials in different combinations. Most E. coli were resistant to antimicrobials used in veterinary medicine including ampicillin (98.4%, >or=32 microg/ml) and many E. coli were resistant to streptomycin (40.3%, >or=64 microg/ml), sulfisoxazole (34.1%, >or=512 microg/ml), and tetracycline (24.8%, >or=16 microg/ml). Most E. coli were resistant to antimicrobials used in human medicine including aztreonam (97.7%, >or=32 microg/ml) and cefaclor (89.9%, >or=32 microg/ml). Some E. coli were resistant to nitrofurantoin (38%, >or=128 microg/ml), cefuroxime (22.5%, >or=32 microg/ml), fosfomycin (17.8%, >or=256 microg/ml). All E. coli were susceptible to ciprofloxacin and cinoxacin. Almost 97% (123 of 127) of ampicillin-resistant isolates carried ampC. Eleven of 52 (21.2%) streptomycin-resistant isolates carried strA, strB and aadA together and 29 streptomycin-resistant isolates (55.8%) carried aadA alone. Among 44 sulfisoxazole-resistant E. coli, 1 isolate (2.3%) carried both sulI and sulII, 12 (27.3%) carried sulI and 10 (22.7%) isolates carried sulII. Among 32 tetracycline-resistant isolates, 14 (43.8%) carried both tetA and tetC and 14 (43.8%) carried tetC. Results of this study demonstrated that E. coli from cows with mastitis were genotypically different, multidrug resistant and carried multiple resistance genes. These bacteria can be a reservoir for antimicrobial resistance genes and can play a role in the dissemination of antimicrobial resistance genes to other pathogenic and commensal bacteria in the dairy farm environment. | 2007 | 17544234 |
| 1364 | 9 | 0.9904 | Antimicrobial resistance patterns of Shiga toxin-producing Escherichia coli O157:H7 and O157:H7- from different origins. Shiga toxin-producing Escherichia coli (STEC) serotypes including O157:H7 (n = 129) from dairy cows, cull dairy cow feces, cider, salami, human feces, ground beef, bulk tank milk, bovine feces, and lettuce; and O157:H7- (n = 24) isolated from bovine dairy and bovine feedlot cows were evaluated for antimicrobial resistance against 26 antimicrobials and the presence of antimicrobial resistance genes (tetA, tetB, tetC, tetD, tetE, tetG, floR, cmlA, strA, strB, sulI, sulII, and ampC). All E. coli exhibited resistance to five or more antimicrobial agents, and the majority of isolates carried one or more target antimicrobial resistance gene(s) in different combinations. The majority of E. coli showed resistance to ampicillin, aztreonam, cefaclor, cephalothin, cinoxacin, and nalidixic acid, and all isolates were susceptible to chloramphenicol and florfenicol. Many STEC O157:H7 and O157:H7-isolates were susceptible to amikacin, carbenicillin, ceftriaxone, cefuroxime, ciprofloxacin, fosfomycin, moxalactam, norfloxacin, streptomycin, tobramycin, trimethoprim, and tetracycline. The majority of STEC O157:H7 (79.8%) and O157:H7- (91.7%) carried one or more antimicrobial resistance gene(s) regardless of whether phenotypically resistant or susceptible. Four tetracycline resistant STEC O157:H7 isolates carried both tetA and tetC. Other tetracycline resistance genes (tetB, tetD, tetE, and tetG) were not detected in any of the isolates. Among nine streptomycin resistant STEC O157:H7 isolates, eight carried strA-strB along with aadA, whereas the other isolate carried aadA alone. However, the majority of tetracycline and streptomycin susceptible STEC isolates also carried tetA and aadA genes, respectively. Most ampicillin resistant E. coli of both serotypes carried ampC genes. Among sulfonamide resistance genes, sulII was detected only in STEC O157:H7 (4 of 80 sulfonamide-resistant isolates) and sulI was detected in O157:H7- (1 of 16 sulfonamide resistant isolates). The emergence and dissemination of multidrug resistance in STEC can serve as a reservoir for different antimicrobial resistance genes. Dissemination of antimicrobial resistance genes to commensal and pathogenic bacteria could occur through any one of the horizontal gene transfer mechanisms adopted by the bacteria. | 2007 | 17536933 |
| 1114 | 10 | 0.9904 | Third-Generation Cephalosporin Resistance in Intrinsic Colistin-Resistant Enterobacterales Isolated from Retail Meat. Consumption of retail meat contaminated with antimicrobial-resistant (AMR) bacteria is a common route for transmitting clinically relevant resistant bacteria to humans. Here, we investigated the genotypic and phenotypic resistance profiles of intrinsic colistin-resistant (ICR) Enterobacterales isolated from retail meats. ICR Enterobacterales were isolated from 103 samples of chicken, 103 samples of pork, and 104 samples of beef purchased from retail shops in Japan, using colistin-containing media, and their antimicrobial susceptibility was examined. Serratia spp. (440 isolates) showed resistance to cefotaxime (19 isolates, 4.3%), tetracycline (15 isolates, 3.4%), and other antimicrobials (<1%). Hafnia spp. (136) showed resistance to cefotaxime (12 isolates, 8.6%), ceftazidime (four isolates, 2.9%), and tetracycline (two isolates, 1.4%). Proteus spp. (39) showed resistance to chloramphenicol (four isolates, 10.3%), sulfamethoxazole-trimethoprim (four isolates, 10.3%), cefotaxime (two isolates, 5.1%), kanamycin (two isolates, 5.1%), and gentamicin (one isolate, 2.6%). Cedecea spp. (22) were resistant to tetracycline (two isolates, 9.1%) whereas Morganella spp. (11) were resistant to tetracycline (four isolates, 36.4%) and chloramphenicol (one isolate, 9.2%). The resistance genes bla(fonA), bla(ACC), and bla(DHA) were detected in cefotaxime-resistant Serratia spp., Hafnia spp., and Morganella spp. isolates, respectively. This emergence of antimicrobial resistance in ICR Enterobacterales may pose a public health risk. | 2021 | 34943649 |
| 1379 | 11 | 0.9904 | Antibiotic Resistance and Genetic Profiles of Vibrio parahaemolyticus Isolated from Farmed Pacific White Shrimp (Litopenaeus vannamei) in Ningde Regions. To better understand the antibiotic resistance, virulence genes, and some related drug-resistance genes of Vibrio parahaemolyticus in farmed pacific white shrimp (Litopenaeus vannamei) in Ningde regions, Fujian province, we collected and isolated a total of 102 strains of V. parahaemolyticus from farmed pacific white shrimp in three different areas of Ningde in 2022. The Kirby-Bauer disk method was used to detect V. parahaemolyticus resistance to 22 antibiotics, and resistant genes (such as quinolones (qnrVC136, qnrVC457, qnrA), tetracyclines (tet A, tetM, tetB), sulfonamides (sulI, sulII, sulIII), aminoglycosides (strA, strB), phenicols (cat, optrA, floR, cfr), β-lactams (carB), and macrolides (erm)) were detected by using PCR. The findings in this study revealed that V. parahaemolyticus was most resistant to sulfamoxazole, rifampicin, and erythromycin, with resistance rates of 56.9%, 36.3%, and 33.3%, respectively. Flufenicol, chloramphenicol, and ofloxacin susceptibility rates were 97.1%, 94.1%, and 92.2%, respectively. In all, 46% of the bacteria tested positive for multi-drug resistance. The virulence gene test revealed that all bacteria lacked the tdh and trh genes. Furthermore, 91.84% and 52.04% of the isolates were largely mediated by cat and sulII, respectively, with less than 5% resistance to aminoglycosides and macrolides. There was a clear mismatch between the antimicrobial resistance phenotypes and genotypes, indicating the complexities of V. parahaemolyticus resistance. | 2024 | 38257979 |
| 1322 | 12 | 0.9904 | Phenotypic and genotypic characterization of antimicrobial resistance in faecal enterococci from wild boars (Sus scrofa). The objective was to study the prevalence of antimicrobial resistance and the mechanisms implicated in faecal enterococci of wild boars in Portugal. One hundred and thirty-four enterococci (67 E. faecium, 54 E. hirae, 2 E. faecalis, 2 E. durans and 9 Enterococcus spp.) were recovered from 67 wild boars (two isolates/sample), and were further analysed. High percentages of resistance were detected for erythromycin, tetracycline, and ciprofloxacin (48.5%, 44.8%, and 17.9%, respectively), and lower values were observed for high-level-kanamycin, -streptomycin, chloramphenicol, and ampicillin resistance (9%, 6.7%, 4.5%, and 3.7%, respectively). No isolates showed vancomycin or high-level-gentamicin resistance. The erm(B), tet(M), aph(3')-IIIa, and ant(6)-I genes were demonstrated in all erythromycin-, tetracycline-, kanamycin-, and streptomycin-resistant isolates, respectively. Specific genes of Tn916/Tn1545 and Tn5397 transposons were detected in 78% and 47% of our tet(M)-positive enterococci, respectively. The tet(S) and tet(K) genes were detected in one isolate of E. faecium and E. hirae, respectively. Three E. faecium isolates showed quinupristin-dalfopristin resistance and the vat(E) gene was found in all of them showing the erm(B)-vat(E) linkage. Four E. faecium isolates showed ampicillin-resistance and all of them presented seven amino acid substitutions in PBP5 protein (461Q-->K, 470H-->Q, 485M-->A, 496N-->K, 499A-->T, 525E-->D, and 629E-->V), in relation with the reference one; a serine insertion at 466' position was found in three of the isolates. Faecal enterococci from wild boars harbour a variety of antimicrobial resistance mechanisms and could be a reservoir of antimicrobial resistance genes and resistant bacteria that could eventually be transmitted to other animals or even to humans. | 2007 | 17658226 |
| 1329 | 13 | 0.9904 | First report of the Staphylococcus aureus isolate from subclinical bovine mastitis in the South of Brazil harboring resistance gene dfrG and transposon family Tn916-1545. The aim of this work was to identify at the molecular level the species of coagulase-positive staphylococci isolates from clinical and subclinical bovine mastitis samples in Southern Brazil, and to evaluate the antimicrobial resistance profile, as well as the presence of resistance genes. According to the PCR assay, all 31 isolates were classified as Staphylococcus aureus. The isolates were tested for resistance to penicillin, ampicillin, oxacillin, cefoxitin, cephalothin, ceftiofur, streptomycin, tobramycin, teicoplanin, erythromycin, clindamycin, enrofloxacin, sulfonamide, trimethoprim-sulfamethoxazole, trimethoprim, and tetracycline by the disk diffusion method. Most of the isolates were resistant to sulfonamide (20), followed by ampicillin and clindamycin (16). Twenty isolates were multidrug-resistant. PCR was used for the detection of several antimicrobial resistance genes (ereB, ermB, ermC, tetA, tetB, tetK, tetL, tetM, tetO, Tn916-1545, strA, strB, sul1, sul2, dfrA, dfrG, dfrK, blaZ, mecA, and mecC). The most prevalent antimicrobial resistance genes were tetK and tetL, ereB, followed by tetM, Tn916-1545 and blaZ, detected in 11, nine and four isolates, respectively. For all the tetM gene positive isolates, the presence of conjugative transposons of the Tn916-1545 family was detected. The presence of multidrug-resistant isolates, antimicrobial resistance genes and transposons suggests a potential risk of spreading multi-resistance genes to other bacteria. | 2017 | 29051059 |
| 1375 | 14 | 0.9903 | Characterization of integrons and their cassettes in Escherichia coli and Salmonella isolates from poultry in Korea. Ninety-nine Escherichia coli and 33 Salmonella isolates were assessed for antimicrobial susceptibility (disc diffusion test). Sulfonamide and tetracycline resistance genes were identified through PCR, and class 1 and class 2 integrons with resistance gene cassettes were identified with PCR followed by sequencing. Salmonella (63.6%) and E. coli (85.8%) isolates were multidrug resistant (resistance to 3 or more antimicrobials), and the highest incidences of resistance were observed for tetracycline, nalidixic acid, and sulfamethoxazole. The sul1, sul2, tetA, and tetB resistance determinant genes were predominant in E. coli, whereas only sul2 and tetA were identified in Salmonella isolates. In the E. coli isolates, 54 (54.5%) class 1 integrons, 6 (6.1%) class 2 integrons, and 5 (5.1%) class 1 and class 2 integrons together were detected, whereas only 3 (9.1%) integrons were found in the Salmonella serovars. Around 87% of the integrons in E. coli harbored resistance gene cassettes conferring resistance to streptomycin/spectinomycin (aadA, aminoglycoside resistance gene), trimethoprim (dfrA, dihydrofolate reductase gene), streptothricin [sat1 and sat2 (streptothricin acetyltransferase), and estX (putative esterases)]. The most common gene cassettes were aadA1+dfrA1 and dfrA1+sat2+aadA1 in class 1 and class 2 integrons, respectively. Other cassettes including aadA5+dfrA7, dfrA12+aadA2, aadA2+aadA1+dfrA12, and aadA5+aadA2/dfrA7 were also identified. Among the Salmonella serovars, Salmonella Malmoe harbored aadA1+dfrA1 and dfrA12+sat2+aadA1 genes. The aadA1, aadA2, sat2, and dfrA1 had wide variation in similarity among themselves and from previously reported genes worldwide. The diverse gene cassettes could be responsible for the prominent resistance profiles observed and a potential source for dissemination of antimicrobial resistance determinants to other bacteria. | 2013 | 24135609 |
| 1223 | 15 | 0.9903 | Characterization of Escherichia coli virulence genes, pathotypes and antibiotic resistance properties in diarrheic calves in Iran. BACKGROUND: Calf diarrhea is a major economic concern in bovine industry all around the world. This study was carried out in order to investigate distribution of virulence genes, pathotypes, serogroups and antibiotic resistance properties of Escherichia coli isolated from diarrheic calves. RESULTS: Totally, 76.45% of 824 diarrheic fecal samples collected from Isfahan, Chaharmahal, Fars and Khuzestan provinces, Iran were positive for E. coli and all of them were also positive for cnf2, hlyA, cdtIII, f17c, lt, st, stx1, eae, ehly, stx2 and cnf1 virulence genes. Chaharmahal had the highest prevalence of STEC (84.61%), while Isfahan had the lowest (71.95%). E. coli serogroups had the highest frequency in 1-7 days old calves and winter season. Distribution of ETEC, EHEC, AEEC and NTEC pathotypes among E. coli isolates were 28.41%, 5.07%, 29.52% and 3.49%, respectively. Statistical analyses were significant for presence of bacteria between various seasons and ages. All isolates had the high resistance to penicillin (100%), streptomycin (98.25%) and tetracycline (98.09%) antibiotics. The most commonly detected resistance genes were aadA1, sul1, aac[3]-IV, CITM, and dfrA1. The most prevalent serogroup among STEC was O26. CONCLUSIONS: Our findings should raise awareness about antibiotic resistance in diarrheic calves in Iran. Clinicians should exercise caution when prescribing antibiotics. | 2014 | 25052999 |
| 1323 | 16 | 0.9903 | Detection of antibiotic resistant enterococci and Escherichia coli in free range Iberian Lynx (Lynx pardinus). Thirty fecal samples from wild specimens of Iberian lynx were collected and analyzed for Enterococcus spp. (27 isolates) and Escherichia coli (18 isolates) recovery. The 45 isolates obtained were tested for antimicrobial resistance, molecular mechanisms of resistance, and presence of virulence genes. Among the enterococci, Enterococcus faecium and Enterococcus hirae were the most prevalent species (11 isolates each), followed by Enterococcus faecalis (5 isolates). High percentages of resistance to tetracycline and erythromycin (33% and 30%, respectively) were detected among enterococcal isolates. The tet(M) and/or tet(L), erm(B), aac(6')-Ie-aph(2″)-Ia, ant(6)-Ia, or aph(3')-IIIa genes were detected among resistant enterococci. Virulence genes were detected in one E. faecalis isolate (cpd, cylB, and cylL) and one E. hirae isolate (cylL). High percentages of resistance were detected in E. coli isolates to tetracycline (33%), streptomycin (28%), nalidixic acid (28%), and sulfamethoxazole-trimethoprim (SXT, 22%). Additionally, the blaTEM, tet(A), aadA, cmlA, and different combinations of sul genes were detected among most ampicillin, tetracycline, streptomycin, chloramphenicol and SXT-resistant isolates, respectively. Two isolates contained a class 1 integron with the gene cassette arrays dfrA1 + aadA1 and dfrA12 + aadA2. The E. coli isolates were ascribed to phylo-groups A (n=5); B1 (n=4); B2 (n=6), and D (n=3), with the virulence gene fimA present in all E. coli isolates. This study found resistance genes in wild specimens of Iberian lynx. Thus, it is important to notice that multiresistant bacteria have reached species as rare and completely non-synanthropic as the Iberian lynx. Furthermore, the susceptibility of this endangered species to bacterial infection may be affected by the presence of these virulence and resistance genes. | 2013 | 23588135 |
| 1381 | 17 | 0.9903 | Differences in antimicrobial resistance-related genes of Trueperella pyogenes between isolates detected from cattle and pigs. We investigated antimicrobial resistance-related genes in 109 isolates of Trueperella pyogenes that were isolated in cattle and pigs. All 89 tetracycline-resistant T. pyogenes isolates carried the resistance gene harbored either tetW, tetM, tetA(33), tetK, or tetL. The ermX or ermB were detected in 18 of 23 erythromycin-resistant isolates. Streptomycin-resistant aadA1, aadA9, aadA11, aadA24, strA, or strB were detected in 25 of 83 isolates. There were significant differences in the percentages of tetA(33), ermB, aadA1, aadA9, aadA11, or aadA24 carriage between cattle and pig isolates. In addition, the Class 1 gene cassette was detected only in 17 cattle isolates. This suggests that T. pyogenes isolates acquire resistance gene in each environment of cattle and pigs, and that the transmission of the bacteria between cattle and pigs is limited. | 2024 | 39293943 |
| 1321 | 18 | 0.9902 | Antimicrobial Resistance and Resistance Genes in Aerobic Bacteria Isolated from Pork at Slaughter. The aim of this study was to investigate the phenotypic and genotypic antimicrobial resistance, integrons, and transferability of resistance markers in 243 aerobic bacteria recovered from pork at slaughter in the People's Republic of China. The organisms belonged to 22 genera of gram-negative bacteria (92.2%) and gram-positive bacteria (7.8%). High levels of resistance were detected to tetracycline, trimethoprim-sulfamethoxazole, and ampicillin (36.2 to 54.3%), and lower levels were detected to nitrofurantoin, cefotaxime, gentamicin, ciprofloxacin, and chloramphenicol (7.8 to 29.2%). Across species, genes conferring antimicrobial resistance were observed with the following frequencies: blaTEM, 40.7%; blaCMY-2, 15.2%; blaCTX-M, 11.5%; sul2, 27.2%; sul1, 14.4%; tet(A), 5.4%; tet(L), 5.4%; tet(M), 5.0%; tet(E), 3.7%; tet(C), 3.3%; tet(S), 2.5%; and tet(K), 0.8%. Various antimicrobial resistance genes were found in new carriers: blaTEM in Lactococcus garvieae, Myroides odoratimimus, Aeromonas hydrophila, Staphylococcus sciuri, Raoultella terrigena, Macrococcus caseolyticus, Acinetobacter ursingii, Sphingobacterium sp., and Oceanobacillus sp.; blaCMY-2 in Lactococcus lactis, Klebsiella oxytoca, Serratia marcescens, Acinetobacter baumannii, and Myroides phaeus; tet(L) in M. caseolyticus; sul1 in Vibrio cincinnatiensis; sul2 in Acinetobacter bereziniae, Acinetobacter johnsonii, and V. cincinnatiensis; and the class 1 integron and gene cassette aadA2 in V. cincinnatiensis. Approximately 6.6% of isolates contained class 1 integrons, and one isolate harbored class 2 integrons. Plasmid associated intI1 and androgen receptor- encoding genes were transferred into Escherichia coli J53 and E. coli DH5α by conjugation and transformation experiments, respectively. Our study highlights the importance of aerobic bacteria from pork as reservoirs for antimicrobial resistance genes and mobile genetic elements that can readily be transferred intra- and interspecies. | 2016 | 27052863 |
| 1226 | 19 | 0.9902 | Multi-drug resistant gram-negative enteric bacteria isolated from flies at Chengdu Airport, China. We collected flies from Chengdu Shuangliu International Airport to examine for the presence of bacteria and to determine the sensitivity patterns of those bacteria. A total of 1,228 flies were collected from 6 sites around Chengdu Shuangliu International Airport from April to September 2011. The predominant species was Chrysomya megacephala (n=276, 22.5%). Antimicrobial-resistant gram-negative enteric bacteria (n=48) were isolated from flies using MacConkey agar supplemented with cephalothin (20 microg/ml). These were identified as Escherichia coli (n=37), Klebsiella pneumoniae (n=6), Pseudomonas aeruginosa (n=3) and Aeromonas hydrophila (n=2). All isolated bacteria were tested for resistance to 21 commonly used antimicrobials: amoxicillin (100%), ticarcillin (100%), cephalothin (100%), cefuroxime (100%), ceftazidime 1 (93.8%), piperacillin (93.8%), cefotaxime (89.6%), ticarcillin-clavulanate (81.3%), trimethoprim-sulfamethoxazole (62.5%), ciprofloxacin (54.2%), gentamicin (45.8%), cefepime (39.6%), tobramycin (39.6%), ceftazidime (22.9%), cefoxitin (16.7%), amikacin (16.7%), netilmicin (14.6%), amoxicillin-clavulanate (6.3%) and piperacillin-tazobactam (2.1%). No resistance to meropenem or imipenem was observed. Antibiotic resistance genes among the isolated bacteria were analyzed for by polymerase chain reaction. Thirty of the 48 bacteria with resistance (62.5%) possessed the blaTEM gene. | 2013 | 24450236 |