# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3638 | 0 | 0.9969 | Identification and antimicrobial resistance of Enterococcus spp. isolated from the river and coastal waters in northern Iran. As fecal streptococci commonly inhabit the intestinal tract of humans and warm blooded animals, and daily detection of all pathogenic bacteria in coastal water is not practical, thus these bacteria are used to detect the fecal contamination of water. The present study examined the presence and the antibiotic resistance patterns of Enterococcus spp. isolated from the Babolrud River in Babol and coastal waters in Babolsar. Seventy samples of water were collected in various regions of the Babolrud and coastal waters. Isolated bacteria were identified to the species level using standard biochemical tests and PCR technique. In total, 70 Enterococcus spp. were isolated from the Babolrud River and coastal waters of Babolsar. Enterococcus faecalis (68.6%) and Enterococcus faecium (20%) were the most prevalent species. Resistance to chloramphenicol, ciprofloxacin, and tetracyclin was prevalent. The presence of resistant Enterococcus spp. in coastal waters may transmit resistant genes to other bacteria; therefore, swimming in such environments is not suitable. | 2014 | 25525617 |
| 3639 | 1 | 0.9968 | Assessing the Bacterial Community Composition of Bivalve Mollusks Collected in Aquaculture Farms and Respective Susceptibility to Antibiotics. Aquaculture is a growing sector, providing several products for human consumption, and it is therefore important to guarantee its quality and safety. This study aimed to contribute to the knowledge of bacterial composition of Crassostrea gigas, Mytilus spp. and Ruditapes decussatus, and the antibiotic resistances/resistance genes present in aquaculture environments. Two hundred and twenty-two bacterial strains were recovered from all bivalve mollusks samples belonging to the Aeromonadaceae, Bacillaceae, Comamonadaceae, Enterobacteriaceae, Enterococcaceae, Micrococcaceae, Moraxellaceae, Morganellaceae, Pseudomonadaceae, Shewanellaceae, Staphylococcaceae, Streptococcaceae, Vibrionaceae, and Yersiniaceae families. Decreased susceptibility to oxytetracycline prevails in all bivalve species, aquaculture farms and seasons. Decreased susceptibilities to amoxicillin, amoxicillin/clavulanic acid, cefotaxime, cefoxitin, ceftazidime, chloramphenicol, florfenicol, colistin, ciprofloxacin, flumequine, nalidixic acid and trimethoprim/sulfamethoxazole were also found. This study detected six qnrA genes among Shewanella algae, ten qnrB genes among Citrobacter spp. and Escherichia coli, three oqxAB genes from Raoultella ornithinolytica and bla(TEM-1) in eight E. coli strains harboring a qnrB19 gene. Our results suggest that the bacteria and antibiotic resistances/resistance genes present in bivalve mollusks depend on several factors, such as host species and respective life stage, bacterial family, farm's location and season, and that is important to study each aquaculture farm individually to implement the most suitable measures to prevent outbreaks. | 2021 | 34572717 |
| 3637 | 2 | 0.9968 | Antimicrobial Susceptibility Profiles and Resistance Genes in Genus Aeromonas spp. Isolated from the Environment and Rainbow Trout of Two Fish Farms in France. This study presents the occurrence and abundance of Aeromonas antibiotic-resistant bacteria (ARB) and genes (ARGs) isolated from water, biofilm and fish in two commercial trout farms before and one week after flumequine treatment. Wild (WT) and non-wild (NWT) strains were determined for quinolones (flumequine, oxolinic acid and enrofloxacin), oxytetracycline (OXY), florfenicol (FFN), trimethoprim-sulfamethoxazole (TMP) and colistin (COL), and pMAR (presumptive multi-resistant) strains were classified. Forty-four ARGs for the mentioned antibiotics, β-lactams and multi-resistance were quantified for 211 isolates. BlaSHV-01, mexF and tetE were the dominant ARGs. A greater occurrence and abundance of tetA2, sul3, floR1, blaSHV-01 and mexF were observed for NWT compared to WT. The occurrence of pMAR and NWT Aeromonas for quinolones, OXY, FFN, TMP, COL and ARGs depended on the Aeromonas origin, antibiotic use and the presence of upstream activities. Our results revealed the impact of a flumequine treatment on Aeromonas present on a fish farm through an increase in NWT and pMAR strains. The link between fish and their environment was shown by the detection of identical ARB and ARGs in the two types of samples. There appears to be a high risk of resistance genes developing and spreading in aquatic environments. | 2021 | 34206108 |
| 3640 | 3 | 0.9968 | Antibiotic resistant bacteria in fish from the Concepción Bay, Chile. Antibiotic resistant bacteria from commercial demersal and pelagic fish captured in the Concepción Bay, Chile were investigated. Viable counts of antibiotic resistant bacteria isolated from gill and intestinal content samples showed high frequencies of resistance to ampicillin, streptomycin and tetracycline, while the proportion of chloramphenicol resistance was rather low. A high incidence of resistance to ampicillin, streptomycin, tetracycline and nitrofurantoin, as well as almost an absence of resistance to gentamicin, amikacin and cotrimoxazole was found among selected isolates which represented the resistant bacterial population. These strains mainly belonged to Vibrionaceae and Enterobacteriaceae and were predominantly resistant to 3 and 4 antibacterials. Isolates from demersal fish exhibited resistance to as many as 8-10 compounds, whereas those from pelagic fish were resistant to seven or fewer antibiotics. These results suggest that Chilean commercial fishes residing in waters near the disposals of urban sewage might play a role as carriers of antibiotic resistant bacteria prompting a health risk to public health for fish consumers. | 2001 | 11763221 |
| 5250 | 4 | 0.9967 | Antibiotic contamination and occurrence of antibiotic-resistant bacteria in aquatic environments of northern Vietnam. The ubiquitous application and release of antibiotics to the environment can result in bacterial antibiotic resistance, which in turn can be a serious risk to humans and other animals. Southeast Asian countries commonly apply an integrated recycling farm system called VAC (Vegetable, Aquaculture and Caged animal). In the VAC environment, antibiotics are released from animal and human origins, which would cause antibiotic-resistant bacteria (ARB). This study evaluated occurrence of ARB in the VAC environment in northern Vietnam, with quantitative analysis of antibiotic pollution. We found that sulfonamides were commonly detected at all sites. In dry season, while sulfamethazine was a major contaminant in pig farm pond (475-6662 ng/l) and less common in city canal and aquaculture sites, sulfamethoxazole was a major one in city canal (612-4330 ng/l). Erythromycin (154-2246 ng/l) and clarithromycin (2.8-778 ng/ml) were the common macrolides in city canal, but very low concentrations in pig farm pond and aquaculture sites. High frequencies of sulfamethoxazole-resistant bacteria (2.14-94.44%) were found whereas the occurrence rates of erythromycin-resistant bacteria were lower (<0.01-38.8%). A positive correlation was found between sulfamethoxazole concentration and occurrence of sulfamethoxazole-resistant bacteria in dry season. The sulfamethoxazole-resistant isolates were found to belong to 25 genera. Acinetobacter and Aeromonas were the major genera. Twenty three of 25 genera contained sul genes. This study showed specific contamination patterns in city and VAC environments and concluded that ARB occurred not only within contaminated sites but also those less contaminated. Various species can obtain resistance in VAC environment, which would be reservoir of drug resistance genes. Occurrence of ARB is suggested to relate with rainfall condition and horizontal gene transfer in diverse microbial community. | 2011 | 21669325 |
| 2879 | 5 | 0.9967 | Antibiotic resistance of motile aeromonads in indoor catfish and eel farms in the southern part of The Netherlands. The prevalence and degree of antibiotic resistance in catfish and eel farms in the southern part of The Netherlands was examined using motile aeromonads as indicator bacteria. A total of 29 water samples were collected, originating from six catfish farms, one catfish hatchery and three eel farms, and were plated on an Aeromonas-selective agar with and without antibiotics. From each plate, one colony was screened for presumptive motile aeromonads and tested for antibiotic susceptibility. The prevalence of resistance was as follows: ampicillin and oxytetracycline 100%; sulfamethoxazole 24%; trimethoprim 3%; and ciprofloxacin and chloramphenicol 0%. The majority of samples showed a high degree of oxytetracycline resistance, implicating fish farms as a major reservoir of oxytetracycline resistance genes. This reservoir might form a risk for human health and has major consequences for the effectiveness of this antibiotic in the treatment of infectious diseases in fish. | 2008 | 18160266 |
| 5277 | 6 | 0.9967 | Antibiotic resistance of bacteria isolated from shrimp hatcheries and cultural ponds on Donghai Island, China. The resistance of bacteria to 12 different antibiotics was investigated in shrimp farms on Donghai Island, China. Antibiotic-resistant bacteria were found to be widespread in shrimp farms, indicating a high environmental risk. Further, significant differences were found in bacterial strains among farms (ANOVA, p<0.05), showing resistance to antibiotics such as ampicillin, trimethoprim, compound sinomi, tetracycline, chloramphenicol and cefazolin. No significant differences in antibiotic resistance were found among 6 hatcheries evaluated in this study (ANOVA, p>0.05), between exalted and traditional shrimp ponds (ANOVA, p>0.05), and between cultural ponds and corresponding control water source sites (T-test, p>0.05). In cultural ponds, no significant difference in bacterial resistance to antibiotics was found between water and sediment (T-test, p>0.05), and antibiotic resistance of bacteria from water showed a significant positive correlation with that from sediment (p<0.05). Therefore, our study indicates that bacterial multiple antibiotic resistance (MAR) is more widespread in shrimp hatcheries than ponds. | 2011 | 21945557 |
| 2881 | 7 | 0.9966 | Comparative analysis of virulence genes, antibiotic resistance and gyrB-based phylogeny of motile Aeromonas species isolates from Nile tilapia and domestic fowl. The nucleotide sequence analysis of the gyrB gene indicated that the fish Aeromonas spp. isolates could be identified as Aeromonas hydrophila and Aeromonas veronii biovar sobria, whereas chicken Aeromonas spp. isolates identified as Aeromonas caviae. PCR data revealed the presence of Lip, Ser, Aer, ACT and CAI genes in fish Aer. hydrophila isolates, ACT, CAI and Aer genes in fish Aer. veronii bv sobria isolates and Ser and CAI genes in chicken Aer. caviae isolates. All chicken isolates showed variable resistance against all 12 tested antibiotic discs except for cefotaxime, nitrofurantoin, chloramphenicol and ciprofloxacin, only one isolate showed resistance to chloramphenicol and ciprofloxacin. Fish Aeromonads were sensitive to all tested antibiotic discs except amoxicillin, ampicillin-sulbactam and streptomycin. SIGNIFICANCE AND IMPACT OF THE STUDY: Many integrated fish farms depend on the application of poultry droppings/litter which served as a direct feed for the fish and also acted as pond fertilizers. The application of untreated poultry manure exerts an additional pressure on the microbial world of the fish's environment. Aeromonas species are one of the common bacteria that infect both fish and chicken. The aim of this study was to compare the phenotypic traits and genetic relatedness of aeromonads isolated from two diverse hosts (terrestrial and aquatic), and to investigate if untreated manure possibly enhances Aeromonas dissemination among cohabitant fish with special reference to virulence genes and antibiotic resistant traits. | 2015 | 26280543 |
| 3633 | 8 | 0.9966 | Antimicrobial resistance of heterotrophic marine bacteria isolated from seawater and sands of recreational beaches with different organic pollution levels in southeastern Brazil: evidences of resistance dissemination. Antimicrobial resistance of marine heterotrophic bacteria to different antimicrobials agents were evaluated in seawater, dry and wet sands from three marine recreational beaches with different pollution levels. In all studied beaches, the greatest frequencies of resistance were found in relation to penicillin. On Gonzaguinha, the most polluted beach, 72.3% of all isolated strains showed simple resistance, whilst 8.33% had multiple resistance. The values found on Ilha Porchat beach, were 70.8% and 6.9% for simple and multiple resistances, respectively. On Guaraú, the less polluted beach, only 35.3% of isolated strains had simple resistance. Multiple resistance was not observed. While samples from Gonzaguinha and Ilha Porchat beach showed isolated strains resistant to seven and six different antimicrobial agents, respectively, samples from Guaraú beach were resistant only to penicillin and erytromicin. The positive correlations obtained between the degree of seawater contamination and frequency and variability of bacterial resistance indicate that polluted marine recreational waters and sands are sources of resistant bacteria contributing thus, to the dissemination of bacterial resistance. | 2010 | 19904625 |
| 5278 | 9 | 0.9966 | Antibiotic resistance of culturable heterotrophic bacteria isolated from shrimp (Penaeus vannamei) aquaculture ponds. Shrimp aquaculture is one of the fastest growing food-producing avenues, where antibiotics usage has become an issue of great concern due to the development of antimicrobial resistance in bacteria. A total of 2304 bacterial isolates from 192 samples (sediment, water, shrimp, and source water) from Andhra Pradesh, India were screened. Antibiotic resistance of bacterial isolates was highest for oxytetracycline (23.4%) followed by erythromycin (12.7%), co-trimoxazole (10%) ciprofloxacin (9.6%), and chloramphenicol (6%), of which 11.9% isolates were multi-drug resistant. Bacterial isolates from shrimp (26.7%), water (23.9%), and sediment (19.6%) samples exhibited more resistance (p ≤ 0.05) towards oxytetracycline. Higher antibacterial resistance was observed from samples of southern Andhra Pradesh (locations L6 and L7). Gram negative bacteria were more prevalent (64%) and showed significantly (p ≤ 0.01) higher resistance. This study indicated the wider distribution of antibiotic-resistant bacteria in shrimp aquaculture ponds with potential risk to humans and the environment. | 2021 | 34450408 |
| 2810 | 10 | 0.9966 | Investigation of antibiotic resistance genotypic and phenotypic characteristics of marine aquaculture fish carried in the Dalian area of China. Due to the long-term and irrational use of antibiotics for the prevention and control of bacterial diseases in aquaculture, antibiotic resistance genes have become a new source of pollution in aquatic products. Factors such as the spread of drug-resistant strains and the horizontal transfer of drug-resistant genes have led to multi-drug resistance in fish-infecting bacteria, which seriously affects the quality and safety of aquatic products. In this study, 50 samples of horse mackerel and puffer fish sold in Dalian aquatic products market and seafood supermarket were collected, and the phenotypic characteristics of the bacteria carried by the fish for drugs such as sulfonamides, amide alcohols, quinolones, aminoglycosides and tetracyclines were tested and analyzed, and the resistance genes carried by fish samples were detected by SYBG qPCR. Our statistical analyses demonstrated that the drug resistance phenotypes and genotypes of bacteria carried by mariculture horse mackerel and puffer fish in the Dalian area of China were complex, and the multi-drug resistance rate reached 80%. Among the examined antibiotics, the resistance rates to cotrimoxazole, tetracycline, chloramphenicol, ciprofloxacin, norfloxacin, levofloxacin, kanamycin, and florfenicol exceeded 50%, whereas the resistance rates to gentamicin and tobramycin were 26 and 16%, respectively. The detection rate of the drug resistance genes tetA, sul1, sul2, qnrA, qnrS, and floR exceeded 70% and all samples carried more than three drug resistance genes. The correlation analysis of drug resistance genes and drug resistance phenotypes showed that the detection of the drug resistance genes sul1, sul2, floR, and qnrD was correlated with the detection of drug resistance phenotypes (p < 0.01). However, the correlation between the resistance genes cmlA, cfr, tetA, qnrA, qnrS, and aac(6')-Ib-cr and the corresponding resistance phenotype was not significant (p > 0.05). In general, our findings indicated that the multi-drug resistance of bacteria carried by marine horse mackerel and puffer fish in the Dalian area was serious. From the perspective of drug resistance rate and drug resistance gene detection rate, the aminoglycosides gentamicin and tobramycin are still considered effective in controlling bacterial infection in marine fish in the study area. Collectively, our findings provide a scientific basis for the management of drug use in mariculture, which can prevent the transmission of drug resistance through the food chain and minimize the associated human health risks. | 2023 | 37426025 |
| 2851 | 11 | 0.9966 | Detection of antibiotic resistance and tetracycline resistance genes in Enterobacteriaceae isolated from the Pearl rivers in South China. This study investigated antibiotic resistance profiles and tetracycline resistance genes in Enterobacteriaceae family isolates from the Pearl rivers. The Enterobacteriaceae isolates were tested for susceptibility to seven antibiotics ampicillin, chloramphenicol, ciprofloxacin, levofloxacin, sulphamethoxazole/trimethoprim, tetracycline and trimethoprim. In Liuxi reservoir, with an exception to ampicillin resistant strains (11%) no other antibiotic resistance bacterial strains were detected. However, multiple drug resistance in bacterial isolates from the other sites of Pearl rivers was observed which is possibly due to sewage discharge and input from other anthropogenic sources along the rivers. Four tetracycline resistance genes tet A, tet B, tet C and tet D were detected in the isolates from the rivers. The genes tet A and tet B were widely detected with the detection frequencies of 43% and 40% respectively. Ciprofloxacin and levofloxacin resistant enteric bacteria were also isolated from the pig and duck manures which suggest a wider distribution of human specific drugs in the environment. This investigation provided a baseline data on antibiotic resistance profiles and tetracycline resistance genes in the Pearl rivers delta. | 2010 | 20356660 |
| 5445 | 12 | 0.9966 | Antibiotic resistance of Aeromonas ssp. strains isolated from Sparus aurata reared in Italian mariculture farms. Selective pressure in the aquatic environment of intensive fish farms leads to acquired antibiotic resistance. This study used the broth microdilution method to measure minimum inhibitory concentrations (MICs) of 15 antibiotics against 104 Aeromonas spp. strains randomly selected among bacteria isolated from Sparus aurata reared in six Italian mariculture farms. The antimicrobial agents chosen were representative of those primarily used in aquaculture and human therapy and included oxolinic acid (OXA), ampicillin (AM), amoxicillin (AMX), cephalothin (CF), cloramphenicol (CL), erythromycin (E), florfenicol (FF), flumequine (FM), gentamicin (GM), kanamycin (K), oxytetracycline (OT), streptomycin (S), sulfadiazine (SZ), tetracycline (TE) and trimethoprim (TMP). The most prevalent species selected from positive samples was Aeromonas media (15 strains). The bacterial strains showed high resistance to SZ, AMX, AM, E, CF, S and TMP antibiotics. Conversely, TE and CL showed MIC(90) values lower than breakpoints for susceptibility and many isolates were susceptible to OXA, GM, FF, FM, K and OT antibiotics. Almost all Aeromonas spp. strains showed multiple antibiotic resistance. Epidemiological cut-off values (ECVs) for Aeromonas spp. were based on the MIC distributions obtained. The results showed a high frequency of Aeromonas spp. contamination in Sparus aurata reared on the Italian coast and an elevated biodiversity in isolated bacterial strains. Aeromonas isolates comprise potentially pathogenic species for humans, often resistant to several antibiotics and able to transfer the genes responsible for antibiotic resistance to microorganisms pathogenic for humans throughout the food chain. The few ECV studies available on many antibiotics against Aeromonas spp. strains isolated from the aquaculture environment highlight the need for further research in this area, while regular monitoring programmes should be stepped up to check for antibiotic resistance. | 2018 | 30081345 |
| 5305 | 13 | 0.9965 | Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants. The taxonomic diversity and antibiotic resistance phenotypes of aeromonads were examined in samples from drinking and waste water treatment plants (surface, ground and disinfected water in a drinking water treatment plant, and raw and treated waste water) and tap water. Bacteria identification and intra-species variation were determined based on the analysis of the 16S rRNA, gyrB and cpn60 gene sequences. Resistance phenotypes were determined using the disc diffusion method. Aeromonas veronii prevailed in raw surface water, Aeromonas hydrophyla in ozonated water, and Aeromonas media and Aeromonas puntacta in waste water. No aeromonads were detected in ground water, after the chlorination tank or in tap water. Resistance to ceftazidime or meropenem was detected in isolates from the drinking water treatment plant and waste water isolates were intrinsically resistant to nalidixic acid. Most of the times, quinolone resistance was associated with the gyrA mutation in serine 83. The gene qnrS, but not the genes qnrA, B, C, D or qepA, was detected in both surface and waste water isolates. The gene aac(6')-ib-cr was detected in different waste water strains isolated in the presence of ciprofloxacin. Both quinolone resistance genes were detected only in the species A. media. This is the first study tracking antimicrobial resistance in aeromonads in drinking, tap and waste water and the importance of these bacteria as vectors of resistance in aquatic environments is discussed. | 2011 | 21907383 |
| 3500 | 14 | 0.9965 | Shifts in bacterial communities and antibiotic resistance genes in surface water and gut microbiota of guppies (Poecilia reticulata) in the upper Rio Uberabinha, Brazil. Anthropogenic activities especially water pollution can affect the diversity and composition of microbial communities and promote the spread of antibiotic resistance genes (ARGs). In this study, water samples and guppies (Poecilia reticulata) were sampled from six sampling sites along the Uberabinha River in southeastern Brazil, both microbial communities and ARGs of surface waters and intestinal microbiota of guppies (Poecilia reticulata) were detected. According to the results of 16S rRNA amplicon sequencing, Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria were dominant phyla in both water and intestinal microbiota, but the abundance of putative pathogens was higher at heavily polluted sites. Up to 83% of bacteria in intestinal microbiota originated from water microbiota; this proportion was relatively higher in less polluted compared to polluted environments. ARGs providing resistance of tetracyclines and quinolones were dominant in both water and gut microbiota. The relative abundances of class I integrons and ARGs were as high as 1.74 × 10(-1)/16S rRNA copies and 3.61 × 10(-1)/16S rRNA copies, respectively, at heavily polluted sites. Correlation analysis suggests that integrons and bacteria play key roles in explaining the widespread occurrence of ARGs in the surface, but not in intestinal microbiota. We could rule out the class I integrons a potential intermediary bridge for ARGs between both types of microbiomes. Our results highlight the tight link in microbial communities and ARGs between ambient microbiota of stream ecosystems and intestinal microbiota of fish. Our study could have far-reaching consequences for fisheries and consumer safety and calls for investigations of gut microbiota of target species of both commercial fisheries and recreational (hobby) angling. | 2021 | 33497859 |
| 2848 | 15 | 0.9965 | Antimicrobial Resistant Bacteria Monitoring in Raw Seafood Retailed: a Pilot Study Focused on Vibrio and Aeromonas. In aquaculture, bacterial infections in sea animals are treated using antimicrobials. As seafood is frequently consumed in its raw form, seafood contaminated with water-borne antimicrobial-resistant bacteria presents a potential transmission route to humans and can influence food safety. In this study, we aimed to determine the abundance of water-borne bacteria in retail raw seafood and to characterize their antimicrobial resistance profiles. In total, 85 retail raw seafood samples (32 fish, 26 shellfish, 25 mollusks, and two crustaceans) were purchased from supermarkets in Japan, and water-borne bacteria were isolated. The isolated bacterial species predominantly included Vibrio spp. (54.1%) and Aeromonas spp. (34.1%). Vibrio or Aeromonas spp. were isolated from more than 70% of the seafood samples. Tetracycline-, sulfamethoxazole-, and/or trimethoprim/sulfamethoxazole-resistant Vibrio or Aeromonas spp. isolates were detected in seven (21.9%) fish samples (two wild-caught and five farm-raised) harboring tet, sul, and/or dfr genes. Sulfamethoxazole- and trimethoprim/sulfamethoxazole-resistant isolates were only detected in farm-raised fish. Tetracycline and sulfamethoxazole are commonly used in aquaculture. These results suggest that water-borne bacteria like Vibrio and Aeromonas spp. should be the primary focus of antimicrobial-resistant bacteria monitoring to effectively elucidate their spread of bacteria via seafood. | 2023 | 38144894 |
| 3634 | 16 | 0.9965 | Molecular characterizations of chloramphenicol- and oxytetracycline-resistant bacteria and resistance genes in mariculture waters of China. In order to gain an understanding of the diversity and distribution of antimicrobial-resistant bacteria and their resistance genes in maricultural environments, multidrug-resistant bacteria were screened for the rearing waters from a mariculture farm of China. Both abalone Haliotis discushannai and turbot Scophthalmus maximus rearing waters were populated with abundant chloramphenicol-resistant bacteria. These bacteria were also multidrug resistant, with Vibriosplendidus and Vibriotasmaniensis being the most predominant species. The chloramphenicol-resistance gene cat II, cat IV or floR could be detected in most of the multidrug-resistant isolates, and the oxytetracycline-resistance gene tet(B), tet(D), tet(E) or tet(M) could also be detected for most of the isolates. Coexistence of chloramphenicol- and oxytetracycline-resistance genes partially explains the molecular mechanism of multidrug resistance in the studied maricultural environments. Comparative studies with different antimicrobial agents as the starting isolation reagents may help detect a wider diversity of the antimicrobial-resistant bacteria and their resistance genes. | 2009 | 19303610 |
| 3625 | 17 | 0.9965 | Antibiotic resistant bacteria/genes dissemination in lacustrine sediments highly increased following cultural eutrophication of Lake Geneva (Switzerland). This study investigates faecal indicator bacteria (FIB), multiple antibiotic resistant (MAR), and antibiotic resistance genes (ARGs), of sediment profiles from different parts of Lake Geneva (Switzerland) over the last decades. MARs consist to expose culturable Escherichia coli (EC) and Enterococcus (ENT) to mixed five antibiotics including Ampicillin, Tetracycline, Amoxicillin, Chloramphenicol and Erythromycin. Culture-independent is performed to assess the distribution of ARGs responsible for, β-lactams (blaTEM; Amoxicillin/Ampicillin), Streptomycin/Spectinomycin (aadA), Tetracycline (tet) Chloramphenicol (cmlA) and Vancomycin (van). Bacterial cultures reveal that in the sediments deposited following eutrophication of Lake Geneva in the 1970s, the percentage of MARs to five antibiotics varied from 0.12% to 4.6% and 0.016% to 11.6% of total culturable EC and ENT, respectively. In these organic-rich bacteria-contaminated sediments, the blaTEM resistant of FIB varied from 22% to 48% and 16% to 37% for EC and ENT respectively, whereas the positive PCR assays responsible for tested ARGs were observed for EC, ENT, and total DNA from all samples. The aadA resistance gene was amplified for all the sediment samples, including those not influenced by WWTP effluent water. Our results demonstrate that bacteria MARs and ARGs highly increased in the sediments contaminated with WWTP effluent following the cultural eutrophication of Lake Geneva. Hence, the human-induced changing limnological conditions highly enhanced the sediment microbial activity, and therein the spreading of antibiotic resistant bacteria and genes in this aquatic environment used to supply drinking water in a highly populated area. Furthermore, the presence of the antibiotic resistance gene aadA in all the studied samples points out a regional dissemination of this emerging contaminant in freshwater sediments since at least the late nineteenth century. | 2012 | 22051343 |
| 2884 | 18 | 0.9965 | Gilthead seabream (Sparus aurata) carrying antibiotic resistant enterococci. A potential bioindicator of marine contamination? Antibiotic resistance in bacteria is a growing problem that is not only restricted to the clinical setting but also to other environments such as marine species that harbor antibiotic resistant bacteria and therefore may serve as reservoirs for antibiotic-resistance genetic determinants. The aim of this study was to evaluate antibiotic resistance phenotypes in enterococci isolated from fecal samples of gilthead seabream and the associated mechanisms of resistance. A collection of 118 samples were analyzed and 73 enterococci were recovered. The strains showed high percentages of resistance to erythromycin and tetracycline (58.9% and 17.8%, respectively). Lower level of resistance (<13%) was detected for quinupristin-dalfopristin, ampicillin, high-level-gentamicin, high-level-streptomycin, high-level-kanamycin, ciprofloxacin and chloramphenicol. The erm(B), tet(L) or tet(M), aac(6')-aph(2″) and aph(3')-IIIa genes were shown in isolates resistant to erythromycin, tetracycline, high-level gentamicin and high-level kanamycin, respectively. Antibiotic resistance in natural microbiota is becoming a concern of human and environmental health. | 2011 | 21511306 |
| 3508 | 19 | 0.9965 | Prevalence and distribution of antibiotic resistance in marine fish farming areas in Hainan, China. Antibiotic resistance represents a global health crisis for humans, animals, and for the environment. Transmission of antibiotic resistance through environmental pathways is a cause of concern. In this study, quantitative PCR and culture-dependent bacteriological methods were used to detect the abundance of antibiotic resistance genes (ARGs) and the quantity of culturable heterotrophic antibiotic-resistant bacteria (ARB) in marine fish farming areas. The results indicated that sul and tet family genes were widely distributed in marine fish farming areas of Hainan during both rearing and harvesting periods. Specifically, sul1 and tetB were the most dominant ARGs. The total abundance of ARGs increased significantly from the rearing to the harvesting period. A total of 715 ARB strains were classified into 24 genera, within these genera Vibrio, Acinetobacter, Pseudoalteromonas, and Alteromonas are opportunistic pathogens. High bacterial resistance rate to oxytetracycline (OT) was observed. The numbers of OT- and enrofloxacin-resistant bacteria dropped significantly from rearing the period to the harvesting. The co-occurrence pattern showed that Ruegeria and tetB could be indicators of ARB and ARGs, respectively, which were found in the same module. Redundancy analysis indicated that salinity was positively correlated with the most dominant ARB, and was negatively correlated with the most dominant ARGs. These findings demonstrated the prevalence and persistence of ARGs and ARB in marine fish farming areas in China. | 2019 | 30414589 |