FEVER - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
146300.9877Identification of colistin resistance and its bactericidal activity against uropathogenic gram negative bacteria from Hayatabad Medical Complex Peshawar. OBJECTIVES: Identification of colistin resistance and its bactericidal activity against gram-negative bacteria isolated from urinary tract infection (UTI) patients. METHODS: This 6-month cross sectional study was conducted in Hayatabad Medical Complex Peshawar from January 2019-June2019.. A total of 2000 urine samples were collected and transported to the Health Research Institute, NIH, Research Centre, Khyber Medical College Peshawar. Samples were streaked on different media and incubated at 37C° for 24hrs. Gram negative bacteria were identified through gram staining and Analytical Profile Index (API) 10s. Gram negative bacteria were subjected under antibiotic sensitivity profile through Kirby-Bauer disc diffusion method. Colistin resistance was found through broth microdilution method. Minimum bactericidal activity was performed to find out the lowest concentration of colistin required to kill gram-negative bacteria. RESULTS: A total of 241(12.05%) uropathogenic gram negative bacteria were isolated and identified from 2000 urine samples while excluding intrinsically resistant bacteria. After broth microdilution, colistin resistance was found in 48(19.9%) Escherichia coli, 4(1.6%) Klebsiella pneumoniae and 3(1.3%) Pseudomonas aeruginosa respectively. Colistin resistant Escherichia coli were resistant to 77% Cephalosporins, 81% to Fluoroquinolones and 70% to Penicillin combinations. Colistin resistant Klebsiella pneumoniae were 100% resistant to Cephalosporins, Penicillin combinations and Fluoroquinolones while 75% were resistant to Carbapenems and Monobactams. Pseudomonas aeruginosa isolates were sensitive to all used antibiotics. CONCLUSION: E.coli was the mainly responsible uropathogen causing UTIs. Colistin resistance was found in 22.8% gram negative uropathogens. Klebsiella pneumoniae isolates exhibited highest resistance to antibiotics.202235634614
219710.9876Antimicrobial susceptibility patterns of bacteria that commonly cause bacteremia at a tertiary hospital in Zambia. Background: Bloodstream infections and antimicrobial resistance cause global increases in morbidity and mortality. Aim: We evaluated the antimicrobial susceptibility patterns of bacteria that commonly cause bacteremia in humans. Materials & methods: We conducted a retrospective cross-sectional study at the University Teaching Hospitals in Lusaka, Zambia, using Laboratory Information Systems. Results: The commonest isolated bacteria associated with sepsis were Klebsiella pneumoniae. The distribution of bacteria associated with bacteremia in different wards and departments pneumonia. The distribution of bacteria associated with bacteremia in different wards and departments at University Teaching Hospitals was were statistically significant (χ2 = 1211.518; p < 0.001). Conclusion:K. pneumoniae, Escherichia coli, Pantoea agglomerans and Enterococcus species have developed high resistance levels against ampicillin, cefotaxime, ciprofloxacin, gentamicin and trimethoprim/sulfamethoxazole and a very low resistance levels against imipenem and Amikacin.202033315486
219620.9874Antibiotic resistance profiles in Gram-negative bacteria causing bloodstream and urinary tract infections in paediatric and adult patients in Ndola District, Zambia, 2020-2021. BACKGROUND: Bloodstream infections (BSIs) and urinary tract infections (UTIs) caused by antibiotic resistant bacteria (ARB) have unfavourable treatment outcomes and negative economic impacts. OBJECTIVES: The main objective of this study was to determine antibiotic resistance profiles in Gram-negative bacteria (GNB) causing BSIs and UTIs. METHOD: A prospective study from October 2020 to January 2021 at Ndola Teaching Hospital and Arthur Davison Children's Hospital in the Ndola district, Zambia. Blood and urine samples collected from inpatients and outpatients presenting with fever and/or urinary tract infection symptoms were submitted for microbiological analysis. Pathogen identification and antibiotic susceptibility was determined by the automated VITEK 2 Compact machine. Resistance genes to commonly used antibiotics were determined using polymerase chain reaction. Data were analysed using SPSS version 28.0. RESULTS: One hundred and ten GNB were isolated, E. coli (45.5%) was predominant, with varying resistance profiles to different antibiotic classes. Resistance to third-generation cephalosporin was highest in Enterobacter cloacae (75%) and Klebsiella pneumoniae (71%), respectively. Emergence of carbapenem resistance was noted with the highest being 17% in Acinetobacter baumannii. Notably, the prevalence of multi-drug resistance was 63% and extensively drug-resistance was 32%. Resistance gene determinants identified included bla (CTX-M,) qnrA and bla (NDM). CONCLUSION: High level antibiotic resistance was observed in GNB known to be prevalent causative agents of BSIs and UTIs locally in Zambia. Improving microbiology diagnostic capacity, strengthening antimicrobial stewardship programs and enforcing infection prevention and control measures are of utmost importance in promoting rational use of antibiotics and preventing the spread and emergence of resistant pathogens.202540585877
211830.9874Gram-negative bacteria as causative agents of ventilator-associated pneumonia and their respective resistance mechanisms. Ventilator-associated pneumonia (VAP) is a serious and common complication in patients admitted to intensive care unit (ICU) and contributes to mortality. Multidrug Gram-negative bacteria such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae are frequently associated with VAP in ICU. A prospective study was set up in three ICUs of the University Hospital Center Zagreb and one ICU in General Hospital Pula from September 2017 to March 2018. Antibiotic susceptibility was determined by broth microdilution method. Production of extended-spectrum β-lactamases (ESBLs) was determined by double-disk synergy test and carbapenemases by Hodge and carbapenem inactivation method (CIM). The genes encoding ESBLs, carbapenemases of class A, B and D and qnr genes were determined by PCR. In total 97 Gram-negative bacteria isolates were analyzed. P. aeruginosa demonstrated high resistance rates for imipenem and meropenem with 74% and 68% of resistant strains, respectively. Moderate resistance rates were observed for ceftazidime andpiperacillin/tazobactam, ciprofloxacin and gentamicin (44%). All except three A. baumannii isolates, were resistant to carbapenems and to all other antibiotics apart from colistin and amikacin. Eight A. baumannii isolates were positive for bla(OXA-23) and 12 for bla(OXA-24) genes. Four K. pneumoniae and two E. cloacae strains were ESBL positive and harboured group 1 of CTX-M β-lactamases. Three P. mirabilis strains were positive for plasmid-mediated ampC β-lactamase of CMY family. Two carbapenem-resistant K. pneumoniae harboured OXA-48 and one carbapenem-resistant E. cloacae VIM-1. A high proportion of multidrug-resistant P. aeruginosa, K. pneumoniae and extensively resistant A. baumannii was reported. Acquired resistance mechanisms, mainly production of carbapenemases and ESBLs were dominant in A. baumannii and K. pneumoniae, respectively. Resistance of P. aeruginosa isolates was more likely due to upregulation of efflux pumps or porin loss. A marked diversity of β-lactamases was identified in Enterobacteriaceae.202032729399
218740.9873Multicentre investigation of pathogenic bacteria and antibiotic resistance genes in Chinese patients with acute exacerbation of chronic obstructive pulmonary disease. OBJECTIVE: A prospective observational study to investigate the distribution and antimicrobial resistance of pathogenic bacteria in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD) in Beijing, China. METHODS: Patients with AECOPD were recruited from 11 general hospitals. Sputum specimens were cultured and bacteria identified. Antibiotic susceptibility was determined for each isolate, and presence of antibiotic resistance genes was evaluated using polymerase chain reaction. RESULTS: Pathogenic bacteria were isolated from 109/318 patients (34.28%); 124 isolates of 22 pathogenic bacterial species were identified, including Klebsiella pneumoniae (16.94%), Pseudomonas aeruginosa (16.94%), Acinetobacter baumannii (11.29%), Streptococcus pneumoniae (8.87%), and Staphylococcus aureus (7.26%). S. aureus was sensitive to tigecycline, teicoplanin, vancomycin and linezolid but resistant to penicillin and levofloxacin. K.pneumoniae, P. aeruginosa, A. baumannii and E. coli were susceptible to amikacin and cefoperazone. CONCLUSIONS: K. pneumoniae and P. aeruginosa are the most common pathogenic bacteria in AECOPD cases in Beijing, China. Our antibiotic resistance findings may be helpful in selecting antibiotic therapy.201526152913
209650.9872Investigation of isepamicin in vitro efficiency in Gram negative bacteria efficacy of isepamicin. CONTEXT: Isepamicin is a new semisynthetic aminoglycoside derived from gentamicin B and it is effective against Gram negative bacteria. Antibiotic resistance is an emerging problem and new options need for the treatment of infections caused by Gram negative bacteria. AIMS: In this study we aimed to investigate the in vitro efficiency in carbapenem susceptible and nonsusceptible Enterobacterales and Pseudomonas aeruginosa. METHODS AND MATERIAL: A total of 214 isolates of Gram-negative bacteria (Enterobacterales n = 129 and P. aeruginosa n = 85). Identification of the bacteria was tested in Vitek MS (Biomeriux, France). Susceptibility of isepamicin, amikacin, gentamicin, tobramycin and netilmicin was determined by Kirby Bauer disc diffusion method. The breakpoints for susceptibility to isepamicin, amikacin, gentamicin, streptomycin, tobramycin and netilmicin were evaluated according to the Comité de l'Antibiogramme dela Société Française de Microbiologie (CA-SFM) and EUCAST, respectively. Aminoglycoside modifying enzyme (AME) genes were investigated by multiplex PCR method. RESULTS: Isepamicin susceptibility was determined as 92.3% for Enterobacterales and 67% for P. aeruginosa and 94.4% for carbapenem resistant Enterobacterales. The most common AME gene was aac (6')-Ib in both Enterobacterales (76%) and P. aeruginosa (14.1%). Seven of the isepamicin intermediate or resistant isolates were positive aac (6')-Ib in Enterobacterales and P. aeruginosa. CONCLUSIONS: In this study, isepamicin showed good efficiency against both susceptible and carbapenem nonsusceptible Enterobacterales. But amikacin was prior to isepamicin P. aeruginosa isolates. Isepamicin could be a therapeutic option for the infections caused by Enterobacterales.202133610258
147360.9872Evaluation of the Unyvero i60 ITI® multiplex PCR for infected chronic leg ulcers diagnosis. OBJECTIVES: Unyvero i60 ITI multiplex PCR (mPCR) may identify a large panel of bacteria and antibiotic resistance genes. In this study, we compared results obtained by mPCR to standard bacteriology in chronic leg ulcer (CLU) infections. METHODS: A prospective study, part of the interventional-blinded randomized study "ulcerinfecte" (NCT02889926), was conducted at Saint Joseph Hospital in Paris. Fifty patients with a suspicion of infected CLU were included between February 2017 and September 2018. Conventional bacteriology and mPCR were performed simultaneously on deep skin biopsies. RESULTS: Staphylococcus aureus and Pseudomonas aeruginosa were the most detected pathogens. Regarding the global sensitivity, mPCR is not overcome to the standard culture. Anaerobes and slow growing bacteria were detected with a higher sensitivity rate by mPCR than standard culture. CONCLUSION: Unyvero i60 ITI multiplex PCR detected rapidly pathogenic bacteria in infected CLU especially anaerobes and slow growing bacteria and was particularly effective for patients previously treated with antibiotics.202031790779
142870.9872Carbapenem-resistant Gram-negative bacteria associated with catheter-related bloodstream infections in three intensive care units in Egypt. We aimed to identify the carbapenem-resistant Gram-negative bacteria (GNB) causing catheter-related bloodstream infections (CRBSI) in intensive care units (ICU) in a tertiary care Egyptian hospital, to study their resistance mechanisms by phenotypic and genetic tests, and to use ERIC-PCR for assessing their relatedness. The study was conducted over 2 years in three ICUs in a tertiary care hospital in Egypt during 2015-2016. We identified 194 bloodstream infections (BSIs); 130 (67.01%) were caused by GNB, of which 57 were isolated from CRBSI patients (73.84%). Identification of isolates was performed using conventional methods and MALDI-TOF MS. Antimicrobial susceptibility testing (AST) was done by disc diffusion following CLSI guidelines. Phenotypic detection of carbapenemases enzymes activity was by modified Hodge test and the Carba-NP method. Isolates were investigated for the most common carbapenemases encoding genes bla(KPC), bla(NDM), and bla(OXA-48) using multiplex PCR. Molecular typing of carbapenem-resistant isolates was done by ERIC-PCR followed by sequencing of common resistance genes. The overall rate of CRBSI in our study was 3.6 per 1000 central venous catheter (CVC) days. Among 57 Gram-negative CRBSI isolates, Klebsiella pneumoniae (K. pneumoniae) was the most frequently isolated (27/57; 47.4%), of which more than 70% were resistant to Meropenem. Phenotypic tests for carbapenemases showed that 37.9% of isolates were positive by modified Hodge test and 63.8% by Carba-NP detection. Multiplex PCR assay detected the bla(NDM) in 28.6% of the isolates and bla(KPC) in 26.8%, bla(NDM) and bla(KPC) were detected together in the same isolate in 5.6%, while bla(OXA-48)-like were not detected. ERIC-PCR detected limited genetic relatedness between K. pneumoniae isolates. Elevated resistance rates were observed to all antibiotics including carbapenems among K. pneumoniae isolates causing CRBSI. ERIC-PCR showed that the resistant isolates were mainly polyclonal. Our results call for reinforcement of antimicrobial stewardship and measures to prevent CRBSI.201829936619
216180.9872Detection of AcrA and AcrB Efflux Pumps in Multidrug-Resistant Klebsiella pneumonia that Isolated from Wounds Infection Patients in Al-Diwaniyah Province. Many infections produced by multidrug-resistant (MDR) Klebsiella pneumoniae are the main cause of death and treatment restrictions worldwide. In K. pneumoniae, the efflux pump system is dangerous in drug resistance. Therefore, this study was designed to investigate the involvement of the AcrA and AcrB efflux pumps in antibiotic resistance in Klebsiella pneumoniae isolated from wound patients. During June 2021-February 2022, 87 clinical isolates of Klebsiella pneumonia bacteria were obtained from wound samples patients consulted to the hospitals in AL-Diwaniyah province, Iraq. The disc diffusion method performed an antibiotic susceptibility test after microbiological/biochemical identification. The polymerase chain reaction (PCR) technique was used to examine efflux genes' prevalence (acrA and acrB). The results showed that resistance to Carbenicillin 72 (82.7%), Erythromycin 66 (75.8%), Rifampin 58 (66.6%), Ceftazidime 52 (59.7%), Cefotaxime 44 (50.5%), Novobiocin 38 (43.6%), Tetracycline 32 (36.7%), Ciprofloxacin 22 (25.2%), Gentamicin 16 (18.3%), Nitrofurantoin 6 (10.3%) in Klebsiella pneumoniae isolates. The PCR procedure revealed that the occurrence of the acrA and acrB genes is 55 (100%) and 55 (100%), respectively. The findings of this investigation show that the AcrA and AcrB efflux pumps play a crucial character in antibiotic resistance in multidrug-resistant Klebsiella pneumoniae bacterial isolates. As a result of the unintentional transmission of antimicrobial resistance genes, precise detection of resistance genes using molecular approaches is required to switch the extent of resistant strains.202337312720
146190.9871Phenotypic and Genetic Characterization of Carbapenemase and ESBLs Producing Gram-negative Bacteria (GNB) Isolated from Patients with Cystic Fibrosis (CF) in Tehran Hospitals. BACKGROUND: Cystic Fibrosis (CF) is an autosomal recessive genetic disorder in white populations caused by mutation in a gene that encodes Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein. Since frequent respiratory tract infections are the major problem in patients with CF, obligation to identify the causative bacteria and determining their antibiotic resistance pattern is crucial. The purpose of this project was to detect Gram-negative bacteria (GNB) isolated from sputa of CF patients and to determine their antibiotic resistance pattern. MATERIALS AND METHODS: The sputum of 52 CF patients, treated as inpatients at hospitals in Tehran, was obtained between November 2011 and June 2012. Samples cultured in selective and non-selective media and GNB recognized by biochemical tests. Antimicrobial susceptibility testing to cephalosporins, aminoglycosides and carbapenems was performed by disk diffusion method and MICs of them were measured. For phenotypic detection of carbapenemase and ESBLs production, the Modified Hodge test, double disk synergy test and the combined disk methods were performed. Subsequently, the genes encoding the extended spectrum beta-lactamases (blaPER, blaCTX-M) and carbapenemases (blaIMP-1, blaGES, blaKPC, blaNDM, blaVIM-1, blaVIM-2, blaSPM, blaSIM) in Gram negative bacteria were targeted among the resistant isolates by using PCR. PFGE was used to determine any genetic relationship among the Pseudomonas aeruginosa isolated from these patients. RESULTS: Fifty five GNB were isolated from 52 sputum samples including Pseudomonas aeruginosa, Klebsiella ozaenae, Alcaligenes xylosoxidans, Achromobacter denitrificans, Klebsiella pneumonia and Stenotrophomonas maltophilia. The rates of resistance to different antibiotic were as follows: cefixime (%80), ceftriaxone (%43), ceftazidime (%45) and meropenem (%7). The prevalence of genes encoding the ESBLs and Carbapenemases among the the phenotypically positive strains were as follows: blaCTX-M (19), blaIMP-1 (2), blaVIM-1 (2) and blaVIM-2 (3) genes respectively. No other genes were detected. PFGE analysis revealed 8 genotypes. Six isolates had mutually 3 similar patterns. CONCLUSION: This study showed the existence of important ESBLs and carbapenemases genes among the GNB isolated from patients with CF. Continuous surveillance of ESBLs and Carbapenemases, also identification of their types, in bacteria isolated from these patients have an important clinical impact, since, it can often provide valuable information for effective infection control measures and for the choice of appropriate antimicrobial therapy.201424596716
1423100.9870Distribution and molecular characterization of carbapenemase-producing gram-negative bacteria in Henan, China. This study aimed to investigate the epidemiological characteristics and trends over time of carbapenemase-producing (e.g., KPC, NDM, VIM, IMP, and OXA-48) Gram-negative bacteria (CPGNB). Non-duplicated multi-drug resistant Gram-negative bacteria (MDRGNB) were collected from the First Affiliated Hospital of Zhengzhou University from April 2019 to February 2023. Species identification of each isolate was performed using the Vitek2 system and confirmed by matrix-assisted laser desorption ionization-time of flight mass spectrometry according to the manufacturer's instructions. PCR detected carbapenem resistance genes in the strains, strains carrying carbapenem resistance genes were categorized as CPGNB strains after validation by carbapenem inactivation assay. A total of 5705 non-repetitive MDRGNB isolates belonging to 78 different species were collected during the study period, of which 1918 CPGNB were validated, with the respiratory tract being the primary source of specimens. Epidemiologic statistics showed a significant predominance of ICU-sourced strains compared to other departments. Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa were the significant CPGNB in Henan, and KPC and NDM were the predominant carbapenemases. Carbapenem-resistant infections in Henan Province showed an overall increasing trend, and the carriage of carbapenemase genes by CPGNB has become increasingly prevalent and complicated. The growing prevalence of CPGNB in the post-pandemic era poses a significant challenge to public safety.202438909136
1432110.9870Prevalence of difficult-to-treat resistance in ESKAPE pathogens in a third level hospital in Mexico. BACKGROUND: Antimicrobial resistance and difficult-to-treat resistance (DTR) in ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) is a threat to human health. The aim of this study was to determine the prevalence of antimicrobial resistance and DTR rates in ESKAPE pathogens over six years in a third-level hospital from Monterrey, Mexico. METHODS: Antimicrobial susceptibility testing was determined by either disk diffusion or broth microdilution in strains from 2018 to 2023. Isolates were screened for carbapenemase genes. Multidrug resistance (MDR), extensively drug resistance (XDR), carbapenem resistance (CR), extended-spectrum cephalosporin-resistance (ESCR), fluoroquinolone resistance (FQR), and DTR were determined. RESULTS: From 3,239 strains, 48.5% were from respiratory infections, resistance was 87.5% to meticillin in Staphylococcus spp. and 39.8% in S. aureus, and 13.9% to vancomycin in Enterococcus spp. MDR, FQR and ESCR rates were between 54-90% in A. baumannii, 20-60% in Enterobacterales and 17-25% in P. aeruginosa. CR was 85.7% in A. baumannii, 33.3% in P. aeruginosa and <5% in Enterobacterales. Most frequent CR genes were OXA-24/40-like in A. baumannii and NDM and OXA-48 in carbapenem-resistant Enterobacterales. DTR rates were 59.7% in A. baumannii (49.2% in 2018 vs 62.9% in 2023), 8.9% in P. aeruginosa and <3% in Enterobacterales. XDR in A. baumannii was 14.4%. CONCLUSIONS: Antimicrobial resistance rates were high in Gram-negative pathogens. CR and DTR rates were higher in A. baumannii than P. aeruginosa and Enterobacterales. DTR surveillance in healthcare providers should be continuous updating local and regional DTR trends among Gram-negative bacteria.202539758683
2106120.9870Alternative drugs against multiresistant Gram-negative bacteria. OBJECTIVES: Enterobacterales and other non-fermenting Gram-negative bacteria have become a threat worldwide owing to the frequency of multidrug resistance in these pathogens. On the other hand, efficacious therapeutic options are quickly diminishing. The aims of this study were to describe the susceptibility of 50 multiresistant Gram-negative bacteria, mostly pan-resistant, against old and less-used antimicrobial drugs and to investigate the presence of antimicrobial resistance genes. METHODS: A total of 50 genetically distinct isolates were included in this study, including 14 Acinetobacter baumannii (belonging to ST79, ST317, ST835 and ST836), 1 Pseudomonas aeruginosa (ST245), 8 Serratia marcescens and 27 Klebsiella pneumoniae (belonging to ST11, ST340, ST258, ST16, ST23, ST25, ST101, ST234, ST437 and ST442). The isolates were submitted to antimicrobial susceptibility testing and whole-genome sequencing to evaluate lineages and resistance genes. RESULTS: Our results showed that some strains harboured carbapenemase genes, e.g. bla(KPC-2) (28/50; 56%) and bla(OXA-23) (11/50; 22%), and other resistance genes encoding aminoglycoside-modifying enzymes (49/50; 98%). Susceptibility rates to tigecycline (96%) in all species (except P. aeruginosa), to minocycline (100%) and doxycycline (93%) in A. baumannii, to ceftazidime/avibactam in S. marcescens (100%) and K. pneumoniae (96%), and to fosfomycin in S. marcescens (88%) were high. Chloramphenicol and quinolones (6% susceptibility each) did not perform well, making their use in an empirical scenario unlikely. CONCLUSIONS: This study involving genetically distinct bacteria showed promising results for tigecycline for all Gram-negative bacteria (except P. aeruginosa), and there was good activity of minocycline against A. baumannii, ceftazidime/avibactam against Enterobacterales, and fosfomycin against S. marcescens.202032822906
2162130.9870The influence of efflux pump, outer membrane permeability and β-lactamase production on the resistance profile of multi, extensively and pandrug resistant Klebsiella pneumoniae. BACKGROUND: An important chance of nosocomial acquired infections are caused by the opportunistic bacterium Klebsiella pneumoniae. Urine, wound, sputum, and blood samples were collected from all patients. This study aimed to detect the antibiotic resistance profile, the frequency of MDR, XDR, PDR, and detection of efflux pump and outer membrane permeability genes in K. pneumoniae isolates. METHODS: One hundred twenty samples were collected from patients who were admitted to the Ramadi Teaching Hospitals in Al-Anbar Governorate. Fifty five of K. pneumoniae strains were collected from patients. The VITEK®2 Compact B System was used to detect the antibiotic resistance pattern of studied bacteria. The isolates were classified as MDR, XDR, or PDR based on established guidelines. The data were analyzed using Clinical and Laboratory Standards Institute (CLSI) breakpoints. PCR was used to detect the efflux pumps and porins genes. RESULTS: Out of the 120 samples studied, 45.83 % (55) tested positive for K. pneumoniae. The isolates displayed the greatest amount of resistance to cefazolin, ceftriaxone (98.2 %), ampicillin (100 %), and ceftazidime, cefepime (90.9 %). 20 % of the isolates were found to produce metallo-lactamases, and 41.81 % tested positive for extended-spectrum beta-lactamases. Overall, the rates of multi-drug resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) isolates were 57.2 %, 10.9 %, and 9.09 %, respectively. Additionally, the prevalence of efflux pump genes acrAB, mdtK, and tolC were 94.54 %, 14.54 %, and 89.09 %, respectively, while the porin-encoding genes ompK35 and ompK36 were found in 96.36 % and 98.18 % of the isolates. CONCLUSION: This investigation concluded that the study isolates had a high degree of antibiotic resistance heterogenicity. High frequencies of resistance to ampicillin, cefazolin, and ceftriaxone are present in study isolates. Most strains were categorized as MDR strains, with six being XDR strains and five being PDR strains. One of the main routes of antibiotic resistance in multidrug-resistant K. pneumoniae strains is through the acrAB efflux system. The high prevalence of the acrAB, tolC, ompk35, and ompK36 genes were increases the ability of these isolates combat antimicrobial treatments.202439321604
1464140.9870Detection of TEM and CTX-M genes from ciprofloxacin resistant Proteus mirabilis and Escherichia coli isolated on urinary tract infections (UTIs). The multidrug resistant Gram negative bacteria (MDRGNB) is an emerging burden and now represents a daily challenge for the management of antimicrobial therapy in healthcare settings. The present study was aimed to detect the prevalence of TEM and CTX-M type genes from GNB on urinary tract infection (UTIs). The ciprofloxacin resistant uropathogens were detected by HEXA UTI 5 disc diffusion method. The phenotypic detection of uropathogens producing extended spectrum beta lactamases (ESBLs) was confirmed by double disc combination test (DDCT) and phenotype confirmation test (PCT). The prevalence of TEM and CTX-M genes of uropathogens was identified by multiplex PCR analysis. The in vitro antimicrobial susceptibility of E. coli producing ESBL (26), 21 isolates of P. mirabilis, 17 P. aeruginosa, 14 K. pneumoniae and 6 Enterobacter sp. were detected. Based on the extension of the cephalosporin zone edge towards augmentin disc in the DDST method proved 84% of the isolates were ESBL positive. Similar results were obtained in phenotypic confirmatory test (PCT) by the increases of ≥5 mm zone of inhibition in the combination disc when compared with ceftazidime disc alone. The prevalence of TEM and CTX-M genes were determined from multidrug resistance uropathogens (MDU) respectively as 83%, 75%, 71%, 63%, 60%, 55%, 54%, 50%. The most prevalent (TEM + CTX-M) genes were also detected in ciprofloxacin resistant strains P. mirabilis BDUMS1 (KY617768) and E. coli BDUMS3 (KY617770). Due to the increase of ESBL genes in uropathogens, sustained supervision for using favorable antibiotics and decreasing the infection is essential.201829778819
2128150.9870Emerging Antibiotic Resistance to Bacterial Isolates from Human Urinary Tract Infections in Grenada. A urinary tract infection (UTI) in humans is one of the most common ailments in developing countries. The treatment of UTI is becoming difficult because of the increasing drug resistance against the common bacteria associated with UTI. This research aimed to determine the bacteria, and their antimicrobial drug resistance, associated with UTI in the Grenada population. A retrospective study of data (2015 through 2017) from the microbiology laboratory of the Grenada General Hospital was analyzed. Bacteria were isolated from 1289 (33.3%) urine cultures of 3867 UTI suspected urine samples. Both Gram-positive (Staphylococcus aureus 5.0%; Enterococci group D 43.2%) and Gram-negative bacteria (Escherichia coli 51%; Klebsiella pneumoniae20.0%; Proteus mirabilis 10.0%; Acinetobacter spp. 20.0%) were isolated. Bacterial isolates were tested for their resistance to nine antibacterial drugs (ampicillin, gentamicin, norfloxacin, cefuroxime, ceftazidime, Bactrim, imipenem, augmentin, and ciprofloxacin). Gram-negative bacteria showed higher antimicrobial drug resistance.201931700763
2109160.9870Screening of nursing home residents for colonization with carbapenem-resistant Enterobacteriaceae admitted to acute care hospitals: Incidence and risk factors. BACKGROUND: There are increasing reports of multidrug-resistant gram-negative bacilli in nursing homes and acute care hospitals. METHODS: We performed a point prevalence survey to detect fecal carriage of gram-negative bacteria carrying carbapenem resistance genes or which were otherwise resistant to carbapenem antibiotics among 500 consecutive admissions from local nursing homes to 2 hospitals in Providence, Rhode Island. We performed a case-control study to identify risk factors associated with carriage of carbapenem-resistant Enterobacteriaceae (CRE). RESULTS: There were 404 patients with 500 hospital admissions during which they had rectal swab samples cultured. Fecal carriage of any carbapenem-resistant or carbapenemase- producing gram-negative bacteria was found in 23 (4.6%) of the 500 hospital admissions, including 7 CRE (1.4%), 2 (0.4%) of which were Klebsiella pneumoniae carbapenemase (ie, blaKPC) producing (CPE) Citrobacter freundii, 1 of which was carbapenem susceptible by standard testing methods. Use of a gastrostomy tube was associated with CRE carriage (P = .04). We demonstrated fecal carriage of carbapenem-resistant or carbapenemase-producing gram-negative bacteria in 4.6% of nursing home patients admitted to 2 acute care hospitals, but only 0.4% of such admissions were patients with fecal carriage of CPE. Use of gastrostomy tubes was associated with fecal carriage of gram-negative bacteria with detectable carbapenem resistance. CONCLUSION: CRE fecal carriage is uncommon in our hospital admissions from nursing homes.201626631643
2107170.9870Virulence, antimicrobial resistance, and molecular characteristics of carbapenem-resistant Klebsiella pneumoniae in a hospital in Shijiazhuang City from China. Carbapenem-resistant Klebsiella pneumoniae (CRKP), as one of the most common drug-resistant bacteria threatening human health, is hyper-resistant to multiple antimicrobial drugs and carbapenems, which can be dealt with only limited clinical treatment options. This study described the epidemiological characteristics of CRKP in this tertiary care hospital from 2016 to 2020. Specimen sources included blood, sputum, alveolar lavage fluid, puncture fluid, secretions from a burn wound, and urine. Among the 87 carbapenem-resistant strains, ST11 was the predominant isolate, followed by ST15, ST273, ST340, and ST626. These STs were in broad agreement with the STs defined by pulsed-field gel electrophoresis clustering analysis in discriminating clusters of related strains. Most CRKP isolates contained the blaKPC-2 gene, some isolates carried the blaOXA-1, blaNDM-1, and blaNDM-5 genes, and the isolates carrying carbapenem resistance genes were more resistant to the antimicrobials of β-lactams, carbapenems, macrolides, and fluoroquinolone. The OmpK35 and OmpK37 genes were detected in all CRKP strains, and the Ompk36 gene was detected in some CRKP strains. All detected OmpK37 had 4 mutant sites, and OmpK36 had 11 mutant sites, while no mutant sites were found in OmpK35. More than half of the CRKP strains contained the OqxA and OqxB efflux pump genes. The virulence genes were most commonly combined with urea-wabG-fimH-entB-ybtS-uge-ycf. Only one CRKP isolate was detected with the K54 podoconjugate serotype. This study elucidated the clinical epidemiological features and molecular typing of CRKP, and grasped the distribution of drug-resistant genotypes, podocyte serotypes, and virulence genes of CRKP, providing some guidance for the subsequent treatment of CRKP infection.202337097488
2454180.9870Colistin resistance in Gram-negative bacteria analysed by five phenotypic assays and inference of the underlying genomic mechanisms. BACKGROUND: Colistin is used against multi-drug resistant pathogens, yet resistance emerges through dissemination of plasmid-mediated genes (mcr) or chromosomal mutation of genes involved in lipopolysaccharide synthesis (i.e. mgrB, phoPQ, pmrCAB). Phenotypic susceptibility testing is challenging due to poor diffusion of colistin in agar media, leading to an underestimation of resistance. Performance of five phenotypic approaches was compared in the context of different molecular mechanisms of resistance. We evaluated Vitek 2® (bioMérieux, AST N242), Colistin MIC Test Strip (Liofilchem Diagnostici), UMIC (Biocentric), and Rapid Polymyxin™ NP test (ELITechGroup) against the standard broth microdilution (BMD) method. We used whole genome sequencing (WGS) to infer molecular resistance mechanisms. We analysed 97 Enterobacterales and non-fermenting bacterial isolates, largely clinical isolates collected up to 2018. Data was analysed by comparing susceptibility categories (susceptible or resistant) and minimal inhibitory concentrations (MIC). Susceptibility category concordance is the percentage of test results sharing the same category to BMD. MIC concordance was calculated similarly but considering ±1 MIC titre error range. We determined genomic diversity by core genome multi locus sequencing typing (cgMLST) and identified putative antimicrobial resistance genes using NCBI and CARD databases, and manual annotation. RESULTS: Of 97 isolates, 54 (56%) were resistant with standard BMD. Highest susceptibility category concordance was achieved by Rapid Polymyxin™ NP (98.8%) followed by UMIC (97.9%), Colistin E-test MIC strip (96.9%) and Vitek 2® (95.6%). Highest MIC concordance was achieved by UMIC (80.4%), followed by Vitek 2® (72.5%) and Colistin E-test MIC strip (62.9%). Among resistant isolates, 23/54 (43%) were intrinsically resistant to colistin, whereas 31/54 (57%) isolates had acquired colistin resistance. Of these, mcr-1 was detected in four isolates and mcr-2 in one isolate. Non-synonymous mutations in mgrB, phoQ, pmrA, pmrB, and pmrC genes were encountered in Klebsiella pneumoniae, Escherichia coli, and Acinetobacter bereziniae resistant isolates. Mutations found in mgrB and pmrB were only identified in isolates exhibiting MICs of ≥16 mg/L. CONCLUSIONS: The Rapid Polymyxin™ NP test showed highest categorical concordance and the UMIC test provided MIC values with high concordance to BMD. We found colistin resistance in diverse species occurred predominantly through spontaneous chromosomal mutation rather than plasmid-mediated resistance.202134798825
2459190.9869In vitro antimicrobial activity and resistance mechanisms of cefiderocol against clinical carbapenem-resistant gram-negative bacteria. BACKGROUND: The rise of carbapenem-resistant gram-negative bacteria (CRGNB) necessitates new therapeutic options such as cefiderocol. OBJECTIVE: To evaluate the in vitro efficacy of cefiderocol against clinical CRGNB and investigate associated resistance mechanisms. METHODS: A total of 370 CRGNB isolates were analyzed. Minimum inhibitory concentration (MIC) values were determined, and whole genome sequencing, efflux pump inhibition assays, and RT-qPCR were conducted to assess resistance-related mutations, gene loss, and expression changes. RESULTS: Cefiderocol demonstrated potent in vitro activity, with high susceptibility rates in C. freundii (100%), K. pneumoniae (93.3%), and E. hormaechei (92.2%), and notable activity against P. aeruginosa (80.0%) and Escherichia coli (76.8%). Efflux pump inhibition by Carbonyl Cyanide m-Chlorophenyl Hydrazone (CCCP) significantly reduced MICs in resistant strains. Key resistance mechanisms included β-lactamase gene variants (bla (OXA-66), bla (OXA-23), bla (SHV-12)), mutations in envZ, cirA, nuoC, ampC, and loss or altered expression of iron transporter genes (piuA, pirA, fepA). CONCLUSION: Cefiderocol is highly effective against CRGNB; however, resistance may arise through diverse mechanisms, including efflux pump activity. Continued surveillance of emerging resistance is essential to guide its optimal clinical use.202541113641