# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6363 | 0 | 0.9921 | The effect of tetronasin and monensin on fermentation, microbial numbers and the development of ionophore-resistant bacteria in the rumen. The Gram-negative rumen bacteria Fibrobacter succinogenes S85, Prevotella ruminicola M384 and Veillonella parvula L59 were grown in media containing successively increasing concentrations of the ionophores, monensin and tetronasin. All three species became more resistant to the ionophore with which they were grown. Increased resistance to one ionophore caused increased resistance to the other, and cross-resistance to another ionophore--lasalocid--and an antibiotic--avoparcin. Recovery of tetronasin-resistant bacteria from the rumen of monensin-fed sheep increased and vice versa, indicating that similar cross-resistance occurred in vivo. | 1993 | 8407673 |
| 5988 | 1 | 0.9921 | Enterococcal vanB resistance locus in anaerobic bacteria in human faeces. While developing a rapid method to detect carriers of vancomycin-resistant enterococci (VRE), we found the vanB gene by PCR in 13 of 50 human faecal specimens that did not contain culturable VRE. Passaging under antibiotic selection allowed us to isolate two species of anaerobic bacteria that were vanB PCR positive, vancomycin resistant, and teicoplanin sensitive. Sequence analysis of the 16S rRNA genes showed that one isolate resembled Eggerthella lenta (98% identity), and the other Clostridium innocuum (92% identity). Southern hybridisation and nucleotide sequencing showed a vanB locus homologous to that in VRE. We propose that vanB resistance in enterococci might arise from gene transfer in the human bowel. | 2001 | 11265957 |
| 5394 | 2 | 0.9920 | Antibiotic susceptibility of bacteria isolated from pasteurized milk and characterization of macrolide-lincosamide-streptogramin resistance genes. The presence of antibiotic-resistant bacteria in pasteurized milk was detected by plating 18 milk samples on selective media containing beta-lactams, macrolides, or a glycopeptide. Most samples contained gram-positive bacteria that grew on agar plates containing oxacillin, erythromycin, and/or spiramycin. The disk-diffusion method confirmed resistance to erythromycin and/or spiramycin in 86 and 65% of the coryneform bacteria and Micrococcaceae tested, respectively. PCR and sequence analysis revealed the presence of an ermC gene in 2 of the 25 Micrococcaceae strains investigated for their resistance to erythromycin and/or spiramycin. None of the 14 corynebacteria strains resistant to erythromycin and/or spiramycin harbored the erm(X) gene. No gene transfer could be demonstrated between the two erm(C) staphylococcal isolates and recipient strains of Enterococcus faecalis JH2-2 or Staphylococcus aureus 80CR5. | 2005 | 15726980 |
| 6013 | 3 | 0.9919 | Multidrug resistance in hydrocarbon-tolerant Gram-positive and Gram-negative bacteria. New Gram-positive and Gram-negative bacteria were isolated from Poeni oily sludge, using enrichment procedures. The six Gram-positive strains belong to Bacillus, Lysinibacillus and Rhodococcus genera. The eight Gram-negative strains belong to Shewanella, Aeromonas, Pseudomonas and Klebsiella genera. Isolated bacterial strains were tolerant to saturated (i.e., n-hexane, n-heptane, n-decane, n-pentadecane, n-hexadecane, cyclohexane), monoaromatic (i.e., benzene, toluene, styrene, xylene isomers, ethylbenzene, propylbenzene) and polyaromatic (i.e., naphthalene, 2-methylnaphthalene, fluorene) hydrocarbons, and also resistant to different antimicrobial agents (i.e., ampicillin, kanamycin, rhodamine 6G, crystal violet, malachite green, sodium dodecyl sulfate). The presence of hydrophilic antibiotics like ampicillin or kanamycin in liquid LB-Mg medium has no effects on Gram-positive and Gram-negative bacteria resistance to toxic compounds. The results indicated that Gram-negative bacteria are less sensitive to toxic compounds than Gram-positive bacteria, except one bacteria belonging to Lysinibacillus genus. There were observed cellular and molecular modifications induced by ampicillin or kanamycin to isolated bacterial strains. Gram-negative bacteria possessed between two and four catabolic genes (alkB, alkM, alkB/alkB1, todC1, xylM, PAH dioxygenase, catechol 2,3-dioxygenase), compared with Gram-positive bacteria (except one bacteria belonging to Bacillus genus) which possessed one catabolic gene (alkB/alkB1). Transporter genes (HAE1, acrAB) were detected only in Gram-negative bacteria. | 2011 | 21478643 |
| 2933 | 4 | 0.9919 | Live Feeds Used in the Larval Culture of Red Cusk Eel, Genypterus chilensis, Carry High Levels of Antimicrobial-Resistant Bacteria and Antibiotic-Resistance Genes (ARGs). The culture of red cusk eel Genypterus chilensis is currently considered a priority for Chilean aquaculture but low larval survival rates have prompted the need for the continuous use of antibacterials. The main aim of this study was to evaluate the role of live feed as a source of antibacterial-resistant bacteria in a commercial culture of G. chilensis. Samples of rotifer and Artemia cultures used as live feed were collected during the larval growth period and culturable bacterial counts were performed using a spread plate method. Rotifer and Artemia cultures exhibited high levels of resistant bacteria (8.03 × 10(4) to 1.79 × 10(7) CFU/g and 1.47 × 10(6) to 3.50 × 10(8) CFU/g, respectively). Sixty-five florfenicol-resistant isolates were identified as Vibrio (81.5%) and Pseudoalteromonas (15.4%) using 16S rRNA gene sequence analysis. A high incidence of resistance to streptomycin (93.8%), oxytetracycline (89.2%), co-trimoxazole (84.6%), and kanamycin (73.8%) was exhibited by resistant isolates. A high proportion of isolates (76.9%) carried the florfenicol-resistance encoding genes floR and fexA, as well as plasmid DNA (75.0%). The high prevalence of multiresistant bacteria in live feed increases the incidence of the resistant microbiota in reared fish larvae, thus proper monitoring and management strategies for live feed cultures appear to be a priority for preventing future therapy failures in fish larval cultures. | 2020 | 32197370 |
| 3653 | 5 | 0.9918 | Erythromycin-resistant lactic acid bacteria in the healthy gut of vegans, ovo-lacto vegetarians and omnivores. Diet can affect the diversity and composition of gut microbiota. Usage of antibiotics in food production and in human or veterinary medicine has resulted in the emergence of commensal antibiotic resistant bacteria in the human gut. The incidence of erythromycin-resistant lactic acid bacteria (LAB) in the feces of healthy vegans, ovo-lacto vegetarians and omnivores was analyzed. Overall, 155 LAB were isolated and characterized for their phenotypic and genotypic resistance to erythromycin. The isolates belonged to 11 different species within the Enterococcus and Streptococcus genera. Enterococcus faecium was the dominant species in isolates from all the dietary categories. Only 97 out of 155 isolates were resistant to erythromycin after Minimum Inhibitory Concentration (MIC) determination; among them, 19 isolates (7 from vegans, 4 from ovo-lacto vegetarians and 8 from omnivores) carried the erm(B) gene. The copresence of erm(B) and erm(A) genes was only observed in Enterococcus avium from omnivores. Moreover, the transferability of erythromycin resistance genes using multidrug-resistant (MDR) cultures selected from the three groups was assessed, and four out of six isolates were able to transfer the erm(B) gene. Overall, isolates obtained from the omnivore samples showed resistance to a greater number of antibiotics and carried more tested antibiotic resistance genes compared to the isolates from ovo-lacto vegetarians and vegans. In conclusion, our results show that diet does not significantly affect the occurrence of erythromycin-resistant bacteria and that commensal strains may act as a reservoir of antibiotic resistance (AR) genes and as a source of antibiotic resistance spreading. | 2019 | 31374082 |
| 3657 | 6 | 0.9918 | A survey of antibiotic resistance in Micrococcaceae isolated from Italian dry fermented sausages. The transfer of bacteria that are resistant to antimicrobial agents or resistance genes from animals to humans via the food chain is increasingly a problem. Therefore, it is important to determine the species and the numbers of bacteria involved in this phenomenon. For this purpose, 148 strains of microstaphylococci were isolated from three types of Italian dry fermented sausages. Eight of 148 strains belonged to the genera Kocuria and Micrococcus. The remaining 140 strains belonged to 11 different species of the genus Staphylococcus. The species most frequently isolated was Staphylococcus xylosus, followed by Staphylococcus saprophyticus and Staphylococcus aureus. Antibiotic resistance levels differed among the species and depended on the strain origin. Microstaphylococci were generally susceptible to beta-lactams, but 12 strains were resistant to methicillin, 8 were resistant to oxacillin, and 9 were resistant to penicillin G. No resistance was observed for aminoglicosides and cephalosporines. Many strains were resistant to sulfonamide, colistin suphate, tetracyclin, and bacitracin. Two strains of S. aureus, four strains of S. xylosus, and one strain of Staphylococcus sciuri were able to grow in the presence of 8 microg of vancomycin per g, but all strains were susceptible to teicoplanin. Twenty-two microstaphylococci were resistant to at least five of the tested antibiotics. The multiresistant strain S. aureus 899 was unaffected by eight antibiotics, including vancomycin and methicillin, indicating that a more prudent use of antibiotics in animal husbandry and better hygienic conditions during production should be encouraged because they can play a major role in reducing the incidence of such multiresistant microorganisms and the possible spread of the genetic elements of their resistance. | 2003 | 12800992 |
| 3652 | 7 | 0.9918 | Distribution of Transferable Antibiotic Resistance Genes in Laboratory-Reared Edible Mealworms (Tenebrio molitor L.). In the present study, the distribution of antibiotic resistance genes in laboratory-reared fresh mealworm larvae (Tenebrio molitor L.), their feeding substrates (carrots and wheatmeal), and frass was assessed. Microbial counts on selective media added with antibiotics highlighted the presence of lactic acid bacteria resistant to ampicillin and vancomycin and, more specifically, enterococci resistant to the latter antibiotic. Moreover, staphylococci resistant to gentamicin, erythromycin, tetracycline, and vancomycin were detected. Enterobacteriaceae resistant to ampicillin and gentamicin were also found, together with Pseudomonadaceae resistant to gentamicin. Some of the genes coding for resistance to macrolide-lincosamide-streptogramin B (MLS(B)) [erm(A), erm(C)], vancomycin [vanA, vanB], tetracycline [tet(O)], and β-lactams [mecA and blaZ] were absent in all of the samples. For the feeding substrates, organic wheatmeal was positive for tet(S) and tet(K), whereas no AR genes were detected in organic carrots. The genes tet(M), tet(K), and tet(S) were detected in both mealworms and frass, whereas gene aac-aph, coding for resistance to amynoglicosides was exclusively detected in frass. No residues for any of the 64 antibiotics belonging to 10 different drug classes were found in either the organic wheatmeal or carrots. Based on the overall results, the contribution of feed to the occurrence of antibiotic resistance (AR) genes and/or antibiotic-resistant microorganisms in mealworm larvae was hypothesized together with vertical transmission via insect egg smearing. | 2018 | 30510544 |
| 3627 | 8 | 0.9918 | Effect of in-feed paromomycin supplementation on antimicrobial resistance of enteric bacteria in turkeys. Histomoniasis in turkeys can be prevented by administering paromomycin sulfate, an aminoglycoside antimicrobial agent, in feed. The aim of this study was to evaluate the impact of in-feed paromomycin sulfate supplementation on the antimicrobial resistance of intestinal bacteria in turkeys. Twelve flocks of breeder turkeys were administered 100 ppm paromomycin sulfate from hatching to day 120; 12 flocks not supplemented with paromomycin were used as controls. Faecal samples were collected monthly from days 0 to 180. The resistance of Escherichia coli, Enterococcus faecium and Staphylococcus aureus to paramomycin and other antimicrobial agents was compared in paromomycin supplemented (PS) and unsupplemented (PNS) flocks. E. coli from PS birds had a significantly higher frequency of resistance to paromomycin, neomycin and kanamycin until 1 month after the end of supplementation compared to PNS birds. Resistance to amoxicillin or trimethoprim-sulfamethoxazole was also more frequent in PS turkeys. Resistance was mainly due to the presence of aph genes, which could be transmitted by conjugation, sometimes with streptomycin, tetracycline, amoxicillin, trimethoprim or sulfonamide resistance genes. Resistance to kanamycin and streptomycin in E. faecium was significantly different in PS and PNS breeders on days 60 and 90. Significantly higher frequencies of resistance to paromomycin, kanamycin, neomycin and tobramycin were observed in S. aureus isolates from PS birds. Paromomycin supplementation resulted in resistance to aminoglycosides in bacteria of PS turkeys. Co-selection for resistance to other antimicrobial agents was observed in E. coli isolates. | 2013 | 23800604 |
| 2806 | 9 | 0.9916 | Bacterial flora and antibiotic resistance from eggs of green turtles Chelonia mydas: an indication of polluted effluents. Sea turtles migrate to various habitats where they can be exposed to different pollutants. Bacteria were collected from turtle eggs and their resistance to antibiotics was used as pollutant bio-indicators of contaminated effluents. Eggs were collected randomly from turtles when they were laying their eggs. A total of 90 eggs were collected and placed into sterile plastic bags (3 eggs/turtle) during June-December of 2003. The bacteria located in the eggshell, albumen and yolk were examined, and 42% of the eggs were contaminated with 10 genera of bacteria. Pseudomonas spp. were the most frequent isolates. The albumen was found to be the part of the egg to be the least contaminated by bacterial infection. Bacterial isolates tested with 14 antibiotics showed variations in resistance. Resistance to ampicillin was the highest. The presence of antibiotic resistant bacteria in eggs indicates that the green turtle populations were subjected to polluted effluents during some of their migratory routes and feeding habitats. Scanning electron microscopy revealed that Salmonella typhimurium penetrated all eggshell layers. | 2009 | 19185323 |
| 2989 | 10 | 0.9916 | Occurrence of Antibiotic Resistant Bacteria in Flours and Different Plant Powders Used in Cuisine. In recent years, several alimentary diseases have been connected with the consumption or tasting of raw flour and dough. Microbiological quality concern is also raising due to increased consumer demand for plant powders, while some of them can be consumed without prior thermal processing. In this study, we have focused on the occurrence of antibiotic-resistant coliform bacteria and enterococci in flour, plant powder and dough from Slovak retail. Our results indicated the presence of both total and antibiotic-resistant coliform bacteria and enterococci in the flour and powder samples. Lower numbers of the total, as well as resistant bacteria, were detected in flours compared to plant powders. Coliform bacteria isolates were predominantly identified as Klebsiella spp. and Enterobacter spp. Ampicillin resistance appeared in 97% of isolates followed by chloramphenicol resistance (22%) and tetracycline resistance (17%). The presence of the bla(SHV) gene was confirmed in 13% of isolates. The tetA and tetE genes were present in 25% of isolates of coliform bacteria. The presence of enterococci was detected only in plant powders. Antibiotic-resistant strains were identified as the following: Enterococcus casseliflavus, E. gallinarium and E. faecium. Despite the isolates showing resistance to vancomycin, the presence of the vanA gene was not detected. The majority of antibiotic-resistant isolates belonged to the group of medium biofilm producers. None of these isolates showed efflux pump overproduction. Antibiotic-resistant coliform bacteria and enterococci were not detected in the processed doughs. | 2022 | 36429175 |
| 3654 | 11 | 0.9916 | Distribution of Antibiotic Resistance Genes in the Saliva of Healthy Omnivores, Ovo-Lacto-Vegetarians, and Vegans. Food consumption allows the entrance of bacteria and their antibiotic resistance (AR) genes into the human oral cavity. To date, very few studies have examined the influence of diet on the composition of the salivary microbiota, and even fewer investigations have specifically aimed to assess the impact of different long-term diets on the salivary resistome. In this study, the saliva of 144 healthy omnivores, ovo-lacto-vegetarians, and vegans were screened by nested PCR for the occurrence of 12 genes conferring resistance to tetracyclines, macrolide-lincosamide-streptogramin B, vancomycin, and β-lactams. The tet(W), tet(M), and erm(B) genes occurred with the highest frequencies. Overall, no effect of diet on AR gene distribution was seen. Some differences emerged at the recruiting site level, such as the higher frequency of erm(C) in the saliva of the ovo-lacto-vegetarians and omnivores from Bologna and Turin, respectively, and the higher occurrence of tet(K) in the saliva of the omnivores from Bologna. A correlation of the intake of milk and cheese with the abundance of tet(K) and erm(C) genes was seen. Finally, when the occurrence of the 12 AR genes was evaluated along with geographical location, age, and sex as sources of variability, high similarity among the 144 volunteers was seen. | 2020 | 32961926 |
| 3742 | 12 | 0.9916 | Lipophilic teicoplanin pseudoaglycon derivatives are active against vancomycin- and teicoplanin-resistant enterococci. A selection of nine derivatives of teicoplanin pseudoaglycon were tested in vitro against clinical vancomycin-resistant Enterococcus strains possessing vanA, vanB or both genes. The bacteria were characterized by PCR for the identification of their resistance genes. The tested compounds contain lipoic acid, different carbohydrates and aryl groups as lipophilic moieties. About one-third of the teicoplanin-resistant strains were shown to be susceptible to one or more of the glycopeptide derivatives. | 2017 | 28144040 |
| 5633 | 13 | 0.9916 | Effect of the growth promoter avilamycin on emergence and persistence of antimicrobial resistance in enteric bacteria in the pig. AIM: To assess the effect of the growth promoter avilamycin on emergence and persistence of resistance in enteric bacteria in the pig. METHODS AND RESULTS: Pigs (treated with avilamycin for 3 months and controls) were challenged with multi-resistant Salmonella Typhimurium DT104 and faecal counts were performed for enterococci, Escherichia coli, S. Typhimurium and Campylobacter (before, during and 5 weeks post-treatment). Representative isolates were tested for antibiotic resistance and for the presence of resistance genes. Avilamycin-resistant Enterococci faecalis (speciated by PCR) were isolated from the treated pigs and continued to be detected for the first week after treatment had ceased. The avilamycin-resistance gene was characterized by PCR as the emtA gene and speciation by PCR. MIC profiling confirmed that more than one strain of Ent. faecalis carried this gene. There was no evidence of increased antimicrobial resistance in the E. coli, Salmonella and Campylobacter populations, although there was a higher incidence of tetB positive E. coli in the treated pigs than the controls. CONCLUSION: Although avilamycin selects for resistance in the native enterococci population of the pig, no resistant isolates were detected beyond 1 week post-treatment. This suggests that resistant isolates were unable to persist once selective pressure was removed and were out-competed by the sensitive microflora. SIGNIFICANCE AND IMPACT OF THE STUDY: Our data suggest the risk of resistant isolates becoming carcass contaminants and infecting humans could be minimized by introducing a withdrawal period after using avilamycin and prior to slaughter. | 2005 | 15715858 |
| 3628 | 14 | 0.9916 | Antibiotic resistance patterns of gram-negative bacteria isolated from environmental sources. A total of 2,445 gram-negative bacteria belonging to fecal coliform, Pseudomonas, Moraxella, Acinetobacter, and Flavobacterium-Cytophaga groups were isolated from the rivers and bay of Tillamook, Oregon, and their resistances to chloramphenicol (25 microgram/ml), streptomycin (10 microgram/ml), ampicillin (10 microgram/ml), tetracycline (25 microgram/ml), chlortetracycline (25 microgram/ml), oxytetracycline (25 microgram/ml), neomycin (50 microgram/ml), nitrofurazone (12.5 microgram/ml), nalidixic acid (25 microgram/ml), kanamycin (25 microgram/ml), and penicillin G (10 IU/ml) were determined. Among fecal coliforms the bay isolates showed greater resistance to antibiotics than those from tributaries or surface runoff. No such well-defined difference was found among other bacterial groups. The antibiotic resistance patterns of gram-negative bacteria from different sources correlated well, perhaps indicating their common origin. The antibiotic resistance patterns of gram-negative bacteria of different general also correlated well, perhaps indicating that bacteria which share a common environment also share a common mode for developing antibiotic resistance. | 1978 | 727777 |
| 2168 | 15 | 0.9916 | PREVALENCE OF GENETIC MARKERS OF RESISTANCE TO ANTIBIOTICS IN BIOFILM-FORMING STRAINS OF OBLIGATE AND ELECTIVE ANAEROBES. AIM: Comparative study of frequency of detection of genetic markers of resistance to antibiotics forming in anaerobic bacteria under the conditions of mixed biofilms in a clinical setting and comparison of data of phenotypic and genotypic methods of study. MATERIALS AND METHODS: 66 strains of bacteria forming biofilm with PCR detection of antibiotics were studied: Streptococcus sanguinis, Streptococcus salivarius, Staphylococcus aureus, Staphylococcus epi- dermidis, Enterococcusfaecalis, Klebsiellapneumoniae, Pseudomonas aeruginosa and anaero- bic pathogens - Porphyromonasgingivalis, Tannerella forsythia, Parvinonas micra, Prevotella intermedia. Modelling of microbial biofilms in vitro and scanning electron microscopy were carried out. RESULTS: The studied strains of resident and pathogenic microbiota were established to have genes that code resistance to P-lactam antibiotics; carbapenems, macrolides, tetra- cyclines. Genetic markers of resistance to P-lactam antibiotics (STX-M 14 MECA - cepha- losporines), including carbapenems.(VIM and NDM, but not Oxa-48), glycopeptides (VanA and VanB), macrolides (ERM), tetracycline (Tet) and QNRB plasmids (fluoroquinolones) were detected in strains by PCR. CONCLUSION: The most frequently used preparations in dental practice - metronidazole and lincomycin (for the last 20 - 30 years) have shown the highest number of resistant strains - 52.3 and 22.7%, respectively. The frequency of detection of genetic markers of resistance to other studied preparations did not exceed 2.5 - 11.4%. Minimal quantity of resistant strains of anaerobic bacteria was detected for carbapenems and fluoroquinolones. | 2017 | 30695540 |
| 2936 | 16 | 0.9916 | PREVALENCE OF CHLAMYDIACEAE AND TETRACYCLINE RESISTANCE GENES IN WILD BOARS OF CENTRAL EUROPE. Our aim was to investigate the occurrence and distribution of Chlamydia suis and other Chlamydiaceae in the wild boar (Sus scrofa) population of Switzerland and Northern Italy and the detection of tetracycline resistance genes by PCR. We collected a total of 471 conjunctival swabs (n=292), rectal swabs (n=147), and lung tissue samples (n=32) belonging to 292 wild boars. The prevalence of Chlamydiaceae in the investigated wild boar populations was very low (1.4%, 4/292). We found C. suis in rectal or conjunctival swabs but not in lung samples. The low chlamydial prevalence might be attributed to limited contacts between wild boars and outdoor domestic pigs due to strict biosecurity measures or limited numbers of rural pig herds. The tetA(C) gene fragment was detected in six samples, which were all negative for Chlamydiaceae, and was probably not of chlamydial origin but more likely from other bacteria. The low tetracycline resistance rate in wild boar might be explained by the lack of selective pressure. However, transmission of resistance genes from domestic pigs to wild boar or selective pressure in the environment could lead to the development and spread of tetracycline-resistant C. suis strains in wild boars. | 2020 | 32216676 |
| 2935 | 17 | 0.9916 | Tetracycline Resistance Genes in Wild Birds from a Wildlife Recovery Centre in Central Italy. Wild animals are less likely to be exposed directly to clinical antimicrobial agents than domestic animals or humans, but they can acquire antimicrobial-resistant bacteria through contact with humans, animals, and the environment. In the present study, 254 dead free-living birds belonging to 23 bird species were examined by PCR for the presence of tetracycline resistance (tet) genes. A fragment of the spleen was collected from each bird carcass. A portion of the intestine was also taken from 73 of the 254 carcasses. Extracted DNA was subjected to PCR amplification targeting the tet(L), tet(M), and tet(X) genes. In total, 114 (45%) of the 254 birds sampled belonging to 17 (74%) of the 23 bird species tested were positive for one or more tet genes. The tet(M) gene showed a higher frequency than the other tested genes, both in the spleen and in the intestine samples. These results confirm the potential role of wild birds as reservoirs, dispersers, or bioindicators of antimicrobial resistance in the environment. | 2022 | 36611686 |
| 6057 | 18 | 0.9915 | Incidence of virulence determinants and antibiotic resistance in lactic acid bacteria isolated from food products. Background: Lactic acid bacteria (LAB) confer beneficial health effects in humans. However, the safety of these bacteria and their potential to spread resistance in the environment must be evaluated. Materials & methods: Fifty-three LAB were isolated from different food samples and assessed for the prevalence of virulence determinants and antibiotic resistance profile. Results: Multiple resistance was reported for Lactobacillus brevis MIM04, having revealed phenotypic resistance to vancomycin (MIC >128 μg/ml), ampicillin, cefotaxime, oxacillin and gentamicin. Virulence traits (cylA, gelE, esp and agg) were detected using specific primers. Enterococcus faecium CHE32, Lactobacillus plantarum CHE37 and E. faecium MLK68 lack virulence genes, possess antimicrobial activity and survive in low pH and bile salt conditions. Conclusion: Isolated LAB revealed probiotic properties. | 2022 | 35172602 |
| 2169 | 19 | 0.9915 | E-test antibiotics susceptibility of strict anaerobic bacteria. The E-test is convenient for testing susceptibility of anaerobes. From September 1998 to September 1999, 194 strains (105 Gram-positive bacteria, 89 Gram-negative bacteria) of clinically relevant samples were tested against five antibiotics benzylpenicillin, amoxicillin-clavulanic acid, clindamycin, metronidazole and imipenem on blood agar plates. Resistance to benzyl penicillin is widespread and Gram-negative bacteria and resistance to amoxicillin-clavulanic acid is exceptional. Metronidazole is very effective against anaerobes except non-spore-forming aerotolerant Gram-positive rods and Peptostreptococcus micros. | 2003 | 16887712 |