FARME - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
377600.8621FARME DB: a functional antibiotic resistance element database. Antibiotic resistance (AR) is a major global public health threat but few resources exist that catalog AR genes outside of a clinical context. Current AR sequence databases are assembled almost exclusively from genomic sequences derived from clinical bacterial isolates and thus do not include many microbial sequences derived from environmental samples that confer resistance in functional metagenomic studies. These environmental metagenomic sequences often show little or no similarity to AR sequences from clinical isolates using standard classification criteria. In addition, existing AR databases provide no information about flanking sequences containing regulatory or mobile genetic elements. To help address this issue, we created an annotated database of DNA and protein sequences derived exclusively from environmental metagenomic sequences showing AR in laboratory experiments. Our Functional Antibiotic Resistant Metagenomic Element (FARME) database is a compilation of publically available DNA sequences and predicted protein sequences conferring AR as well as regulatory elements, mobile genetic elements and predicted proteins flanking antibiotic resistant genes. FARME is the first database to focus on functional metagenomic AR gene elements and provides a resource to better understand AR in the 99% of bacteria which cannot be cultured and the relationship between environmental AR sequences and antibiotic resistant genes derived from cultured isolates.Database URL: http://staff.washington.edu/jwallace/farme.201728077567
663410.8594Making waves: The NORMAN antibiotic resistant bacteria and resistance genes database (NORMAN ARB&ARG)-An invitation for collaboration to tackle antibiotic resistance. With the global concerns on antibiotic resistance (AR) as a public health issue, it is pivotal to have data exchange platforms for studies on antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the environment. For this purpose, the NORMAN Association is hosting the NORMAN ARB&ARG database, which was developed within the European project ANSWER. The present article provides an overview on the database functionalities, the extraction and the contribution of data to the database. In this study, AR data from three studies from China and Nepal were extracted and imported into the NORMAN ARB&ARG in addition to the existing AR data from 11 studies (mainly European studies) on the database. This feasibility study demonstrates how the scientific community can share their data on AR to generate an international evidence base to inform AR mitigation strategies. The open and FAIR data are of high potential relevance for regulatory applications, including the development of emission limit values / environmental quality standards in relation to AR. The growth in sharing of data and analytical methods will foster collaboration on risk management of AR worldwide, and facilitate the harmonization in the effort for identification and surveillance of critical hotspots of AR. The NORMAN ARB&ARG database is publicly available at: https://www.norman-network.com/nds/bacteria/.202438723350
842220.8590Slightly beneficial genes are retained by bacteria evolving DNA uptake despite selfish elements. Horizontal gene transfer (HGT) and gene loss result in rapid changes in the gene content of bacteria. While HGT aids bacteria to adapt to new environments, it also carries risks such as selfish genetic elements (SGEs). Here, we use modelling to study how HGT of slightly beneficial genes impacts growth rates of bacterial populations, and if bacterial collectives can evolve to take up DNA despite selfish elements. We find four classes of slightly beneficial genes: indispensable, enrichable, rescuable, and unrescuable genes. Rescuable genes - genes with small fitness benefits that are lost from the population without HGT - can be collectively retained by a community that engages in costly HGT. While this 'gene-sharing' cannot evolve in well-mixed cultures, it does evolve in a spatial population like a biofilm. Despite enabling infection by harmful SGEs, the uptake of foreign DNA is evolutionarily maintained by the hosts, explaining the coexistence of bacteria and SGEs.202032432548
907430.8589BacAnt: A Combination Annotation Server for Bacterial DNA Sequences to Identify Antibiotic Resistance Genes, Integrons, and Transposable Elements. Whole genome sequencing (WGS) of bacteria has become a routine method in diagnostic laboratories. One of the clinically most useful advantages of WGS is the ability to predict antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs) in bacterial sequences. This allows comprehensive investigations of such genetic features but can also be used for epidemiological studies. A plethora of software programs have been developed for the detailed annotation of bacterial DNA sequences, such as rapid annotation using subsystem technology (RAST), Resfinder, ISfinder, INTEGRALL and The Transposon Registry. Unfortunately, to this day, a reliable annotation tool of the combination of ARGs and MGEs is not available, and the generation of genbank files requires much manual input. Here, we present a new webserver which allows the annotation of ARGs, integrons and transposable elements at the same time. The pipeline generates genbank files automatically, which are compatible with Easyfig for comparative genomic analysis. Our BacAnt code and standalone software package are available at https://github.com/xthua/bacant with an accompanying web application at http://bacant.net.202134367079
907940.8587Review, Evaluation, and Directions for Gene-Targeted Assembly for Ecological Analyses of Metagenomes. Shotgun metagenomics has greatly advanced our understanding of microbial communities over the last decade. Metagenomic analyses often include assembly and genome binning, computationally daunting tasks especially for big data from complex environments such as soil and sediments. In many studies, however, only a subset of genes and pathways involved in specific functions are of interest; thus, it is not necessary to attempt global assembly. In addition, methods that target genes can be computationally more efficient and produce more accurate assembly by leveraging rich databases, especially for those genes that are of broad interest such as those involved in biogeochemical cycles, biodegradation, and antibiotic resistance or used as phylogenetic markers. Here, we review six gene-targeted assemblers with unique algorithms for extracting and/or assembling targeted genes: Xander, MegaGTA, SAT-Assembler, HMM-GRASPx, GenSeed-HMM, and MEGAN. We tested these tools using two datasets with known genomes, a synthetic community of artificial reads derived from the genomes of 17 bacteria, shotgun sequence data from a mock community with 48 bacteria and 16 archaea genomes, and a large soil shotgun metagenomic dataset. We compared assemblies of a universal single copy gene (rplB) and two N cycle genes (nifH and nirK). We measured their computational efficiency, sensitivity, specificity, and chimera rate and found Xander and MegaGTA, which both use a probabilistic graph structure to model the genes, have the best overall performance with all three datasets, although MEGAN, a reference matching assembler, had better sensitivity with synthetic and mock community members chosen from its reference collection. Also, Xander and MegaGTA are the only tools that include post-assembly scripts tuned for common molecular ecology and diversity analyses. Additionally, we provide a mathematical model for estimating the probability of assembling targeted genes in a metagenome for estimating required sequencing depth.201931749830
998550.8579Identification of the First Gene Transfer Agent (GTA) Small Terminase in Rhodobacter capsulatus and Its Role in GTA Production and Packaging of DNA. Genetic exchange mediated by viruses of bacteria (bacteriophages) is the primary driver of rapid bacterial evolution. The priority of viruses is usually to propagate themselves. Most bacteriophages use the small terminase protein to identify their own genome and direct its inclusion into phage capsids. Gene transfer agents (GTAs) are descended from bacteriophages, but they instead package fragments of the entire bacterial genome without preference for their own genes. GTAs do not selectively target specific DNA, and no GTA small terminases are known. Here, we identified the small terminase from the model Rhodobacter capsulatus GTA, which then allowed prediction of analogues in other species. We examined the role of the small terminase in GTA production and propose a structural basis for random DNA packaging.IMPORTANCE Random transfer of any and all genes between bacteria could be influential in the spread of virulence or antimicrobial resistance genes. Discovery of the true prevalence of GTAs in sequenced genomes is hampered by their apparent similarity to bacteriophages. Our data allowed the prediction of small terminases in diverse GTA producer species, and defining the characteristics of a "GTA-type" terminase could be an important step toward novel GTA identification. Importantly, the GTA small terminase shares many features with its phage counterpart. We propose that the GTA terminase complex could become a streamlined model system to answer fundamental questions about double-stranded DNA (dsDNA) packaging by viruses that have not been forthcoming to date.201931534034
907260.8579PanGeT: Pan-genomics tool. A decade after the concept of Pan-genome was first introduced; research in this field has spread its tentacles to areas such as pathogenesis of diseases, bacterial evolutionary studies and drug resistance. Gene content-based differentiation of virulent and a virulent strains of bacteria and identification of pathogen specific genes is imperative to understand their physiology and gain insights into the mechanism of genome evolution. Subsequently, this will aid in identifying diagnostic targets and in developing and selecting vaccines. The root of pan-genomic studies, however, is to identify the core genes, dispensable genes and strain specific genes across the genomes belonging to a clade. To this end, we have developed a tool, "PanGeT - Pan-genomics Tool" to compute the 'pan-genome' based on comparisons at the genome as well as the proteome levels. This automated tool is implemented using LaTeX libraries for effective visualization of overall pan-genome through graphical plots. Links to retrieve sequence information and functional annotations have also been provided. PanGeT can be downloaded from http://pranag.physics.iisc.ernet.in/PanGeT/ or https://github.com/PanGeTv1/PanGeT.201727851981
910870.8578Learning from losers. Bacteria can overcome environmental challenges by killing nearby bacteria and incorporating their DNA.201729148975
280.8576A Widespread Glycosidase Confers Lobophorin Resistance and Host-Dependent Structural Diversity. Identifying new environmental resistance determinants is significant to combat rising antibiotic resistance. Herein we report the unexpected correlation of a lobophorin (LOB) resistance-related glycosidase KijX with the host-dependent chemical diversity of LOBs, by a process of glycosylation, deglycosylation and reglycosylation. KijX homologues are widespread among bacteria, archaea and fungi, and encode the same glycohydrolytic activity on LOBs. The crystal structure of AcvX (a KijX homologue) shows a similar fold to that of the glycoside hydrolase family 113 and a special negatively charged groove to accommodate and deglycosylate LOBs. Antagonistic assays indicate kijX as a defense weapon of actinomycetes to combat LOB producers in environment, reflecting an elegant coevolution relationship. Our study provides insight into the KijX-related glycosidases as preexisting resistance determinants and represents an example of resistance genes accidentally integrated into natural product assembly.202337076762
907690.8574ResiDB: An automated database manager for sequence data. The amount of publicly available DNA sequence data is drastically increasing, making it a tedious task to create sequence databases necessary for the design of diagnostic assays. The selection of appropriate sequences is especially challenging in genes affected by frequent point mutations such as antibiotic resistance genes. To overcome this issue, we have designed the webtool resiDB, a rapid and user-friendly sequence database manager for bacteria, fungi, viruses, protozoa, invertebrates, plants, archaea, environmental and whole genome shotgun sequence data. It automatically identifies and curates sequence clusters to create custom sequence databases based on user-defined input sequences. A collection of helpful visualization tools gives the user the opportunity to easily access, evaluate, edit, and download the newly created database. Consequently, researchers do no longer have to manually manage sequence data retrieval, deal with hardware limitations, and run multiple independent software tools, each having its own requirements, input and output formats. Our tool was developed within the H2020 project FAPIC aiming to develop a single diagnostic assay targeting all sepsis-relevant pathogens and antibiotic resistance mechanisms. ResiDB is freely accessible to all users through https://residb.ait.ac.at/.202133495705
9083100.8573ARGNet: using deep neural networks for robust identification and classification of antibiotic resistance genes from sequences. BACKGROUND: Emergence of antibiotic resistance in bacteria is an important threat to global health. Antibiotic resistance genes (ARGs) are some of the key components to define bacterial resistance and their spread in different environments. Identification of ARGs, particularly from high-throughput sequencing data of the specimens, is the state-of-the-art method for comprehensively monitoring their spread and evolution. Current computational methods to identify ARGs mainly rely on alignment-based sequence similarities with known ARGs. Such approaches are limited by choice of reference databases and may potentially miss novel ARGs. The similarity thresholds are usually simple and could not accommodate variations across different gene families and regions. It is also difficult to scale up when sequence data are increasing. RESULTS: In this study, we developed ARGNet, a deep neural network that incorporates an unsupervised learning autoencoder model to identify ARGs and a multiclass classification convolutional neural network to classify ARGs that do not depend on sequence alignment. This approach enables a more efficient discovery of both known and novel ARGs. ARGNet accepts both amino acid and nucleotide sequences of variable lengths, from partial (30-50 aa; 100-150 nt) sequences to full-length protein or genes, allowing its application in both target sequencing and metagenomic sequencing. Our performance evaluation showed that ARGNet outperformed other deep learning models including DeepARG and HMD-ARG in most of the application scenarios especially quasi-negative test and the analysis of prediction consistency with phylogenetic tree. ARGNet has a reduced inference runtime by up to 57% relative to DeepARG. CONCLUSIONS: ARGNet is flexible, efficient, and accurate at predicting a broad range of ARGs from the sequencing data. ARGNet is freely available at https://github.com/id-bioinfo/ARGNet , with an online service provided at https://ARGNet.hku.hk . Video Abstract.202438725076
5120110.8573ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Antimicrobial resistance (AMR) is one of the major threats to human and animal health worldwide, yet few high-throughput tools exist to analyse and predict the resistance of a bacterial isolate from sequencing data. Here we present a new tool, ARIBA, that identifies AMR-associated genes and single nucleotide polymorphisms directly from short reads, and generates detailed and customizable output. The accuracy and advantages of ARIBA over other tools are demonstrated on three datasets from Gram-positive and Gram-negative bacteria, with ARIBA outperforming existing methods.201729177089
9082120.8565GeneMates: an R package for detecting horizontal gene co-transfer between bacteria using gene-gene associations controlled for population structure. BACKGROUND: Horizontal gene transfer contributes to bacterial evolution through mobilising genes across various taxonomical boundaries. It is frequently mediated by mobile genetic elements (MGEs), which may capture, maintain, and rearrange mobile genes and co-mobilise them between bacteria, causing horizontal gene co-transfer (HGcoT). This physical linkage between mobile genes poses a great threat to public health as it facilitates dissemination and co-selection of clinically important genes amongst bacteria. Although rapid accumulation of bacterial whole-genome sequencing data since the 2000s enables study of HGcoT at the population level, results based on genetic co-occurrence counts and simple association tests are usually confounded by bacterial population structure when sampled bacteria belong to the same species, leading to spurious conclusions. RESULTS: We have developed a network approach to explore WGS data for evidence of intraspecies HGcoT and have implemented it in R package GeneMates ( github.com/wanyuac/GeneMates ). The package takes as input an allelic presence-absence matrix of interested genes and a matrix of core-genome single-nucleotide polymorphisms, performs association tests with linear mixed models controlled for population structure, produces a network of significantly associated alleles, and identifies clusters within the network as plausible co-transferred alleles. GeneMates users may choose to score consistency of allelic physical distances measured in genome assemblies using a novel approach we have developed and overlay scores to the network for further evidence of HGcoT. Validation studies of GeneMates on known acquired antimicrobial resistance genes in Escherichia coli and Salmonella Typhimurium show advantages of our network approach over simple association analysis: (1) distinguishing between allelic co-occurrence driven by HGcoT and that driven by clonal reproduction, (2) evaluating effects of population structure on allelic co-occurrence, and (3) direct links between allele clusters in the network and MGEs when physical distances are incorporated. CONCLUSION: GeneMates offers an effective approach to detection of intraspecies HGcoT using WGS data.202032972363
9078130.8558MetaCherchant: analyzing genomic context of antibiotic resistance genes in gut microbiota. MOTIVATION: Antibiotic resistance is an important global public health problem. Human gut microbiota is an accumulator of resistance genes potentially providing them to pathogens. It is important to develop tools for identifying the mechanisms of how resistance is transmitted between gut microbial species and pathogens. RESULTS: We developed MetaCherchant-an algorithm for extracting the genomic environment of antibiotic resistance genes from metagenomic data in the form of a graph. The algorithm was validated on a number of simulated and published datasets, as well as applied to new 'shotgun' metagenomes of gut microbiota from patients with Helicobacter pylori who underwent antibiotic therapy. Genomic context was reconstructed for several major resistance genes. Taxonomic annotation of the context suggests that within a single metagenome, the resistance genes can be contained in genomes of multiple species. MetaCherchant allows reconstruction of mobile elements with resistance genes within the genomes of bacteria using metagenomic data. Application of MetaCherchant in differential mode produced specific graph structures suggesting the evidence of possible resistance gene transmission within a mobile element that occurred as a result of the antibiotic therapy. MetaCherchant is a promising tool giving researchers an opportunity to get an insight into dynamics of resistance transmission in vivo basing on metagenomic data. AVAILABILITY AND IMPLEMENTATION: Source code and binaries are freely available for download at https://github.com/ctlab/metacherchant. The code is written in Java and is platform-independent. COTANCT: ulyantsev@rain.ifmo.ru. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.201829092015
9075140.8557CamPype: an open-source workflow for automated bacterial whole-genome sequencing analysis focused on Campylobacter. BACKGROUND: The rapid expansion of Whole-Genome Sequencing has revolutionized the fields of clinical and food microbiology. However, its implementation as a routine laboratory technique remains challenging due to the growth of data at a faster rate than can be effectively analyzed and critical gaps in bioinformatics knowledge. RESULTS: To address both issues, CamPype was developed as a new bioinformatics workflow for the genomics analysis of sequencing data of bacteria, especially Campylobacter, which is the main cause of gastroenteritis worldwide making a negative impact on the economy of the public health systems. CamPype allows fully customization of stages to run and tools to use, including read quality control filtering, read contamination, reads extension and assembly, bacterial typing, genome annotation, searching for antibiotic resistance genes, virulence genes and plasmids, pangenome construction and identification of nucleotide variants. All results are processed and resumed in an interactive HTML report for best data visualization and interpretation. CONCLUSIONS: The minimal user intervention of CamPype makes of this workflow an attractive resource for microbiology laboratories with no expertise in bioinformatics as a first line method for bacterial typing and epidemiological analyses, that would help to reduce the costs of disease outbreaks, or for comparative genomic analyses. CamPype is publicly available at https://github.com/JoseBarbero/CamPype .202337474912
6653150.8557Making waves: How does the emergence of antimicrobial resistance affect policymaking? This article considers current trends in antimicrobial resistance (AMR) research and knowledge gaps relevant to policymaking in the water sector. Specifically, biological indicators of AMR (antibiotic-resistant bacteria and their resistance genes) and detection methods that have been used so far are identified and discussed, as well as the problems with and solutions to the collection of AMR data, sewage surveillance lessons from the COVID-19 pandemic, and the financial burden caused by AMR, which could be synergically used to improve advocacy on AMR issues in the water sector. Finally, this article proposes solutions to overcoming existing hurdles and shortening the time it will take to have an impact on policymaking and regulation in the sector.202134688095
9669160.8557Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains. Microbes hold the key to life. They hold the secrets to our past (as the descendants of the earliest forms of life) and the prospects for our future (as we mine their genes for solutions to some of the planet's most pressing problems, from global warming to antibiotic resistance). However, the piecemeal approach that has defined efforts to study microbial genetic diversity for over 20 years and in over 30,000 genome projects risks squandering that promise. These efforts have covered less than 20% of the diversity of the cultured archaeal and bacterial species, which represent just 15% of the overall known prokaryotic diversity. Here we call for the funding of a systematic effort to produce a comprehensive genomic catalog of all cultured Bacteria and Archaea by sequencing, where available, the type strain of each species with a validly published name (currently∼11,000). This effort will provide an unprecedented level of coverage of our planet's genetic diversity, allow for the large-scale discovery of novel genes and functions, and lead to an improved understanding of microbial evolution and function in the environment.201425093819
6654170.8555Natural recreational waters and the risk that exposure to antibiotic resistant bacteria poses to human health. Antimicrobial resistance (AMR) is widely recognised as a considerable threat to human health, wellbeing and prosperity. Many clinically important antibiotic resistance genes are understood to have originated in the natural environment. However, the complex interactions between humans, animals and the environment makes the health implications of environmental AMR difficult to quantify. This narrative review focuses on the current state of knowledge regarding antibiotic resistant bacteria (ARB) in natural bathing waters and implications for human health. It considers the latest research focusing on the transmission of ARB from bathing waters to humans. The limitations of existing evidence are discussed, as well as research priorities. The authors are of the opinion that future studies should include faecally contaminated bathing waters and people exposed to these environments to accurately parameterise environment-to-human transmission.202234739925
8185180.8555RNA-cleaving DNAzymes as a diagnostic and therapeutic agent against antimicrobial resistant bacteria. The development of nucleic-acid-based antimicrobials such as RNA-cleaving DNAzyme (RCD), a short catalytically active nucleic acid, is a promising alternative to the current antibiotics. The current rapid spread of antimicrobial resistance (AMR) in bacteria renders some antibiotics useless against bacterial infection, thus creating the need for alternative antimicrobials such as DNAzymes. This review summarizes recent advances in the use of RCD as a diagnostic and therapeutic agent against AMR. Firstly, the recent diagnostic application of RCD for the detection of bacterial cells and the associated resistant gene(s) is discussed. The next section summarises the therapeutic application of RCD in AMR bacterial infections which includes direct targeting of the resistant genes and indirect targeting of AMR-associated genes. Finally, this review extends the discussion to challenges of utilizing RCD in real-life applications, and the potential of combining both diagnostic and therapeutic applications of RCD into a single agent as a theranostic agent.202234505182
9067190.8554PIPdb: a comprehensive plasmid sequence resource for tracking the horizontal transfer of pathogenic factors and antimicrobial resistance genes. Plasmids, as independent genetic elements, carrying resistance or virulence genes and transfer them among different pathogens, posing a significant threat to human health. Under the 'One Health' approach, it is crucial to control the spread of plasmids carrying such genes. To achieve this, a comprehensive characterization of plasmids in pathogens is essential. Here we present the Plasmids in Pathogens Database (PIPdb), a pioneering resource that includes 792 964 plasmid segment clusters (PSCs) derived from 1 009 571 assembled genomes across 450 pathogenic species from 110 genera. To our knowledge, PIPdb is the first database specifically dedicated to plasmids in pathogenic bacteria, offering detailed multi-dimensional metadata such as collection date, geographical origin, ecosystem, host taxonomy, and habitat. PIPdb also provides extensive functional annotations, including plasmid type, insertion sequences, integron, oriT, relaxase, T4CP, virulence factors genes, heavy metal resistance genes and antibiotic resistance genes. The database features a user-friendly interface that facilitates studies on plasmids across diverse host taxa, habitats, and ecosystems, with a focus on those carrying antimicrobial resistance genes (ARGs). We have integrated online tools for plasmid identification and annotation from assembled genomes. Additionally, PIPdb includes a risk-scoring system for identifying potentially high-risk plasmids. The PIPdb web interface is accessible at https://nmdc.cn/pipdb.202539460620