FAILURES - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
981000.9932Drug-resistant bacteria in the critically ill: patterns and mechanisms of resistance and potential remedies. Antimicrobial resistance in the intensive care unit is an ongoing global healthcare concern associated with high mortality and morbidity rates and high healthcare costs. Select groups of bacterial pathogens express different mechanisms of antimicrobial resistance. Clinicians face challenges in managing patients with multidrug-resistant bacteria in the form of a limited pool of available antibiotics, slow and potentially inaccurate conventional diagnostic microbial modalities, mimicry of non-infective conditions with infective syndromes, and the confounding of the clinical picture of organ dysfunction associated with sepsis with postoperative surgical complications such as hemorrhage and fluid shifts. Potential remedies for antimicrobial resistance include specific surveillance, adequate and systematic antibiotic stewardship, use of pharmacokinetic and pharmacodynamic techniques of therapy, and antimicrobial monitoring and adequate employment of infection control policies. Novel techniques of combating antimicrobial resistance include the use of aerosolized antibiotics for lung infections, the restoration of gut microflora using fecal transplantation, and orally administered probiotics. Newer antibiotics are urgently needed as part of the armamentarium against multidrug-resistant bacteria. In this review we discuss mechanisms and patterns of microbial resistance in a select group of drug-resistant bacteria, and preventive and remedial measures for combating antibiotic resistance in the critically ill.202339816646
423210.9932Alternatives to antibiotics for treatment of mastitis in dairy cows. Mastitis is considered the costliest disease on dairy farms and also adversely affects animal welfare. As treatment (and to a lesser extent prevention) of mastitis rely heavily on antibiotics, there are increasing concerns in veterinary and human medicine regarding development of antimicrobial resistance. Furthermore, with genes conferring resistance being capable of transfer to heterologous strains, reducing resistance in strains of animal origin should have positive impacts on humans. This article briefly reviews potential roles of non-steroidal anti-inflammatory drugs (NSAIDs), herbal medicines, antimicrobial peptides (AMPs), bacteriophages and their lytic enzymes, vaccination and other emerging therapies for prevention and treatment of mastitis in dairy cows. Although many of these approaches currently lack proven therapeutic efficacy, at least some may gradually replace antibiotics, especially as drug-resistant bacteria are proliferating globally.202337404775
251020.9929Diagnosis of Multidrug-Resistant Pathogens of Pneumonia. Hospital-acquired pneumonia and ventilator-associated pneumonia that are caused by multidrug resistant (MDR) pathogens represent a common and severe problem with increased mortality. Accurate diagnosis is essential to initiate appropriate antimicrobial therapy promptly while simultaneously avoiding antibiotic overuse and subsequent antibiotic resistance. Here, we discuss the main conventional phenotypic diagnostic tests and the advanced molecular tests that are currently available to diagnose the primary MDR pathogens and the resistance genes causing pneumonia.202134943524
432830.9928Bugs for the next century: the issue of antibiotic resistance. OBJECTIVE: To address the issue of emerging antibiotic resistance and examine which organisms will continue to pose problems in the new century. METHODS: Review of articles pertaining to bacteria recognised for increasing resistance. RESULTS: Changing resistance patterns are correlated with patterns of antibiotic use. This results in fewer effective drugs against "old" established bacteria e.g. gram-positives such as Streptococcus pneumoniae and Staphylococcus aureus. Resistance in gram-negative bacteria is also steadily increasing. Nosocomial gram-negative bacteria are capable of many different resistance mechanisms, often rendering them multiply-resistant. Antibiotic resistance results in morbidity and mortality from treatment failures and increased health care costs. CONCLUSION: Despite extensive research and enormous resources spent, the pace of drug development has not kept up with the development of resistance. As resistance spreads, involving more and more organisms, there is concern that we may be nearing the end of the antimicrobial era. Measures that can and should be taken to counter this threat of antimicrobial resistance include co-ordinated surveillance, rational antibiotic usage, better compliance with infection control and greater use of vaccines.200111379419
660840.9928Trends in antimicrobial resistance in Malaysia. INTRODUCTION: Antibiotic resistance is a burgeoning problem worldwide. The trend of bacterial resistance has increased over the past decade in which more common bacteria are becoming resistant to almost all the antibiotics currently in use, posing a threat to humans and even livestock. METHODS: The databases used to search for the relevant articles for this review include PubMed, Science Direct, and Scopus. The following keywords were used in the search: Antimicrobial resistance, Malaysian action plan, antibioticresistant bacteria, and Malaysian National Surveillance on Antimicrobial Resistance (NSAR). The relevant articles published in English were considered. RESULTS: The antibiotic-resistant bacteria highlighted in this review showed an increase in resistance patterns to the majority of the antibiotics tested. The Malaysian government has come up with an action plan to create public awareness and to educate them regarding the health implications of antibiotic resistance. CONCLUSION: Antimicrobial resistance in Malaysia continues to escalate and is attributed to the overuse and misuse of antibiotics in various fields. As this crisis impacts the health of both humans and animals, therefore a joined continuous effort from all sectors is warranted to reduce the spread and minimize its development.202134508377
664850.9927Multi-Drug Resistant Coliform: Water Sanitary Standards and Health Hazards. Water constitutes and sustains life; however, its pollution afflicts its necessity, further worsening its scarcity. Coliform is one of the largest groups of bacteria evident in fecally polluted water, a major public health concern. Coliform thrive as commensals in the gut of warm-blooded animals, and are indefinitely passed through their feces into the environment. They are also called as model organisms as their presence is indicative of the prevalence of other potential pathogens, thus coliform are and unanimously employed as adept indicators of fecal pollution. As only a limited accessible source of fresh water is available on the planet, its contamination severely affects its usability. Coliform densities vary geographically and seasonally which leads to the lack of universally uniform regulatory guidelines regarding water potability often leads to ineffective detection of these model organisms and the misinterpretation of water quality status. Remedial measures such as disinfection, reducing the nutrient concentration or re-population doesn't hold context in huge lotic ecosystems such as freshwater rivers. There is also an escalating concern regarding the prevalence of multi-drug resistance in coliforms which renders antibiotic therapy incompetent. Antimicrobials are increasingly used in household, clinical, veterinary, animal husbandry and agricultural settings. Sub-optimal concentrations of these antimicrobials are unintentionally but regularly dispensed into the environment through seepages, sewages or runoffs from clinical or agricultural settings substantially adding to the ever-increasing pool of antibiotic resistance genes. When present below their minimum inhibitory concentration (MIC), these antimicrobials trigger the transfer of antibiotic-resistant genes that the coliform readily assimilate and further propagate to pathogens, the severity of which is evidenced by the high Multiple Antibiotic Resistance (MAR) index shown by the bacterial isolates procured from the environmental. This review attempts to assiduously anthologize the use of coliforms as water quality standards, their existent methods of detection and the issue of arising multi-drug resistance in them.201829946253
665060.9927 Antibiotic resistance is never going to go away. No matter how many drugs we throw at it, no matter how much money and resources are sacrificed to wage a war on resistance, it will always prevail. Humans are forced to coexist with the fact of antibiotic resistance. Public health officials, clinicians, and scientists must find effective ways to cope with antibiotic resistant bacteria harmful to humans and animals and to control the development of new types of resistance. The American Academy of Microbiology convened a colloquium October 12–14, 2008, to discuss antibiotic resistance and the factors that influence the development and spread of resistance. Participants, whose areas of expertise included medicine, microbiology, and public health, made specific recommendations for needed research, policy development, a surveillance network, and treatment guidelines. Antibiotic resistance issues specific to the developing world were discussed and recommendations for improvements were made. Each antibiotic is injurious only to a certain segment of the microbial world, so for a given antibacterial there are some species of bacteria that are susceptible and others not. Bacterial species insusceptible to a particular drug are “naturally resistant.” Species that were once sensitive but eventually became resistant to it are said to have “acquired resistance.” It is important to note that “acquired resistance” affects a subset of strains in the entire species; that is why the prevalence of “acquired resistance” in a species is different according to location. Antibiotic resistance, the acquired ability of a pathogen to withstand an antibiotic that kills off its sensitive counterparts, originally arises from random mutations in existing genes or from intact genes that already serve a similar purpose. Exposure to antibiotics and other antimicrobial products, whether in the human body, in animals, or the environment, applies selective pressure that encourages resistance to emerge favoring both “naturally resistant” strains and strains which have “acquired resistance.” Horizontal gene transfer, in which genetic information is passed between microbes, allows resistance determinants to spread within harmless environmental or commensal microorganisms and pathogens, thus creating a reservoir of resistance. Resistance is also spread by the replication of microbes that carry resistance genes, a process that produces genetically identical (or clonal) progeny. Rapid diagnostic methods and surveillance are some of the most valuable tools in preventing the spread of resistance. Access to more rapid diagnostic tests that could determine the causative agent and antibiotic susceptibility of infections would inform better decision making with respect to antibiotic use, help slow the selection of resistant strains in clinical settings, and enable better disease surveillance. A rigorous surveillance network to track the evolution and spread of resistance is also needed and would probably result in significant savings in healthcare. Developing countries face unique challenges when it comes to antibiotic resistance; chief among them may be the wide availability of antibiotics without a prescription and also counterfeit products of dubious quality. Lack of adequate hygiene, poor water quality, and failure to manage human waste also top the list. Recommendations for addressing the problems of widespread resistance in the developing world include: proposals for training and infrastructure capacity building; surveillance programs; greater access to susceptibility testing; government controls on import, manufacture and use; development and use of vaccines; and incentives for pharmaceutical companies to supply drugs to these countries. Controlling antibiotic resistant bacteria and subsequent infections more efficiently necessitates the prudent and responsible use of antibiotics. It is mandatory to prevent the needless use of antibiotics (e.g., viral infections; unnecessary prolonged treatment) and to improve the rapid prescription of appropriate antibiotics to a patient. Delayed or inadequate prescriptions reduce the efficacy of treatment and favor the spread of the infection. Prudent use also applies to veterinary medicine. For example, antibiotics used as “growth promoters” have been banned in Europe and are subject to review in some other countries. There are proven techniques for limiting the spread of resistance, including hand hygiene, but more rapid screening techniques are needed in order to effectively track and prevent spread in clinical settings. The spread of antibiotic resistance on farms and in veterinary hospitals may also be significant and should not be neglected. Research is needed to pursue alternative approaches, including vaccines, antisense therapy, public health initiatives, and others. The important messages about antibiotic resistance are not getting across from scientists and infectious diseases specialists to prescribers, stakeholders, including the public, healthcare providers, and public officials. Innovative and effective communication initiatives are needed, as are carefully tailored messages for each of the stakeholder groups.200932644325
489470.9926Do we need new antibiotics? For several years, alarmist articles both in mass media and in the scientific community have reported an increase in antibiotic resistance, even citing an inability to treat patients infected with multidrug-resistant bacteria (MDR) responsible for high mortality worldwide. In this review we summarize and discuss the key points associated with the reality of (i) the existence of pandrug-resistant bacteria, (ii) the increase of resistance worldwide, (iii) the link between resistance and death, and (iv) the need to develop new antibiotics. Data on antibiotic resistance in Europe for the main bacteria associated with invasive infections apparently demonstrate that apart from Klebsiella pneumoniae, which is resistant to carbapenems in three countries (Romania, Italy and Greece), the level of resistance to three or more classes of antibiotics (defined as MDR phenotype) has remained low and stable over the last 5 years and that therapeutic options exist both for reference antibiotics and for old antibiotics. The clinical outcome of patients infected by MDR bacteria remains controversial and death rates attributable to MDR bacteria versus non-MDR bacteria are still debated. The arsenal of antibiotics currently available (including 'old antibiotics') suffices for facing the waves of emergence of new bacterial resistance and should be considered as a World Heritage. This heritage should be managed in a non-profit model with international regulatory approval.201627021418
420580.9926Public health risk of antimicrobial resistance transfer from companion animals. Antimicrobials are important tools for the therapy of infectious bacterial diseases in companion animals. Loss of efficacy of antimicrobial substances can seriously compromise animal health and welfare. A need for the development of new antimicrobials for the therapy of multiresistant infections, particularly those caused by Gram-negative bacteria, has been acknowledged in human medicine and a future corresponding need in veterinary medicine is expected. A unique aspect related to antimicrobial resistance and risk of resistance transfer in companion animals is their close contact with humans. This creates opportunities for interspecies transmission of resistant bacteria. Yet, the current knowledge of this field is limited and no risk assessment is performed when approving new veterinary antimicrobials. The objective of this review is to summarize the current knowledge on the use and indications for antimicrobials in companion animals, drug-resistant bacteria of concern among companion animals, risk factors for colonization of companion animals with resistant bacteria and transmission of antimicrobial resistance (bacteria and/or resistance determinants) between animals and humans. The major antimicrobial resistance microbiological hazards originating from companion animals that directly or indirectly may cause adverse health effects in humans are MRSA, methicillin-resistant Staphylococcus pseudintermedius, VRE, ESBL- or carbapenemase-producing Enterobacteriaceae and Gram-negative bacteria. In the face of the previously recognized microbiological hazards, a risk assessment tool could be applied in applications for marketing authorization for medicinal products for companion animals. This would allow the approval of new veterinary medicinal antimicrobials for which risk levels are estimated as acceptable for public health.201727999066
488990.9926The Challenge of Overcoming Antibiotic Resistance in Carbapenem-Resistant Gram-Negative Bacteria: "Attack on Titan". The global burden of bacterial resistance remains one of the most serious public health concerns. Infections caused by multidrug-resistant (MDR) bacteria in critically ill patients require immediate empirical treatment, which may not only be ineffective due to the resistance of MDR bacteria to multiple classes of antibiotics, but may also contribute to the selection and spread of antimicrobial resistance. Both the WHO and the ECDC consider carbapenem-resistant Enterobacteriaceae (CRE), carbapenem-resistant Pseudomonas aeruginosa (CRPA), and carbapenem-resistant Acinetobacter baumannii (CRAB) to be the highest priority. The ability to form biofilm and the acquisition of multiple drug resistance genes, in particular to carbapenems, have made these pathogens particularly difficult to treat. They are a growing cause of healthcare-associated infections and a significant threat to public health, associated with a high mortality rate. Moreover, co-colonization with these pathogens in critically ill patients was found to be a significant predictor for in-hospital mortality. Importantly, they have the potential to spread resistance using mobile genetic elements. Given the current situation, it is clear that finding new ways to combat antimicrobial resistance can no longer be delayed. The aim of this review was to evaluate the literature on how these pathogens contribute to the global burden of AMR. The review also highlights the importance of the rational use of antibiotics and the need to implement antimicrobial stewardship principles to prevent the transmission of drug-resistant organisms in healthcare settings. Finally, the review discusses the advantages and limitations of alternative therapies for the treatment of infections caused by these "titans" of antibiotic resistance.202337630472
4334100.9926Association between the consumption of antimicrobial agents in animal husbandry and the occurrence of resistant bacteria among food animals. Antimicrobial agents are used in food animals for therapy and prophylaxis of bacterial infections and in feed to promote growth. The use of antimicrobial agents for food animals may cause problems in the therapy of infections by selecting for resistance among bacteria pathogenic for animals or humans. The emergence of resistant bacteria and resistance genes following the use of antimicrobial agents is relatively well documented and it seems evident that all antimicrobial agents will select for resistance. However, current knowledge regarding the occurrence of antimicrobial resistance in food animals, the quantitative impact of the use of different antimicrobial agents on selection for resistance and the most appropriate treatment regimens to limit the development of resistance is incomplete. Surveillance programmes monitoring the occurrence and development of resistance and consumption of antimicrobial agents are urgently needed, as is research into the most appropriate ways to use antimicrobial agents in veterinary medicine to limit the emergence and spread of antimicrobial resistance.199910493603
4888110.9926A Review of Carbapenem Resistance in Enterobacterales and Its Detection Techniques. Infectious disease outbreaks have caused thousands of deaths and hospitalizations, along with severe negative global economic impacts. Among these, infections caused by antimicrobial-resistant microorganisms are a major growing concern. The misuse and overuse of antimicrobials have resulted in the emergence of antimicrobial resistance (AMR) worldwide. Carbapenem-resistant Enterobacterales (CRE) are among the bacteria that need urgent attention globally. The emergence and spread of carbapenem-resistant bacteria are mainly due to the rapid dissemination of genes that encode carbapenemases through horizontal gene transfer (HGT). The rapid dissemination enables the development of host colonization and infection cases in humans who do not use the antibiotic (carbapenem) or those who are hospitalized but interacting with environments and hosts colonized with carbapenemase-producing (CP) bacteria. There are continuing efforts to characterize and differentiate carbapenem-resistant bacteria from susceptible bacteria to allow for the appropriate diagnosis, treatment, prevention, and control of infections. This review presents an overview of the factors that cause the emergence of AMR, particularly CRE, where they have been reported, and then, it outlines carbapenemases and how they are disseminated through humans, the environment, and food systems. Then, current and emerging techniques for the detection and surveillance of AMR, primarily CRE, and gaps in detection technologies are presented. This review can assist in developing prevention and control measures to minimize the spread of carbapenem resistance in the human ecosystem, including hospitals, food supply chains, and water treatment facilities. Furthermore, the development of rapid and affordable detection techniques is helpful in controlling the negative impact of infections caused by AMR/CRE. Since delays in diagnostics and appropriate antibiotic treatment for such infections lead to increased mortality rates and hospital costs, it is, therefore, imperative that rapid tests be a priority.202337374993
8160120.9926Quorum Sensing in Gram-Negative Bacteria: Strategies to Overcome Antibiotic Resistance in Ocular Infections. Truly miraculous medications and antibiotics have helped save untold millions of lives. Antibiotic resistance, however, is a significant issue related to health that jeopardizes the effectiveness of antibiotics and could harm everyone's health. Bacteria, not humans or animals, become antibiotic-resistant. Bacteria use quorum-sensing communication routes to manage an assortment of physiological exercises. Quorum sensing is significant for appropriate biofilm development. Antibiotic resistance occurs when bacteria establish a biofilm on a surface, shielding them from the effects of infection-fighting drugs. Acylated homoserine lactones are used as autoinducers by gram-negative microscopic organisms to impart. However, antibiotic resistance among ocular pathogens is increasing worldwide. Bacteria are a significant contributor to ocular infections around the world. Gram-negative microscopic organisms are dangerous to ophthalmic tissues. This review highlights the use of elective drug targets and treatments, for example, combinational treatment, to vanquish antibiotic-resistant bacteria. Also, it briefly portrays anti-biotic resistance brought about by gram-negative bacteria and approaches to overcome resistance with the help of quorum sensing inhibitors and nanotechnology as a promising medication conveyance approach to give insurance of anti-microbials and improve pathways for the administration of inhibitors of quorum sensing with a blend of anti-microbials to explicit target destinations and penetration through biofilms for treatment of ocular infections. It centres on the methodologies to sidestep the confinements of ocular anti-biotic delivery with new visual innovation.202437497706
3762130.9926The epidemiology of antimicrobial resistance and transmission of cutaneous bacterial pathogens in domestic animals. As the primary agents of skin and soft tissue infections in animals, Staphylococcus spp and Pseudomonas aeruginosa are among the most formidable bacterial pathogens encountered by veterinarians. Staphylococci are commensal inhabitants of the surfaces of healthy skin and mucous membranes, which may gain access to deeper cutaneous tissues by circumventing the stratum corneum's barrier function. Compromised barrier function occurs in highly prevalent conditions such as atopic dermatitis, endocrinopathies, and skin trauma. P aeruginosa is an environmental saprophyte that constitutively expresses virulence and antimicrobial resistance genes that promote its success as an animal pathogen. For both organisms, infections of the urinary tract, respiratory tract, joints, central nervous system, and body cavities may occur through ascension along epithelial tracts, penetrating injuries, or hematogenous spread. When treating infections caused by these pathogens, veterinarians now face greater therapeutic challenges and more guarded outcomes for our animal patients because of high rates of predisposing factors for infection and the broad dissemination of antimicrobial resistance genes within these bacterial species. This review considers the history of the rise and expansion of multidrug resistance in staphylococci and P aeruginosa and the current state of knowledge regarding the epidemiologic factors that underly the dissemination of these pathogens across companion animal populations. Given the potential for cross-species and zoonotic transmission of pathogenic strains of these bacteria, and the clear role played by environmental reservoirs and fomites, a one-health perspective is emphasized.202336917615
4852140.9926Recent trends in antibiotic resistance in European ICUs. PURPOSE OF REVIEW: Antimicrobial resistance is an emerging problem in ICUs worldwide. As numbers of published results from national/international surveillance studies rise rapidly, the amount of new information may be overwhelming. Therefore, we reviewed recent trends in antibiotic resistance in ICUs across Europe in the past 18 months. RECENT FINDINGS: In this period, infections caused by methicillin-resistant Staphylococcus aureus appeared to stabilize (and even decrease) in some countries, and infection rates due to Gram-positive bacteria resistant to vancomycin, linezolid or daptomycin have remained low. In contrast, we are witnessing a continent-wide emergence of infections caused by multiresistant Gram-negative bacteria, especially Escherichia coli and Klebsiella pneumoniae, with easily exchangeable resistance genes located on plasmids, producing enzymes such as extended spectrum β-lactamases and carbapenamases. In the absence of new antibiotics, prevention of infections, reducing unnecessary antibiotic use, optimizing adherence to universal hygienic and infection control measures, and improving implementation of diagnostic tests are our only tools to combat this threat. SUMMARY: As the epidemiology of antibiotic resistance in ICUs is rapidly changing toward more frequently occurring epidemics and endemicity of multi and panresistant Gram-negative pathogens, better infection control and improved diagnostics will become even more important than before.201121986462
3945150.9926Vancomycin-resistant enterococci: why are they here, and where do they come from? Vancomcyin-resistant enterococci (VRE) have emerged as nosocomial pathogens in the past 10 years, causing epidemiological controversy. In the USA, colonisation with VRE is endemic in many hospitals and increasingly causes infection, but colonisation is absent in healthy people. In Europe, outbreaks still happen sporadically, usually with few serious infections, but colonisation seems to be endemic in healthy people and farm animals. Vancomycin use has been much higher in the USA, where emergence of ampicillin-resistant enterococci preceded emergence of VRE, making them very susceptible to the selective effects of antibiotics. In Europe, avoparcin, a vancomycin-like glycopeptide, has been widely used in the agricultural industry, explaining the community reservoir in European animals. Avoparcin has not been used in the USA, which is consistent with the absence of colonisation in healthy people. From the European animal reservoir, VRE and resistance genes have spread to healthy human beings and hospitalised patients. However, certain genogroups of enterococci in both continents seem to be more capable of causing hospital outbreaks, perhaps because of the presence of a specific virulence factor, the variant esp gene. By contrast with the evidence of a direct link between European animal and human reservoirs, the origin of American resistance genes remains to be established. Considering the spread of antibiotic-resistant bacteria and resistance genes, the emergence of VRE has emphasised the non-existence of boundaries between hospitals, between people and animals, between countries, and probably between continents.200111871804
9799160.9926Microbiology and drug resistance mechanisms of fully resistant pathogens. The acquisition of vancomycin resistance by Gram-positive bacteria and carbapenem resistance by Gram-negative bacteria has rendered some hospital-acquired pathogens impossible to treat. The resistance mechanisms employed are sophisticated and very difficult to overcome. Unless alternative treatment regimes are initiated soon, our inability to treat totally resistant bacteria will halt other developments in medicine. In the community, Gram-positive bacteria responsible for pneumonia could become totally resistant leading to increased mortality from this common infection, which would have a more immediate impact on our current lifestyles.200415451497
4858170.9925Successful interventions for gram-negative resistance to extended-spectrum beta-lactam antiobiotics. Antibiotic resistance among nosocomial pathogens in this country's hospitals adds significantly to patient morbidity and mortality, and the cost of health care. Optimism for identifying antimicrobial agents that would "solve the problem" of resistance has been replaced by a much more guarded and realistic view of the battle between humans and pathogenic microorganisms. Efforts now are more appropriately directed toward limiting, rather than completely eliminating, resistance, generally by either infection control or antibiotic control measures, and sometime combinations of the two. Methicillin-oxacillin resistance in Staphylococcus aureus (MRSA) results from the expression of an acquired penicillin-binding protein (PBP 2a) that is not transferable in vitro. In most hospitals, even those with high percentages of MRSA, relatively few resistant clones are identified, suggesting transmission of individual strains throughout the hospital population. Because person-to-person spread is so important in transmission of MRSA, strategies aimed at preventing transmission of the resistant strains are remarkably effective when strictly enforced. Ceftazidime resistance in Enterobacteriaceae results from point mutations within genes that encode widely prevalent and often transferable plasmid-mediated enzymes. In addition, mutations of these genes that allow hydrolysis of cephalosporins usually result in decreased activity against other drugs, including the penicillins and beta-lactamase inhibitors. Effective measures to control ceftazidime-resistant Enterobacteriaceae have as their cornerstone limiting administration of antibiotics that select for the emergence and spread of these mutations, especially ceftazidime. The importance of infection-control techniques in limiting the prevalence of ceftazidime-resistant Enterobacteriaceae is less well established. Methods that are informed by a detailed understanding of the molecular mechanisms of resistance and resistance spread offer the best hope for limiting dissemination of antibiotic-resistant bacteria in a cost-effective manner.199910456609
4185180.9925Containment of antimicrobial resistance due to use of antimicrobial agents in animals intended for food: WHO perspective. The use of antimicrobial agents in humans and food-producing animals has important consequences for human and animal health, as it can lead to the development of resistant bacteria (pathogens and/or commensals with resistance genes). Moreover, resistant bacteria in animals can be transferred to people--usually through the consumption of food, but also through direct contact with food-producing animals or through environmental spread. Ultimately, this can result in human infections with bacteria that are resistant to antimicrobial agents and that can therefore be difficult or impossible to cure. Of special concern is resistance to antimicrobial agents classified by the World Health Organization (WHO) as critically important for human medicine, such as fluoroquinolones, third- and fourth-generation cephalosporins, and macrolides. WHO encourages the agricultural, food, veterinary and health sectors to work together to eliminate the burden of antimicrobial resistance arising from the use of antimicrobial agents in food-producing animals. Joint efforts should be made to reduce the inappropriate use of antimicrobial agents (e.g. the use of antimicrobials as growth promoters) and limit the spread of bacteria resistant to antimicrobial agents. WHO will continueto address this issue in conjunction with the Food and Agriculture Organization of the United Nations, the World Organisation for Animal Health, the animal health/production industry and other important stakeholders. It will also continue to enhance the capacity of its Member States (through training courses and sentinel studies), particularly developing countries, to conduct integrated surveillance of antimicrobial use and resistance, to carry out risk assessments to support the selection of risk management options and to implement strategies for the containment of antimicrobial resistance.201222849282
4885190.9925A Review of the Diagnostic Approaches for the Detection of Antimicrobial Resistance, Including the Role of Biosensors in Detecting Carbapenem Resistance Genes. Antimicrobial resistance (AMR) is a rapidly growing global concern resulting from the overuse of antibiotics in both agricultural and clinical settings, the lack of surveillance for resistant bacteria, and the low quality of some available antimicrobial agents. Resistant pathogens are no longer susceptible to common clinical antimicrobials, which decreases the effectiveness of medicines used to treat infections caused by these organisms. Carbapenems are an important class of antibiotics due to their broad-spectrum effectiveness in treating infections caused by Gram-positive and Gram-negative organisms. Carbapenem-resistant bacteria have been found not only in healthcare but also in the environment and food supply chain, where they have the potential to spread to pathogens and infect humans and animals. Current methods of detecting AMR genes are expensive and time-consuming. While these methods, like polymerase chain reactions or whole-genome sequencing, are considered the "gold standard" for diagnostics, the development of inexpensive, rapid diagnostic assays is necessary for effective AMR detection and management. Biosensors have shown potential for success in diagnostic testing due to their ease of use, inexpensive materials, rapid results, and portable nature. Biosensors can be combined with nanomaterials to produce sensitive and easily interpretable results. This review presents an overview of carbapenem resistance, current and emerging detection methods of antimicrobial resistance, and the application of biosensors for rapid diagnostic testing for bacterial resistance.202540725449