FACTORS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
680300.9980As a reservoir of antibiotic resistance genes and pathogens, the hydrodynamic characteristics drive their distribution patterns in Lake Victoria. Antibiotic resistance genes (ARGs) and pathogenic bacteria pose significant challenges to human health, and hydrodynamic processes complicate their transmission mechanisms in lake ecosystems, particularly in tropical regions. Lake Victoria supports abundant water resources and provides livelihoods for millions of people, yet the environmental behavior of ARGs and pathogenic bacteria remains unclear. Herein, the novel insights into the co-occurrence patterns and transmission mechanisms of ARGs and pathogenic bacteria in Lake Victoria was investigated via molecular techniques and a hydrodynamic model. The results showed that as a large reservoir of ARGs and pathogenic bacteria, a total of 172 ARG subtypes and 93 pathogenic bacteria were identified in Lake Victoria. ARGs were spread through mobile genetic elements (tnpA4 and int2), enhancing the antibiotic resistance and virulence factors (secretion systems, regulatory factors, and toxins) of various pathogenic bacteria. The hydrodynamic model indicated that surface wind-driven currents and bottom compensatory flows shaped the outward dispersion of ARGs and pathogenic bacteria from the gulf. The NCM model suggested that water exchange accelerated the diffusion of antibiotics and pathogens, likely enhancing the deterministic assembly process of ARGs and the stochastic assembly process of pathogens. The PLS-PM model revealed that hydrodynamics directly influenced the accumulation of ARGs and pathogenic bacteria, and subsequently affected the diffusion and distribution patterns of ARGs and pathogens by facilitating the propagation of MGEs. Our study overcomes the limitations associated with lake and microenvironmental scale, providing insights and understanding into the transmission mechanisms of ARGs and pathogenic bacteria.202539988254
697910.9980Urbanization increases high-risk antibiotic resistance genes and pathogenic bacteria in soil and phyllosphere microbiomes. Rapid urban expansion has transformed agricultural and natural land into industrial, commercial, and residential areas, leading to substantial changes in land use and vegetation types, which exert a profound impact on microbial diversity. However, the responses of soil-plant multitrophic microbial communities to urbanization and its upshots on the profiles of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) remain poorly explored. This study explored the urban soil and grass phyllosphere microbiomes across five levels of urban gradient, defined by building densities. Our findings reveal the lowest α-diversity of bacteria, fungi, and protists in highly urbanized areas linked with a notable increase in ARGs, and VFGs. The highly populated areas mostly associated with the decrease of habitat green patch sizes that are exposed to the various anthropogenic stocks, and high-risk ARGs pose the utmost vulnerability risks for human well-being. The high-risk genes encoding resistance to multidrug (mdtG, emrD, and mepA), and glycopeptide (vanA) and their associated human potential pathogens were remarkably abundant in soil and grass phyllosphere. Our findings underscore the complex relationships between urbanization, microbial diversity, and resistome, ultimately, it is crucial to monitor the main source of clinical ARGs/VFGs for proper, effective sustainable urban management and public health interventions.202540555022
642520.9978Freshwater plastisphere: a review on biodiversity, risks, and biodegradation potential with implications for the aquatic ecosystem health. The plastisphere, a unique microbial biofilm community colonizing plastic debris and microplastics (MPs) in aquatic environments, has attracted increasing attention owing to its ecological and public health implications. This review consolidates current state of knowledge on freshwater plastisphere, focussing on its biodiversity, community assembly, and interactions with environmental factors. Current biomolecular approaches revealed a variety of prokaryotic and eukaryotic taxa associated with plastic surfaces. Despite their ecological importance, the presence of potentially pathogenic bacteria and mobile genetic elements (i.e., antibiotic resistance genes) raises concerns for ecosystem and human health. However, the extent of these risks and their implications remain unclear. Advanced sequencing technologies are promising for elucidating the functions of plastisphere, particularly in plastic biodegradation processes. Overall, this review emphasizes the need for comprehensive studies to understand plastisphere dynamics in freshwater and to support effective management strategies to mitigate the impact of plastic pollution on freshwater resources.202438699475
737530.9978Assessing microbial ecology and antibiotic resistance genes in river sediments. Anthropogenic activities greatly affect the Karon River leading to deterioration of water quality. This investigation utilizes environmental genomic techniques to delineate microbial populations, examine functional genomics, and evaluate the occurrence of virulence determinants and antibiotic resistance genes (ARGs) in fluvial sediment. Taxonomic assessment identified that Firmicutes were the predominant phyla, with Bacillus being the most abundant genus across samples. Functional analysis revealed the metabolic capabilities of sediment-associated bacteria, linking them to biogeochemical processes and potential health impacts. The S2 samples exhibited the highest virulence factor genes, while the S3 samples had the most ARGs (30), highlighting concerns about pathogenicity. Analyzing ARGs provides critical insights into environmental data collected, such as water quality parameters (e.g., nutrient concentrations, pH) or pollution levels, prevalence, and distribution of these resistance factors within the sediment samples, helping to identify potential hotspots of antibiotic resistance in the Karon River ecosystem. The study identified similar operational taxonomic units (OTUs) across sampling sites at the phylogenetic level, indicating a consistent presence of certain microbial taxa. However, the lack of variation in functional classification suggests that while these taxa may be present, they are not exhibiting significant differences in metabolic capabilities or functional roles. These findings emphasize the significance of metagenomic methods in understanding microbial ecology and antibiotic resistance in aquatic environments, suggesting a need for further research into the restoration of microbial functions related to ARGs and virulence factors.202540127879
642440.9978Bacterium-Phage Symbiosis Facilitates the Enrichment of Bacterial Pathogens and Antibiotic-Resistant Bacteria in the Plastisphere. The plastisphere, defined as the ecological niche for microbial colonization of plastic debris, has been recognized as a hotspot of pathogenic and antibiotic-resistant bacteria. However, the interactions between bacteria and phages facilitated by the plastisphere, as well as their impact on microbial risks to public health, remain unclear. Here, we analyzed public metagenomic data from 180 plastisphere and environmental samples, stemming from four different habitats and two plastic types (biodegradable and nonbiodegradable plastics) and obtained 611 nonredundant metagenome-assembled genomes (MAGs) and 4061 nonredundant phage contigs. The plastisphere phage community exhibited decreased diversity and virulent proportion compared to those found in environments. Indexes of phage-host interaction networks indicated significant associations of phages with pathogenic and antibiotic-resistant bacteria (ARB), particularly for biodegradable plastics. Known phage-encoded auxiliary metabolic genes (AMGs) were involved in nutrient metabolism, antibiotic production, quorum sensing, and biofilm formation in the plastisphere, which contributed to enhanced competition and survival of pathogens and ARB hosts. Phages also carried transcriptionally active virulence factor genes (VFGs) and antibiotic resistance genes (ARGs), and could mediate their horizontal transfer in microbial communities. Overall, these discoveries suggest that plastisphere phages form symbiotic relationships with their hosts, and that phages encoding AMGs and mediating horizontal gene transfer (HGT) could increase the source of pathogens and antibiotic resistance from the plastisphere.202539836086
645250.9978Megacities as sources for pathogenic bacteria in rivers and their fate downstream. Poor sanitation, poor treatments of waste water, as well as catastrophic floods introduce pathogenic bacteria into rivers, infecting and killing many people. The goal of clean water for everyone has to be achieved with a still growing human population and their rapid concentration in large cities, often megacities. How long introduced pathogens survive in rivers and what their niches are remain poorly known but essential to control water-borne diseases in megacities. Biofilms are often niches for various pathogens because they possess high resistances against environmental stress. They also facilitate gene transfers of antibiotic resistance genes which become an increasing health problem. Beside biofilms, amoebae are carriers of pathogenic bacteria and niches for their survival. An overview about our current understanding of the fate and niches of pathogens in rivers, the multitude of microbial community interactions, and the impact of severe flooding, a prerequisite to control pathogens in polluted rivers, is given.201120885968
767760.9978Genomic evidence for flies as carriers of zoonotic pathogens on dairy farms. Dairy farms are major reservoirs of zoonotic bacterial pathogens, which harbor antimicrobial resistance genes (ARGs), and raise critical questions about their dissemination on and off the farm environment. Here, we investigated the role of coprophagous muscid flies (Diptera: Muscidae) as carriers of zoonotic pathogens and antimicrobial resistance. We collected cow manure and flies on a dairy farm and used shotgun metagenomics to identify the presence of clinically relevant bacteria, virulence factors, and ARGs in both environments. Our results reveal that, although the fly microbiome is largely composed of manure-associated taxa, they also harbor specific insect-associated bacteria, which may be involved in nutrient provisioning to the host. Furthermore, we identifed shared ARGs, virulence factors, and zoonotic pathogens enriched within the fly gastrointestinal tract (GIT). Our study illustrates the potential flow of pathogenic microorganisms from manure to coprophagous flies, suggesting that flies may pose an important zoonotic threat on dairy farms.202540537478
653070.9978Microplastic-associated pathogens and antimicrobial resistance in environment. The ubiquitous use of microplastics and their release into the environment especially the water bodies by anthropogenic/industrial activities are the major resources for microplastic contamination. The widespread and often injudicious use of antimicrobial drugs or antibiotics in various sectors including human health and hygiene, agriculture, animal husbandry and food industries are leading to the release of antibiotics into the wastewater/sewage and other water bodies, particularly in urban setups and thus leads to the antimicrobial resistance (AMR) in the microbes. Microplastics are emerging as the hubs as well as effective carriers of these microbial pathogens beside their AMR-genes (ARGs) in marine, freshwater, sewage/wastewater, and urban river ecosystems. These drug resistant bacteria interact with microplastics forming synthetic plastispheres, the ideal niche for biofilm formations which in turn facilitates the transfer of ARGs via horizontal gene transfer and further escalates the occurrence and levels of AMR. Microplastic-associated AMR is an emerging threat for human health and healthcare besides being a challenge for the research community for effective management/address of this menace. In this review, we encompass the increasing prevalence of microplastics in environment, emphasizing mainly on water environments, how they act as centers and vectors of microbial pathogens with their associated bacterial assemblage compositions and ultimately lead to AMR. It further discusses the mechanistic insights on how microplastics act as hosts of biofilms (creating the plastisphere). We have also presented the modern toolbox used for microplastic-biofilm analyses. A review on potential strategies for addressing microplastic-associated AMR is given with recent success stories, challenges and future prospects.202234813845
643980.9978A review: Marine aquaculture impacts marine microbial communities. Marine aquaculture is key for protein production but disrupts marine ecosystems by releasing excess feed and pharmaceuticals, thus affecting marine microbes. Though vital, its environmental impact often remains overlooked. This article delves into mariculture's effects on marine microbes, including bacteria, fungi, viruses, and antibiotic-resistance genes in seawater and sediments. It highlights how different mariculture practices-open, pond, and cage culture-affect these microbial communities. Mariculture's release of nutrients, antibiotics, and heavy metals alters the microbial composition, diversity, and functions. Integrated multi-trophic aquaculture, a promising sustainable approach, is still developing and needs refinement. A deep understanding of mariculture's impact on microbial ecosystems is crucial to minimize pollution and foster sustainable practices, paving the way for the industry's sustainable advancement.202438919720
697690.9977Unveiling the critical role of overlooked consumer protist-bacteria interactions in antibiotic resistance gene dissemination in urban sewage systems. Antibiotic resistance genes (ARGs) are emerging contaminants of significant concern due to their role in facilitating the spread of antibiotic resistance, especially high-risk ARGs, which are characterized by high human accessibility, gene mobility, pathogenicity, and clinical availability. Studies have shown that cross-domain interactions, such as those between consumer protists (consumers) and bacteria, can influence bacterial diversity, distribution, and function through top-down control. The consumers-bacteria interactions may also affect the occurrence and distribution of ARGs, yet this has been scarcely explored in field investigations. We conducted a city-scale investigation of ARGs, protists, and bacterial communities across each unit of the urban sewage system (USS), including 49 sewage pumping stations (SW), as well as influent (IF), activated sludge (AS), and effluent (EF) from seven wastewater treatment plants. Interestingly, consumers-bacteria interactions, as indicated by indices of bipartite relevance networks (i.e., connectedness and cohesion), increased from SW and IF to AS and EF. Structural equation modelling (SEM) revealed that consumers-bacteria interactions had a greater influence on the abundance of total ARGs and high-risk ARGs than seasonal or environmental factors. Notably, the total effects of consumers-bacteria interactions in SEM were significant (P < 0.05) and comparable in both IF and EF, even with the decrease in ARG abundance from IF to EF. This suggests a potential risk of ARG spread to the environment, facilitated by consumer protists in the EF. Additionally, the relevance network also demonstrated an increasing trend in the relationships between consumer protists and potential hosts of high-risk ARGs from raw sewage (SW and IF) to AS and EF. Overall, this study emphasizes the importance of integrating multitrophic microbial interactions to better understand and mitigate the dissemination of ARGs in sewage systems.202539662352
8410100.9977Unveiling the role of phages in shaping the periodontal microbial ecosystem. The oral microbiome comprises various species and plays a crucial role in maintaining the oral ecosystem and host health. Phages are an important component of the periodontal microbiome, yet our understanding of periodontal phages remains limited. Here, we investigated oral periodontal phages using various advanced bioinformatics tools based on genomes of key periodontitis pathogens. Prophages were found to encode various auxiliary genes that potentially enhance host survival and pathogenicity, including genes involved in carbohydrate metabolism, antibiotic resistance, and immune modulation. We observed cross-species transmission among prophages with a complex network of phage-bacteria interactions. Our findings suggest that prophages play a crucial role in shaping the periodontal microbial ecosystem, influencing microbial community dynamics and the progression of periodontitis.IMPORTANCEIn the context of periodontitis, the ecological dynamics of the microbiome are largely driven by interactions between bacteria and their phages. While the impact of prophages on regulating oral pathogens has been increasingly recognized, their role in modulating periodontal disease remains underexplored. This study reveals that prophages within key periodontitis pathogens contribute significantly to virulence factor dissemination, antibiotic resistance, and host metabolism. By influencing the metabolic capabilities and survival strategies of their bacterial hosts, prophages may act as critical regulators of microbial communities in the oral cavity. Understanding these prophage-mediated interactions is essential not only for unraveling the mechanisms of periodontal disease progression but also for developing innovative therapeutic approaches that target the microbial ecosystem at the genetic level. These insights emphasize the need for more comprehensive studies on the ecological risks posed by prophages in shaping microbial pathogenicity and resistance.202540152610
7681110.9977Amoebae contribute to the diversity and fate of antibiotic resistance genes in drinking water system. Free-living amoebae represent a significant eukaryotic group that thrives in drinking water systems, posing considerable risks to water quality due to their inherent pathogenicity and associations with various microorganisms. However, the symbiotic microbial profiles of different amoeba species and the impact of amoeba-bacteria interactions on the antibiotic resistome within drinking water systems remain poorly understood. In this study, we obtained 24 amoeba isolates from tap water, encompassing diverse phyla within the amoeba lineage. Through metagenome sequencing, we uncovered variations in symbiotic microbiome composition across different amoeba species and strains. Notably, amoebae acted as vectors for human pathogens, including bacteria and viruses. The majority of symbionts carried multiple antibiotic-resistance genes and virulence factors. Furthermore, dominant symbiotic species could be cultured independently, underscoring the critical role of amoebae in preserving and transmitting antibiotic-resistant opportunistic pathogens in drinking water systems. Disinfection experiments demonstrated highly diverse viability of amoebae and their protective capabilities for symbionts against chlorine disinfection. Our findings expand the germplasm bank for amoebae and symbiotic bacteria derived from tap water and emphasize the necessity for further research on amoeba-bacteria symbiosis to ensure drinking water quality and public health safety.202541101029
6529120.9977The air-borne antibiotic resistome: Occurrence, health risks, and future directions. Antibiotic resistance comprising of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) is an emerging problem causing global human health risks. Several reviews exist on antibiotic resistance in various environmental compartments excluding the air-borne resistome. An increasing body of recent evidence exists on the air-borne resistome comprising of antibiotic resistance in air-borne bioaerosols from various environmental compartments. However, a comprehensive review on the sources, dissemination, behavior, fate, and human exposure and health risks of the air-borne resistome is still lacking. Therefore, the current review uses the source-pathway-receptor-impact-mitigation framework to investigate the air-borne resistome. The nature and sources of antibiotic resistance in the air-borne resistome are discussed. The dissemination pathways, and environmental and anthropogenic drivers accounting for the transfer of antibiotic resistance from sources to the receptors are highlighted. The human exposure and health risks posed by air-borne resistome are presented. A health risk assessment and mitigation strategy is discussed. Finally, future research directions including key knowledge gaps are summarized.202234798728
6461130.9977Implications of indoor microbial ecology and evolution on antibiotic resistance. The indoor environment is an important source of microbial exposures for its human occupants. While we naturally want to favor positive health outcomes, built environment design and operation may counter-intuitively favor negative health outcomes, particularly with regard to antibiotic resistance. Indoor environments contain microbes from both human and non-human origins, providing a unique venue for microbial interactions, including horizontal gene transfer. Furthermore, stressors present in the built environment could favor the exchange of genetic material in general and the retention of antibiotic resistance genes in particular. Intrinsic and acquired antibiotic resistance both pose a potential threat to human health; these phenomena need to be considered and controlled separately. The presence of both environmental and human-associated microbes, along with their associated antibiotic resistance genes, in the face of stressors, including antimicrobial chemicals, creates a unique opportunity for the undesirable spread of antibiotic resistance. In this review, we summarize studies and findings related to various interactions between human-associated bacteria, environmental bacteria, and built environment conditions, and particularly their relation to antibiotic resistance, aiming to guide "healthy" building design.202031591493
6430140.9977Plastic leachate exposure drives antibiotic resistance and virulence in marine bacterial communities. Plastic pollution is a serious global problem, with more than 12 million tonnes of plastic waste entering the oceans every year. Plastic debris can have considerable impacts on microbial community structure and functions in marine environments, and has been associated with an enrichment in pathogenic bacteria and antimicrobial resistance (AMR) genes. However, our understanding of these impacts is largely restricted to microbial assemblages on plastic surfaces. It is therefore unclear whether these effects are driven by the surface properties of plastics, providing an additional niche for certain microbes residing in biofilms, and/or chemicals leached from plastics, the effects of which could extend to surrounding planktonic bacteria. Here, we examine the effects of polyvinyl chloride (PVC) plastic leachate exposure on the relative abundance of genes associated with bacterial pathogenicity and AMR within a seawater microcosm community. We show that PVC leachate, in the absence of plastic surfaces, drives an enrichment in AMR and virulence genes. In particular, leachate exposure significantly enriches AMR genes that confer multidrug, aminoglycoside and peptide antibiotic resistance. Additionally, enrichment of genes involved in the extracellular secretion of virulence proteins was observed among pathogens of marine organisms. This study provides the first evidence that chemicals leached from plastic particles alone can enrich genes related to microbial pathogenesis within a bacterial community, expanding our knowledge of the environmental impacts of plastic pollution with potential consequences for human and ecosystem health.202337019264
7683150.9977Antibiotic Resistomes in Plant Microbiomes. Microorganisms associated with plants may alter the traits of the human microbiome important for human health, but this alteration has largely been overlooked. The plant microbiome is an interface between plants and the environment, and provides many ecosystem functions such as improving nutrient uptake and protecting against biotic and abiotic stress. The plant microbiome also represents a major pathway by which humans are exposed to microbes and genes consumed with food, such as pathogenic bacteria, antibiotic-resistant bacteria, and antibiotic-resistance genes. In this review we highlight the main findings on the composition and function of the plant microbiome, and underline the potential of plant microbiomes in the dissemination of antibiotic resistance via food consumption or direct contact.201930890301
6534160.9977Antibiotic resistance dissemination in soil ecosystems: deep understanding for effective management and global health protection. Antibiotic resistance poses a significant threat to global health, extending beyond clinical settings into environmental reservoirs such as soil, where resistant bacteria persist and evolve. Current efforts focus on understanding the origins and implications of antibiotic resistance in soil ecosystems. It defines antibiotic resistance within an environmental context and highlights soil as a critical reservoir for antibiotic-resistant genes (ARGs). Key sources of antibiotics in soil are identified, including agricultural practices, medical waste, and municipal and industrial effluents. The classification and mechanisms of ARGs are outlined, along with their transmission pathways, particularly within soil biofilms, which play a crucial role in gene transfer and microbial protection. The interplay between soil microbial communities and antibiotic resistance is discussed, emphasizing its potential risks to human health, including infectious diseases and food safety concerns. Strategies for mitigating antibiotic resistance in soil are presented, focusing on optimizing antibiotic usage, developing alternatives, and enhancing degradation mechanisms. This review underscores the need for interdisciplinary research to deepen understanding of soil microbial diversity and its connection to antibiotic resistance, emphasizing integrated efforts to safeguard soil and human health.202541166035
8409170.9977Comparative genomics reveals key adaptive mechanisms in pathogen host-niche specialization. INTRODUCTION: Understanding the key factors that enable bacterial pathogens to adapt to new hosts is crucial, as host-microbe interactions not only influence host health but also drive bacterial genome diversification, thereby enhancing pathogen survival in various ecological niches. METHODS: We conducted a comparative genomic analysis of 4,366 high-quality bacterial genomes isolated from various hosts and environments. Bioinformatics databases and machine learning approaches were used to identify genomic differences in functional categories, virulence factors, and antibiotic resistance genes across different ecological niches. RESULTS: Significant variability in bacterial adaptive strategies was observed. Human-associated bacteria, particularly from the phylum Pseudomonadota, exhibited higher detection rates of carbohydrate-active enzyme genes and virulence factors related to immune modulation and adhesion, indicating co-evolution with the human host. In contrast, bacteria from environmental sources, particularly those from the phyla Bacillota and Actinomycetota, showed greater enrichment in genes related to metabolism and transcriptional regulation, highlighting their high adaptability to diverse environments. Bacteria from clinical settings had higher detection rates of antibiotic resistance genes, particularly those related to fluoroquinolone resistance. Animal hosts were identified as important reservoirs of resistance genes. Key host-specific bacterial genes, such as hypB, were found to potentially play crucial roles in regulating metabolism and immune adaptation in human-associated bacteria. DISCUSSION: These findings highlight niche-specific genomic features and adaptive mechanisms of bacterial pathogens. This study provides valuable insights into the genetic basis of host-pathogen interactions and offers evidence to inform pathogen transmission control, infection management, and antibiotic stewardship.202540547794
7479180.9977Metagenomic investigation reveals bacteriophage-mediated horizontal transfer of antibiotic resistance genes in microbial communities of an organic agricultural ecosystem. Antibiotic resistance has become a serious health concern worldwide. The potential impact of viruses, bacteriophages in particular, on spreading antibiotic resistance genes is still controversial due to the complexity of bacteriophage-bacterial interactions within diverse environments. In this study, we determined the microbiome profiles and the potential antibiotic resistance gene (ARG) transfer between bacterial and viral populations in different agricultural samples using a high-resolution analysis of the metagenomes. The results of this study provide compelling genetic evidence for ARG transfer through bacteriophage-bacteria interactions, revealing the inherent risks associated with bacteriophage-mediated ARG transfer across the agricultural microbiome.202337754684
6831190.9976Diversity of herbaceous plants and bacterial communities regulates soil resistome across forest biomes. Antibiotic resistance is ancient and prevalent in natural ecosystems and evolved long before the utilization of synthetic antibiotics started, but factors influencing the large-scale distribution patterns of natural antibiotic resistance genes (ARGs) remain largely unknown. Here, a large-scale investigation over 4000 km was performed to profile soil ARGs, plant communities and bacterial communities from 300 quadrats across five forest biomes with minimal human impact. We detected diverse and abundant ARGs in forests, including over 160 genes conferring resistance to eight major categories of antibiotics. The diversity of ARGs was strongly and positively correlated with the diversity of bacteria, herbaceous plants and mobile genetic elements (MGEs). The ARG composition was strongly correlated with the taxonomic structure of bacteria and herbs. Consistent with this strong correlation, structural equation modelling demonstrated that the positive effects of bacterial and herb communities on ARG patterns were maintained even when simultaneously accounting for multiple drivers (climate, spatial predictors and edaphic factors). These findings suggest a paradigm that the interactions between aboveground and belowground communities shape the large-scale distribution of soil resistomes, providing new knowledge for tackling the emerging environmental antibiotic resistance.201829687575