EXUDATE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
797100.9698Abiotic mechanism changing tetracycline resistance in root mucus layer of floating plant: The role of antibiotic-exudate complexation. Antibiotic contamination and antibiotic resistance have caused growing concerns in different aquatic environments. This work investigated the complexation between tetracycline chloride (TCH) and the molecular weight (MW)-fractionated root exudates - the key abiotic mechanism impacting antibiotic fate and antibiotic resistance in rhizosphere. Results show that the affinity of TCH to the high MW exudates (≥10 kDa) facilitated the TCH deposition on roots and meanwhile reinforced the expression of certain tetracycline resistance genes (i.e. tetA) and the growth of tetracycline resistant bacteria. The interaction between TCH and the lower MW exudates (<10 kDa) completely inhibited the bacteria growth even below the minimum inhibitory concentration of TCH. In microcosms, the abiotic interaction between TCH and root exudates made effects along with biotic processes. Persistent TCH stimulation (≥50 µg/L, 7 d) induced the change of tet gene abundance and bacteria phyla composition though the mediation of root exudates made the rhizosphere less sensitive to the TCH stress. Summarily, the affinity of antibiotics to root exudates varied with MWs, which was closely related to (i) the antibiotic fate in the root mucus layer, (ii) the bacteria inhibition capacity of antibiotics, and (iii) the antibiotic resistance and bacterial community.202133813291
873710.9688Role of Biosynthetic Gene Cluster BGC3 in the Cariogenic Virulence of Streptococcus mutans. OBJECTIVE: To investigate the role of the biosynthetic gene cluster BGC3 of Streptococcus mutans (S. mutans) in the process of dental caries. METHODS: BGC3 and ∆BGC3 S. mutans strains were constructed and their growth curves were evaluated. Acid production capacity was assessed by evaluating pH reduction levels over identical culture periods. The survival of bacteria in phosphate citrate buffer solution (pH 3.0) was quantified. The expression levels of virulence genes (atpF, gtfC, gtfD, spaP, vicR and ftf) were analysed using the qPCR. Co-culture experiments were conducted to evaluate bacterial adaptability. Bacterial viability was determined by microscopical examination of live/dead staining. RESULTS: Deletion of BGC3 did not significantly impact S. mutans growth or acid production in biofilms. The ∆BGC3 strain exhibited enhanced acid resistance and higher expression levels of virulence genes compared to the wild type. In addition, ∆BGC3 exhibited superior bacterial viability in the co-culture system. CONCLUSION: BGC3 affected the acid resistance and expression of caries-related genes in S. mutans. The BGC3 knockout strain exhibited a more robust survival capability than the wild-type strain.202540162656
872420.9688Effects of different salinity on the transcriptome and antibiotic resistance of two Vibrio parahaemolyticus strains isolated from Penaeus vannamei cultured in seawater and freshwater ponds. The transcriptome and antibiotic resistance of Vibrio parahaemolyticus isolated from Penaeus vannamei cultured in seawater (strain HN1)and freshwater (strain SH1) ponds were studied at different salinity (2‰ and 20‰). At different salinity, 623 differentially expressed genes (DEGs) significantly upregulated and 1,559 DEGs significantly downregulated in SH1. In HN1, 466 DEGs significantly upregulated and 1,930 DEGs significantly downregulated, indicating high salinity can lead to the downregulation of most genes. In KEGG analysis, the expression of DEGs annotated to starch and sucrose metabolism pathway was higher at 2‰ salinity than at 20‰ salinity in HN1 and SH1, implying salinity affected bacterial growth mainly through this pathway. In the enrichment analysis of upregulated DEGs, two pathways (Valine, leucine, and isoleucine degradation, and Butanoate metabolism) were significantly enriched at different salinity. Antibiotic-susceptibility test discovered that SH1 isolated from P. vannamei cultured in freshwater was resistant to multiple drugs, including kanamycin, gentamicin, medemycin, and azithromycin, at a salinity of 2‰, whereas at 20‰ salinity, SH1 was not resistant to the drugs. The HN1 strain isolated from P. vannamei cultured in mariculture was resistant to polymyxin B and clindamycin at 20‰ salinity. Whereas, HN1 was intermediately susceptible to these two antibiotics at 2‰ salinity. These results indicate that the drug resistance of bacteria was affected by salinity. Furthermore, beta-lactam resistance was significantly enriched in SH1 at different salinity, and the inhibition zone of penicillin G was consistent with the results of a beta-lactam resistance pathway.202134496040
872130.9683Chromium metabolism characteristics of coexpression of ChrA and ChrT gene. OBJECTIVE: Serratia sp. S2 is a wild strain with chromium resistance and reduction ability. Chromium(VI) metabolic-protein-coding gene ChrA and ChrT were cloned from Serratia sp. S2, and ligated with prokaryotic expression vectors pET-28a (+) and transformed into E. coli BL21 to construct ChrA, ChrT and ChrAT engineered bacteria. By studying the characteristics of Cr(VI) metabolism in engineered bacteria, the function and mechanism of the sole expression and coexpression of ChrA and ChrT genes were studied. METHODS: Using Serratia sp. S2 genome as template, ChrA and ChrT genes were amplified by PCR, and prokaryotic expression vectors was ligated to form the recombinant plasmid pET-28a (+)-ChrA, pET-28a (+)-ChrT and pET-28a (+)-ChrAT, and transformed into E. coli BL21 to construct ChrA, ChrT, ChrAT engineered bacteria. The growth curve, tolerance, and reduction of Cr(VI), the distribution of intracellular and extracellular Cr, activity of chromium reductase and intracellular oxidative stress in engineered bacteria were measured to explore the metabolic characteristics of Cr(VI) in ChrA, ChrT, ChrAT engineered bacteria. RESULTS: ChrA, ChrT and ChrAT engineered bacteria were successfully constructed by gene recombination technology. The tolerance to Cr(VI) was Serratia sp. S2 > ChrAT ≈ ChrA > ChrT > Control (P < 0.05), and the reduction ability to Cr(VI) was Serratia sp. S2 > ChrAT ≈ ChrT > ChrA (P < 0.05). The chromium distribution experiments confirmed that Cr(VI) and Cr(III) were the main valence states. Effect of electron donors on chromium reductase activity was NADPH > NADH > non-NAD(P)H (P < 0.05). The activity of chromium reductase increased significantly with NAD(P)H (P < 0.05). The Glutathione and NPSH (Non-protein Sulfhydryl) levels of ChrA, ChrAT engineered bacteria increased significantly (P < 0.05) under the condition of Cr(VI), but there was no significant difference in the indexes of ChrT engineered bacteria (P > 0.05). CONCLUSION: ChrAT engineered bacteria possesses resistance and reduction abilities of Cr(VI). ChrA protein endows the strain with the ability to resist Cr(VI). ChrT protein reduces Cr(VI) to Cr(III) by using NAD(P)H as electronic donor. The reduction process promotes the production of GSH, GSSG and NPSH to maintain the intracellular reduction state, which further improves the Cr(VI) tolerance and reduction ability of ChrAT engineered bacteria.202032768747
80440.9681Cloning, mutagenesis, and characterization of the microalga Parietochloris incisa acetohydroxyacid synthase, and its possible use as an endogenous selection marker. Parietochloris incisa is an oleaginous fresh water green microalga that accumulates an unusually high content of the valuable long-chain polyunsaturated fatty acid (LC-PUFA) arachidonic acid within triacylglycerols in cytoplasmic lipid bodies. Here, we describe cloning and mutagenesis of the P. incisa acetohydroxyacid synthase (PiAHAS) gene for use as an herbicide resistance selection marker for transformation. Use of an endogenous gene circumvents the risks and regulatory difficulties of cultivating antibiotic-resistant organisms. AHAS is present in plants and microorganisms where it catalyzes the first essential step in the synthesis of branched-chain amino acids. It is the target enzyme of the herbicide sulfometuron methyl (SMM), which effectively inhibits growth of bacteria and plants. Several point mutations of AHAS are known to confer herbicide resistance. We cloned the cDNA that encodes PiAHAS and introduced a W605S point mutation (PimAHAS). Catalytic activity and herbicide resistance of the wild-type and mutant proteins were characterized in the AHAS-deficient E. coli, BUM1 strain. Cloned PiAHAS wild-type and mutant genes complemented AHAS-deficient bacterial growth. Furthermore, bacteria expressing the mutant PiAHAS exhibited high resistance to SMM. Purified PiAHAS wild-type and mutant proteins were assayed for enzymatic activity and herbicide resistance. The W605S mutation was shown to cause a twofold decrease in enzymatic activity and in affinity for the Pyruvate substrate. However, the mutant exhibited 7 orders of magnitude higher resistance to the SMM herbicide than that of the wild type.201222488216
873350.9680Enhanced anti-herbivore defense of tomato plants against Spodoptera litura by their rhizosphere bacteria. BACKGROUND: The use of beneficial microorganisms as an alternative for pest control has gained increasing attention. The objective of this study was to screen beneficial rhizosphere bacteria with the ability to enhance tomato anti-herbivore resistance. RESULTS: Rhizosphere bacteria in tomato field from Fuqing, one of the four locations where rhizosphere bacteria were collected in Fujian, China, enhanced tomato resistance against the tobacco cutworm Spodoptera litura, an important polyphagous pest. Inoculation with the isolate T6-4 obtained from the rhizosphere of tomato field in Fuqing reduced leaf damage and weight gain of S. litura larvae fed on the leaves of inoculated tomato plants by 27% in relative to control. Analysis of 16S rRNA gene sequence identities indicated that the isolate T6-4 was closely related to Stenotrophomonas rhizophila supported with 99.37% sequence similarity. In the presence of S. litura infestation, inoculation with the bacterium led to increases by a 66.9% increase in protease inhibitor activity, 53% in peroxidase activity and 80% in polyphenol oxidase activity in the leaves of inoculated plants as compared to the un-inoculated control. Moreover, the expression levels of defense-related genes encoding allene oxide cyclase (AOC), allene oxide synthase (AOS), lipoxygenase D (LOXD) and proteinase inhibitor (PI-II) in tomato leaves were induced 2.2-, 1.7-, 1.4- and 2.7-fold, respectively by T6-4 inoculation. CONCLUSION: These results showed that the tomato rhizosphere soils harbor beneficial bacteria that can systemically induce jasmonate-dependent anti-herbivore resistance in tomato plants.202235606741
872060.9678Chromium resistance characteristics of Cr(VI) resistance genes ChrA and ChrB in Serratia sp. S2. OBJECTIVE: To find an efficient chromium (VI) resistance system, with a highly efficient, economical, safe, and environmentally friendly chromium-removing strain, ChrA, ChrB, and ChrAB fragments of the chromium (VI) resistance gene in Serratia sp. S2 were cloned, and their prokaryotic expression vectors were constructed and transformed into E. coli BL21. The anti-chromium (VI) capacity and characteristics of engineered bacteria, role of ChrA and ChrB genes in the anti-chromium (VI) processes, and the mechanism of chromium metabolism, were explored. METHODS: The PCR technique was used to amplify ChrA, ChrB, and ChrAB genes from the Serratia sp. S2 genome. ChrA, ChrB, and ChrAB genes were connected to the prokaryotic expression vector pET-28a and transferred into E. coli BL21 for prokaryotic expression. Cr-absorption and Cr-efflux ability of the engineered strains were determined. The effects of respiratory inhibitors and oxygenated anions on Cr-efflux of ChrA and ChrB engineered strains were explored. RESULTS: ChrA, ChrB, and ChrAB engineered strains were constructed successfully; there was no significant difference between the control strain and the ChrB engineered strain for Cr-metabolism (P > 0.05). Cr-absorption and Cr-efflux of ChrA and ChrAB engineered strains were significantly stronger than the control strain (P < 0.05). Oxyanions (sulfate and molybdate) and inhibitors (valinomycin and CN(-)) could significantly inhibit the Cr-efflux capacities of ChrA and ChrAB engineered strains (P < 0.05), while NADPH could significantly promote such capacities (P < 0.05). CONCLUSION: The Cr-transporter, encoded by ChrA gene, confer the ability to pump out intracellular Cr on ChrA and ChrAB engineered strains. The ChrB gene plays a positive regulatory role in ChrA gene regulation. The Cr-metabolism ability of the ChrAB engineered strain is stronger than the ChrA engineered strain. ChrA and ChrAB genes in the Cr-resistance system may involve a variety of mechanisms, such as sulfate ion channel and respiratory chain electron transfer.201829655157
878270.9676Antagonistic bacterium Bacillus amyloliquefaciens induces resistance and controls the bacterial wilt of tomato. BACKGROUND: Bacterial wilt caused by Ralstonia solanacearum (RS) is a serious threat for agricultural production. In this study, Bacillus amyloliquefaciens strains CM-2 and T-5 antagonistic to RS were used to create bioorganic fertilisers to control tomato wilt under greenhouse conditions. The possible mechanism of resistance inducement by the antagonistic bacteria was also evaluated. RESULTS: The application of bioorganic fertilisers significantly reduced incidences of tomato wilt (by 63-74%), promoted plant growth and significantly reduced the RS populations in rhizosphere compared with the control. Both strains CM-2 and T-5 applied with bioorganic fertilisers survived well in the tomato rhizosphere. Tomato seedlings treated with cell suspension of T-5 followed by challenge inoculation with RS increased the activities of polyphenol oxidase, phenylalanine ammonia lyase and peroxidase compared with the untreated control. Furthermore, the expressions of the marker genes responsible for synthesis of phytohormones salicylic acid, ethylene and jasmonic acid in seedlings treated with T-5 in response to inoculated pathogen were significantly higher. CONCLUSIONS: This study suggests that strains CM-2 and T-5 containing bioorganic fertilisers effectively control tomato wilt. Increased enzyme activities and expression of defence genes in plants indicated that the antagonistic bacteria induced plant resistance, which was the potential biocontrol mechanism of tomato wilt.201323519834
873880.9676Effect of microbial activity on penetrometer resistance and elastic modulus of soil at different temperatures. We explore the effect of microbial activity stimulated by root exudates on the penetrometer resistance of soil and its elastic modulus. This is important because it is a measure of the mechanical strength of soil and it correlates closely with the rate of elongation of roots. A sandy soil was incubated with a synthetic root exudate at different temperatures, for different lengths of time and with selective suppression of either fungi or bacteria. The shape of the temperature response of penetrometer resistance in soil incubated with synthetic exudate was typical of a poikilothermic temperature response. Both penetrometer resistance and small strain shear modulus had maximum values between 25 and 30°C. At temperatures of 20°C and less, there was little effect of incubation with synthetic root exudate on the small strain shear modulus, although penetrometer resistance did increase with temperature over this range (4-20°C). This suggests that in this temperature range the increase in penetrometer resistance was related to a greater resistance to plastic deformation. At higher temperatures (> 25°C) penetrometer resistance decreased. Analysis of the DNA sequence data showed that at 25°C the number of Streptomyces (Gram-positive bacteria) increased, but selective suppression of either fungi or bacteria suggested that fungi have the greater role with respect to penetrometer resistance. HIGHLIGHTS: Effect of microbial activity stimulated by synthetic root exudates on the mechanical properties.We compared penetrometer measurements and estimates of elastic modulus with microbial community.Penetrometer resistance of soil showed a poikilothermic temperature response.Penetrometer resistance might be affected more by fungi than bacteria.201728804253
521790.9674UV Resistance of bacteria from the Kenyan Marine cyanobacterium Moorea producens. UV resistance of bacteria isolated from the marine cyanobacterium Moorea producens has not been observed previously, findings which highlight how unsafe germicidal UV irradiation for sterilization of air, food, and water could be. Further, UV resistance of Bacillus licheniformis is being observed for the first time. This study focused on bacteria isolated from the marine cyanobacterium M. producens collected off the Kenyan coast at Shimoni, Wasini, Kilifi, and Mida. UV irradiance of isolates (302 nm, 70 W/m(2) , 0-1 hr) established B. licheniformis as the most UV resistant strain, with the following order of taxon resistance: Bacilli> γ proteobacteria > Actinobacteria. UV resistance was independent of pigmentation. The maximum likelihood phylogenetic distance determined for both B. licheniformis and Bacillus aerius relative to M. producens CCAP 1446/4 was 2.0. Survival of B. licheniformis upon UV irradiance followed first-order kinetics (k = 0.035/min, R(2)  = 0.88). Addition of aqueous extracts (2, 10, 20 and 40 mg/ml) of this B. licheniformis strain on the less resistant Marinobacterium stanieri was not significant, however, the commercial sunscreen benzophenone-3 (BP-3) positive control and the time of irradiance were significant. Detection of bacteria on M. producens filaments stained with acridine orange confirmed its nonaxenic nature. Although the chemistry of UV resistance in cyanobacteria has been studied in depth revealing for example the role of mycosporine like amino acids (MAAs) in UV resistance less is known about how bacteria resist UV irradiation. This is of interest since cyanobacteria live in association with bacteria.201930123980
8814100.9674Alleviation of Cadmium and Nickel Toxicity and Phyto-Stimulation of Tomato Plant L. by Endophytic Micrococcus luteus and Enterobacter cloacae. Cadmium (Cd) and nickel (Ni) are two of the most toxic metals, wreaking havoc on human health and agricultural output. Furthermore, high levels of Cd and Ni in the soil environment, particularly in the root zone, may slow plant development, resulting in lower plant biomass. On the other hand, endophytic bacteria offer great promise for reducing Cd and Ni. Moreover, they boost plants' resistance to heavy metal stress. Different bacterium strains were isolated from tomato roots. These isolates were identified as Micrococcus luteus and Enterobacter cloacae using 16SrDNA and were utilized to investigate their involvement in mitigating the detrimental effects of heavy metal stress. The two bacterial strains can solubilize phosphorus and create phytohormones as well as siderophores. Therefore, the objective of this study was to see how endophytic bacteria (Micrococcus luteus and Enterobactercloacae) affected the mitigation of stress from Cd and Ni in tomato plants grown in 50 μM Cd or Ni-contaminated soil. According to the findings, Cd and Ni considerably lowered growth, biomass, chlorophyll (Chl) content, and photosynthetic properties. Furthermore, the content of proline, phenol, malondialdehyde (MDA), H(2)O(2), OH, O(2), the antioxidant defense system, and heavy metal (HM) contents were significantly raised under HM-stress conditions. However, endophytic bacteria greatly improved the resistance of tomato plants to HM stress by boosting enzymatic antioxidant defenses (i.e., catalase, peroxidase, superoxide dismutase, glutathione reductase, ascorbate peroxidase, lipoxygenase activity, and nitrate reductase), antioxidant, non-enzymatic defenses, and osmolyte substances such as proline, mineral content, and specific regulatory defense genes. Moreover, the plants treated had a higher value for bioconcentration factor (BCF) and translocation factor (TF) due to more extensive loss of Cd and Ni content from the soil. To summarize, the promotion of endophytic bacterium-induced HM resistance in tomato plants is essentially dependent on the influence of endophytic bacteria on antioxidant capacity and osmoregulation.202235956496
7749110.9672Interaction of ciprofloxacin chlorination products with bacteria in drinking water distribution systems. The interaction of ciprofloxacin chlorination products (CIP-CPs) with bacteria in drinking water distribution systems (DWDSs) was investigated. The piperazine ring of CIP was destroyed by chlorination. Among of CIP-CPs, by the bacterial role, 7.63% of the derivative with two carboxylic groups went through decarboxylation to form desethylene ciprofloxacin, and then loss of C(2)H(5)N group generated aniline compound. Furthermore, 12.3% of the aniline compound, 7.60% of chlorinated aniline compound and 1.35% of defluorinated product were bio-mineralized. Therefore, the chlorine and bacteria played synergistic effects on transformation of CIP-CPs in DWDSs, contributing to the obvious decrease of genotoxicity in effluents. Correspondingly, the TEQ(4-NQO) decreased from 667μg/L to 9.41μg/L. However, compared with DWDSs without CIP-CPs, the relative abundance of mexA and qnrS increased 1-fold in effluents and the relative abundance of qnrA and qnrB increased 3-fold in biofilms in DWDSs with CIP-CPs. mexA and qnrS positively correlated with Hyphomicrobium, Sphingomonas and Novosphingobium (p<0.05), while qnrA and qnrB positively correlated with Shewanella and Helicobacter (p<0.05), indicating the increase of antibiotic resistance genes (ARGs) came from the growth of these bacterial genera by transformation of CIP-CPs in DWDSs. These results suggested that biotransformation of antibiotics might increase ARGs risk in DWDSs.201728648729
8149120.9671Genes related to antioxidant metabolism are involved in Methylobacterium mesophilicum-soybean interaction. The genus Methylobacterium is composed of pink-pigmented methylotrophic bacterial species that are widespread in natural environments, such as soils, stream water and plants. When in association with plants, this genus colonizes the host plant epiphytically and/or endophytically. This association is known to promote plant growth, induce plant systemic resistance and inhibit plant infection by phytopathogens. In the present study, we focused on evaluating the colonization of soybean seedling-roots by Methylobacterium mesophilicum strain SR1.6/6. We focused on the identification of the key genes involved in the initial step of soybean colonization by methylotrophic bacteria, which includes the plant exudate recognition and adaptation by planktonic bacteria. Visualization by scanning electron microscopy revealed that M. mesophilicum SR1.6/6 colonizes soybean roots surface effectively at 48 h after inoculation, suggesting a mechanism for root recognition and adaptation before this period. The colonization proceeds by the development of a mature biofilm on roots at 96 h after inoculation. Transcriptomic analysis of the planktonic bacteria (with plant) revealed the expression of several genes involved in membrane transport, thus confirming an initial metabolic activation of bacterial responses when in the presence of plant root exudates. Moreover, antioxidant genes were mostly expressed during the interaction with the plant exudates. Further evaluation of stress- and methylotrophic-related genes expression by qPCR showed that glutathione peroxidase and glutathione synthetase genes were up-regulated during the Methylobacterium-soybean interaction. These findings support that glutathione (GSH) is potentially a key molecule involved in cellular detoxification during plant root colonization. In addition to methylotrophic metabolism, antioxidant genes, mainly glutathione-related genes, play a key role during soybean exudate recognition and adaptation, the first step in bacterial colonization.201526238382
8796130.9671Divergent Roles of Escherichia Coli Encoded Lon Protease in Imparting Resistance to Uncouplers of Oxidative Phosphorylation: Roles of marA, rob, soxS and acrB. Uncouplers of oxidative phosphorylation dissipate the proton gradient, causing lower ATP production. Bacteria encounter several non-classical uncouplers in the environment, leading to stress-induced adaptations. Here, we addressed the molecular mechanisms responsible for the effects of uncouplers in Escherichia coli. The expression and functions of genes involved in phenotypic antibiotic resistance were studied using three compounds: two strong uncouplers, i.e., Carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and 2,4-Dinitrophenol (DNP), and one moderate uncoupler, i.e., Sodium salicylate (NaSal). Quantitative expression studies demonstrated induction of transcripts encoding marA, soxS and acrB with NaSal and DNP, but not CCCP. Since MarA and SoxS are degraded by the Lon protease, we investigated the roles of Lon using a lon-deficient strain (Δlon). Compared to the wild-type strain, Δlon shows compromised growth upon exposure to NaSal or 2, 4-DNP. This sensitivity is dependent on marA but not rob and soxS. On the other hand, the Δlon strain shows enhanced growth in the presence of CCCP, which is dependent on acrB. Interestingly, NaSal and 2,4-DNP, but not CCCP, induce resistance to antibiotics, such as ciprofloxacin and tetracycline. This study addresses the effects of uncouplers and the roles of genes involved during bacterial growth and phenotypic antibiotic resistance. Strong uncouplers are often used to treat wastewater, and these results shed light on the possible mechanisms by which bacteria respond to uncouplers. Also, the rampant usage of some uncouplers to treat wastewater may lead to the development of antibiotic resistance.202438372817
8531140.9670Biotransformation mechanism of Vibrio diabolicus to sulfamethoxazole at transcriptional level. Sulfamethoxazole (SMX) has attracted much attention due to its high probability of detection in the environment. Marine bacteria Vibrio diabolicus strain L2-2 has been proven to be able to transform SMX. In this study, the potential resistance and biotransformation mechanism of strain L2-2 to SMX, and key genes responses to SMX at environmental concentrations were researched. KEGG pathways were enriched by down-regulated genes including degradation of L-Leucine, L-Isoleucine, and fatty acid metabolism. Resistance mechanism could be concluded as the enhancement of membrane transport, antioxidation, response regulator, repair proteins, and ribosome protection. Biotransformation genes might involve in arylamine N-acetyltransferases (nat), cytochrome c553 (cyc-553) and acyl-CoA synthetase (acs). At the environmental concentration of SMX (0.1-10 μg/L), nat was not be activated, which meant the acetylation of SMX might not occur in the environment; however, cyc-553 was up-regulated under SMX stress of 1 μg/L, which indicated the hydroxylation of SMX could occur in the environment. Besides, the membrane transport and antioxidation of strain L2-2 could be activated under SMX stress of 10 μg/L. The results provided a better understanding of resistance and biotransformation of bacteria to SMX and would support related researches about the impacts of environmental antibiotics.202133429311
77150.9670A pathogen-inducible patatin-like lipid acyl hydrolase facilitates fungal and bacterial host colonization in Arabidopsis. Genes and proteins related to patatin, the major storage protein of potato tubers, have been identified in many plant species and shown to be induced by a variety of environmental stresses. The Arabidopsis patatin-like gene family (PLPs) comprises nine members, two of which (PLP2 and PLP7) are strongly induced in leaves challenged with fungal and bacterial pathogens. Here we show that accumulation of PLP2 protein in response to Botrytis cinerea or Pseudomonas syringae pv. tomato (avrRpt2) is dependent on jasmonic acid and ethylene signaling, but is not dependent on salicylic acid. Expression of a PLP2-green fluorescent protein (GFP) fusion protein and analysis of recombinant PLP2 indicates that PLP2 encodes a cytoplasmic lipid acyl hydrolase with wide substrate specificity. Transgenic plants with altered levels of PLP2 protein were generated and assayed for pathogen resistance. Plants silenced for PLP2 expression displayed enhanced resistance to B. cinerea, whereas plants overexpressing PLP2 were much more sensitive to this necrotrophic fungus. We also established a positive correlation between the level of PLP2 expression in transgenic plants and cell death or damage in response to paraquat treatment or infection by avirulent P. syringae. Interestingly, repression of PLP2 expression increased resistance to avirulent bacteria, while PLP2-overexpressing plants multiplied avirulent bacteria close to the titers reached by virulent bacteria. Collectively, the data indicate that PLP2-encoded lipolytic activity can be exploited by pathogens with different lifestyles to facilitate host colonization. In particular PLP2 potentiates plant cell death inflicted by Botrytis and reduces the efficiency of the hypersensitive response in restricting the multiplication of avirulent bacteria. Both effects are possibly mediated by providing fatty acid precursors of bioactive oxylipins.200516297072
608160.9669Entamoeba histolytica Adaption to Auranofin: A Phenotypic and Multi-Omics Characterization. Auranofin (AF), an antirheumatic agent, targets mammalian thioredoxin reductase (TrxR), an important enzyme controlling redox homeostasis. AF is also highly effective against a diversity of pathogenic bacteria and protozoan parasites. Here, we report on the resistance of the parasite Entamoeba histolytica to 2 µM of AF that was acquired by gradual exposure of the parasite to an increasing amount of the drug. AF-adapted E. histolytica trophozoites (AFAT) have impaired growth and cytopathic activity, and are more sensitive to oxidative stress (OS), nitrosative stress (NS), and metronidazole (MNZ) than wild type (WT) trophozoites. Integrated transcriptomics and redoxomics analyses showed that many upregulated genes in AFAT, including genes encoding for dehydrogenase and cytoskeletal proteins, have their product oxidized in wild type trophozoites exposed to AF (acute AF trophozoites) but not in AFAT. We also showed that the level of reactive oxygen species (ROS) and oxidized proteins (OXs) in AFAT is lower than that in acute AF trophozoites. Overexpression of E. histolytica TrxR (EhTrxR) did not protect the parasite against AF, which suggests that EhTrxR is not central to the mechanism of adaptation to AF.202134439488
8815170.9669Phosphorus-Solubilizing Bacteria Enhance Cadmium Immobilization and Gene Expression in Wheat Roots to Reduce Cadmium Uptake. The application of phosphorus-solubilizing bacteria is an effective method for increasing the available phosphorus content and inhibiting wheat uptake of heavy metals. However, further research is needed on the mechanism by which phosphorus-solubilizing bacteria inhibit cadmium (Cd) uptake in wheat roots and its impact on the expression of root-related genes. Here, the effects of strain Klebsiella aerogenes M2 on Cd absorption in wheat and the expression of root-related Cd detoxification and immobilization genes were determined. Compared with the control, strain M2 reduced (64.1-64.6%) Cd uptake by wheat roots. Cd fluorescence staining revealed that strain M2 blocked the entry of exogenous Cd into the root interior and enhanced the immobilization of Cd by cell walls. Forty-seven genes related to Cd detoxification, including genes encoding peroxidase, chalcone synthase, and naringenin 3-dioxygenase, were upregulated in the Cd+M2 treatment. Strain M2 enhanced the Cd resistance and detoxification activity of wheat roots through the regulation of flavonoid biosynthesis and antioxidant enzyme activity. Moreover, strain M2 regulated the expression of genes related to phenylalanine metabolism and the MAPK signaling pathway to enhance Cd immobilization in roots. These results provide a theoretical basis for the use of phosphorus-solubilizing bacteria to remediate Cd-contaminated fields and reduce Cd uptake in wheat.202439065516
3615180.9669Insights to antimicrobial resistance: heavy metals can inhibit antibiotic resistance in bacteria isolated from wastewater. The alarming upsurge in the co-existence of heavy metal and antibiotic resistance may have a devastating impact on humans, animals, and the environment. Four metal-resistant bacteria were isolated from hospital effluents and industrial drain. Heavy metal resistance and antimicrobial resistance were examined in the isolates followed by identification through 16S rRNA gene sequencing. Delftia tsuruhatensis strain FK-01 and Carnobacterium inhibens strain FK-02 tolerated arsenic with maximal tolerated concentration (MTC) of 30 mM and 10 mM, respectively. Staphylococcus hominis strain FK-04 tolerated copper up to 4 mM and lead-resistant Raoultella ornithinolytica strain FK-05 exhibited tolerance to 1 mM lead. The growth kinetics of bacteria were monitored in the presence of metals and the following antibiotics, tetracycline, chloramphenicol, and kanamycin. The presence of arsenate significantly enhanced tetracycline resistance in C. inhibens. Heavy metal-induced antibiotic resistance was also observed in S. hominis and R. ornithinolytica, against chloramphenicol and tetracycline respectively. D. tsuruhatensis showed resistance to kanamycin but when grown in the presence of arsenic and kanamycin, bacteria lost resistance to the antibiotic. Therefore, it is suggested that the novel arsenate-resistant strain Delftia tsuruhatensis FK-01 has a unique ability to inhibit antimicrobial resistance that can be harnessed in bioremediation.202235254524
3616190.9668The Effects of Antiperspirant Aluminum Chlorohydrate on the Development of Antibiotic Resistance in Staphylococcus epidermidis. This study investigates the effects of the antiperspirant aluminum chlorohydrate on the development of antibiotic resistance in commensal Staphylococcus epidermidis isolates. The isolates were exposed to aluminum chlorohydrate for 30 days. The bacteria that developed resistance to oxacillin and ciprofloxacin were isolated, and the expression levels of some antibiotic resistance genes were determined using quantitative reverse transcriptase PCR. Before and after exposure, the minimum inhibitory concentration (MIC) values of the bacteria were determined using the microdilution method. A time-dependent increase was observed in the number of bacteria that developed resistance and increased MIC values. Consistent with the ciprofloxacin resistance observed after exposure, an increase in norA, norB/C, gyrA, gyrB, parC, and parE gene expression was observed. In addition to aluminum chlorohydrate exposure, oxacillin resistance was observed in all test bacteria in the group only subcultured in the medium, suggesting that phenotypic resistance cannot be correlated with chemical exposure in light of these data. The increase in mecA gene expression in selected test bacteria that acquired resistance to oxacillin after exposure compared with control groups suggests that the observed resistance may have been related to aluminum chlorohydrate exposure. To our knowledge, this is the first time in the literature that the effects of aluminum chlorohydrate as an antiperspirant on the development of antibiotic resistance in Staphylococcus epidermidis have been reported.202337110371