EXPERIMENTS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
635100.9968Heterogeneous expression of DnaK gene from Alicyclobacillus acidoterrestris improves the resistance of Escherichia coli against heat and acid stress. Alicyclobacillus acidoterrestris, an acidophilic and thermophilic bacteria, is an important microbial resource for stress resistance genes screening. In this study, DnaK gene from A. acidoterrestris was subcloned to construct the recombinant plasmid pET28a-DnaK. The successful construction of the plasmid was verified by double-enzyme digestion and sequencing analysis. The recombinant plasmid was transformed into Escherichia coli BL21 and isopropy-β-D-thiogalactoside (IPTG) was used to induce recombinant E. coli to express DnaK gene. A 70 kD fusion protein was identified by SDS-PAGE, which suggested that DnaK gene from A. acidoterrestris was successfully expressed. The recombinant and wild BL21 were treated with high temperatures of 54, 56 and 58 °C at pH values of 5.0-7.0 to compare the effects of heterogeneous expression of the DnaK gene from A. acidoterrestris on the stress resistance. The experimental results showed that survival rate of recombinant BL21-DnaK has been improved considerably under heat and acid stresses in contrast with the wild BL21, and D-values of recombinant BL21 were 14.7-72% higher than that of wild BL21, which demonstrated that heterogeneous expression of DnaK gene from A. acidoterrestris could significantly enhance the resistance of host bacteria E. coli against heat and acid stresses.201728194744
26410.9967The Tn5 bleomycin resistance gene confers improved survival and growth advantage on Escherichia coli. The bleomycin resistance gene (ble) of transposon Tn5 is known to decrease the death rate of Escherichia coli during stationary phase. Bleomycin is a DNA-damaging agent and bleomycin resistance is produced by improved DNA repair which also requires the host genes aidC and polA coding, respectively, for an alkylation-inducible gene product and DNA polymerase I. In the absence of the drug, this DNA repair system is believed to cause the slower death rate of bleomycin-resistant bacteria. In this study, the effect of ble and aidC genes on the viability of bacteria and their growth rate in chemostat competitions was studied. The results indicate, that bleomycin-resistant bacteria display greater fitness under these conditions. Another beneficial effect of transposon Tn5 had been previously attributed to the insertion sequence IS 50 R. We were not able to reproduce this result with IS 50 R, however, the complete transposon was beneficial under similar conditions. Moreover, we showed the Tn5 fitness effect to be aidC-dependent. The ble gene was discovered after the fitness effect of IS 50 R had been established; it has not previously been considered to mediate the beneficial effect of Tn5. This possibility is discussed based on the molecular mechanism of bleomycin resistance.19947510018
620420.9966A DNA polymerase V homologue encoded by TOL plasmid pWW0 confers evolutionary fitness on Pseudomonas putida under conditions of environmental stress. Plasmids in conjunction with other mobile elements such as transposons are major players in the genetic adaptation of bacteria in response to changes in environment. Here we show that a large catabolic TOL plasmid, pWW0, from Pseudomonas putida carries genes (rulAB genes) encoding an error-prone DNA polymerase Pol V homologue which increase the survival of bacteria under conditions of accumulation of DNA damage. A study of population dynamics in stationary phase revealed that the presence of pWW0-derived rulAB genes in the bacterial genome allows the expression of a strong growth advantage in stationary phase (GASP) phenotype of P. putida. When rulAB-carrying cells from an 8-day-old culture were mixed with Pol V-negative cells from a 1-day-old culture, cells derived from the aged culture out-competed cells from the nonaged culture and overtook the whole culture. At the same time, bacteria from an aged culture lacking the rulAB genes were only partially able to out-compete cells from a fresh overnight culture of the parental P. putida strain. Thus, in addition to conferring resistance to DNA damage, the plasmid-encoded Pol V genes significantly increase the evolutionary fitness of bacteria during prolonged nutritional starvation of a P. putida population. The results of our study indicate that RecA is involved in the control of expression of the pWW0-encoded Pol V.200516030214
852230.9966Electrochemical disinfection may increase the spread of antibiotic resistance genes by promoting conjugal plasmid transfer. Current in the milliampere range can be used for electrochemical inactivation of bacteria. Yet, bacteria-including antibiotic resistant bacteria (ARB) may be subjected to sublethal conditions due to imperfect mixing or energy savings measures during electrochemical disinfection. It is not known whether such sublethal current intensities have the potential to stimulate plasmid transfer from ARB. In this study, conjugal transfer of plasmid pKJK5 was investigated between Pseudomonas putida strains under conditions reflecting electrochemical disinfection. Although the abundance of culturable and membrane-intact donor and recipient cells decreased with applied current (0-60 mA), both transconjugant density and transconjugant frequency increased. Both active chlorine and superoxide radicals were generated electrolytically, and ROS generation was induced. In addition, we detected significant over expression of a core oxidative stress defense gene (ahpCF) with current. Expression of selected conjugation related genes (traE, traI, trbJ, and trbL) also significantly correlated with current intensity. ROS accumulation, SOS response and subsequent derepression of conjugation are therefore the plausible consequence of sublethal current exposure. These findings suggest that sublethal intensities of current can enhance conjugal plasmid transfer, and that it is essential that conditions of electrochemical disinfection (applied voltage, current density, time and mixing) are carefully controlled to avoid conjugal ARG transmission.202336328265
678140.9965Antibiotic-resistance gene transfer in antibiotic-resistance bacteria under different light irradiation: Implications from oxidative stress and gene expression. Due to the significant public health risks, there is substantial scientific interest in the increasing abundance of antibiotic-resistance bacteria (ARB) and the spread of antibiotic-resistance genes (ARGs) in aquatic environments. To clearly understand the mechanism of ARG transfer, this study examined the conjugative transfer of genes encoding resistance to cephalosporin (bla(CTX)) and polymyxin (mcr-1) from two antibiotic-resistant donor strains, namely E. coli DH5α (CTX) and E. coli DH5α (MCR), and to a streptomycin-resistant receptor strain (E. coli C600 (Sm)). Conjugative transfer was specifically studied under different light irradiation conditions including visible light (VL), simulated sunlight (SS) and ultraviolet light (UV(254nm)). Results show that the conjugative transfer frequency was not affected by VL irradiation, while it was slightly improved (2-10 fold) by SS irradiation and extremely accelerated (up to 100 fold) by UV irradiation. Furthermore, this study also explored the link between ARG transfer and stress conditions. This was done by studying physiological and biochemical changes; oxidative stress response; and functional gene expression of co-cultured AR-E. coli strains under stress conditions. When correlated with the transfer frequency results, we found that VL irradiation did not affect the physiological and biochemical characteristics of the bacteria, or induce oxidative stress and gene expression. For SS irradiation, oxidative stress occurred slowly, with a slight increase in the expression of target genes in the bacterial cells. In contrast, UV irradiation, rapidly inactivated the bacteria, the degree of oxidative stress was very severe and the expression of the target genes was markedly up-regulated. Our study could provide new insight into the underlying mechanisms and links between accelerated conjugative transfer and oxidative stress, as well as the altered expression of genes relevant to conjugation and other stress responses in bacterial cells.201930465986
677950.9965Intestinal flora metabolites indole-3-butyric acid and disodium succinate promote IncI2 mcr-1-carrying plasmid transfer. INTRODUCTION: Plasmid-driven horizontal transfer of resistance genes in bacterial communities is a major factor in the spread of resistance worldwide. The gut microbiome, teeming with billions of microorganisms, serves as a reservoir for resistance genes. The metabolites of gut microorganisms strongly influence the physiology of their microbial community, but the role of the metabolites in the transfer of resistance genes remains unclear. METHODS: A dual-fluorescence conjugation model was established. We assessed the effects of different concentrations of indole-3-butyric acid (IBA) and disodium succinate (DS) on plasmid transfer using conjugation assays. The growth of bacteria (donors, recipients, and transconjugants), the reactive oxygen species (ROS) levels and membrane permeability were measured under IBA and DS exposure. The plasmid copy number, and transcriptional levels of conjugation-related genes (including the related genes of the regulation of ROS production, the SOS response, cell membrane permeability, pilus generation, ATP synthesis, and the type IV secretion system (T4SS) ) were evaluated by qPCR. RESULTS: In this study, we demonstrated that IBA and DS at low concentrations, which can also be ingested through diet, enhance the interspecies transfer ratio of IncI2 mcr-1-carrying plasmid in Escherichia coli. At 20 mg/L, the transfer ratios in the presence of IBA or DS increased by 2.5- and 2.7-fold compared to that of the control, respectively. Exposure to this concentration of IBA or DS increased the production of reactive oxygen species (ROS), the SOS response, cell membrane permeability, and plasmid copy number. The transcription of genes of the related pathways and of pilus, ATP, and the T4SS was upregulated. DISCUSSION: Our findings revealed that low-dose gut microbiota metabolites-particularly those with dietary origins-promote plasmid-mediated resistance gene dissemination through multifaceted mechanisms involving oxidative stress, SOS activation, and conjugation machinery enhancement. This highlights potential public health risks associated with microbiota metabolites, especially those utilized in food production.202540529306
675660.9965Conjugative Gene Transfer between Nourished and Starved Cells of Photobacterium damselae ssp. damselae and Escherichia coli. Horizontal gene transfer (HGT) between bacteria with different habitats and nutritional requirements is important for the spread of antibiotic resistance genes (ARG). The objective of the present study was to clarify the effects of organic matter on HGT between nourished and starved bacteria. We demonstrated that conjugation ability is affected by the nutritional conditions of the cell and environment. A filter mating HGT experiment was performed using Photobacterium damselae ssp. damselae, strain 04Ya311, a marine-origin bacterium possessing the multidrug-resistance plasmid pAQU1, as the donor, and Escherichia coli as the recipient. The donor and recipient were both prepared as nutrient-rich cultured and starved cells. Filter mating was performed on agar plates with and without organic nutrients. The transcription of the plasmid-borne genes tet(M) and traI was quantitated under eutrophic and oligotrophic conditions. The donor P. damselae transferred the plasmid to E. coli at a transfer rate of 10(-4) under oligotrophic and eutrophic conditions. However, when the donor was starved, HGT was not detected under oligotrophic conditions. The addition of organic matter to starved cells restored conjugative HGT even after 6 d of starvation. The transcription of traI was not detected in starved cells, but was restored upon the addition of organic matter. The HGT rate appears to be affected by the transcription of plasmid-associated genes. The present results suggest that the HGT rate is low in starved donors under oligotrophic conditions, but is restored by the addition of organic matter.201931631079
33470.9965Transformation of soybean protoplasts from permanent suspension cultures by cocultivation with cells of Agrobacterium tumefaciens. Cell wall regenerating protoplasts from soybean cells kept in suspension culture were cocultivated with bacteria which were derived from the nopaline strain C58 of Agrobacterium tumefaciens. When the bacteria carried an oncogenic Ti-plasmid, about 5% of the surviving protoplasts were able to form calli on hormone-free agar in contrast to controls, where bacteria without Ti-plasmid were applied, and where no calli were formed. After isolation of DNA from hormone-independently growing cells further evidence for transformation was obtained by hybridization to Ti-plasmid specific RNA and by rescue of a segment with a bacterial resistance gene which had been inserted before into the T-DNA. Transfer of T-DNA harboring a neomycin-resistance gene activated by the nos-promoter resulted in calli growing on kanamycin. Verification of segments located at the left and the right part of the T-DNA indicated the presence of its entire length in transformed soybean cells. Expression of T-DNA genes was measured by the assay of nopaline-synthase. Cells cultured on agar had a much higher level of nopaline-synthase than fast growing cells in suspension culture. Transferring them to agar or treatment with azacytidine strongly increased synthesis of nopaline-synthase indicating a reversible repression presumably via a methylation mechanism.198724276903
34280.9965Heat-shock-increased survival to far-UV radiation in Escherichia coli is wavelength dependent. Heat-shock-induced resistance to far-UV (FUV) radiation was studied in Escherichia coli. The induction of FUV resistance was shown to be dependent on the products of the genes uvrA and polA in bacteria irradiated at 254 nm. Heat shock increased the resistance to 280 nm radiation in a uvrA6 recA13 mutant. Heat shock lowered the mutation frequency (reversion to tryptophan proficiency) in wild-type or uvrA strains irradiated at 254 nm. When these strains were irradiated at 280 nm, heat shock did not interfere with the mutation frequency in the wild-type strain, but greatly enhanced mutations in the uvrA mutant. After heat-shock treatment, the wild-type strain irradiated at 254 nm showed increased DNA degradation, indicating enhanced repair activity. However, heat shock did not stimulate SOS repair triggered by FUV. An increased survival of bacteriophages irradiated with FUV and inoculated into heat-shock-treated bacteria was not detected. The possibility that heat shock enhances excision repair activity in a wavelength-dependent manner is discussed.19948176549
63990.9965A Single Residue within the MCR-1 Protein Confers Anticipatory Resilience. The envelope stress response (ESR) of Gram-negative enteric bacteria senses fluctuations in nutrient availability and environmental changes to avert damage and promote survival. It has a protective role toward antimicrobials, but direct interactions between ESR components and antibiotic resistance genes have not been demonstrated. Here, we report interactions between a central regulator of ESR viz., the two-component signal transduction system CpxRA (conjugative pilus expression), and the recently described mobile colistin resistance protein (MCR-1). Purified MCR-1 is specifically cleaved within its highly conserved periplasmic bridge element, which links its N-terminal transmembrane domain with the C-terminal active-site periplasmic domain, by the CpxRA-regulated serine endoprotease DegP. Recombinant strains harboring cleavage site mutations in MCR-1 are either protease resistant or degradation susceptible, with widely differing consequences for colistin resistance. Transfer of the gene encoding a degradation-susceptible mutant to strains that lack either DegP or its regulator CpxRA restores expression and colistin resistance. MCR-1 production in Escherichia coli imposes growth restriction in strains lacking either DegP or CpxRA, effects that are reversed by transactive expression of DegP. Excipient allosteric activation of the DegP protease specifically inhibits growth of isolates carrying mcr-1 plasmids. As CpxRA directly senses acidification, growth of strains at moderately low pH dramatically increases both MCR-1-dependent phosphoethanolamine (PEA) modification of lipid A and colistin resistance levels. Strains expressing MCR-1 are also more resistant to antimicrobial peptides and bile acids. Thus, a single residue external to its active site induces ESR activity to confer resilience in MCR-1-expressing strains to commonly encountered environmental stimuli, such as changes in acidity and antimicrobial peptides. Targeted activation of the nonessential protease DegP can lead to the elimination of transferable colistin resistance in Gram-negative bacteria. IMPORTANCE The global presence of transferable mcr genes in a wide range of Gram-negative bacteria from clinical, veterinary, food, and aquaculture environments is disconcerting. Its success as a transmissible resistance factor remains enigmatic, because its expression imposes fitness costs and imparts only moderate levels of colistin resistance. Here, we show that MCR-1 triggers regulatory components of the envelope stress response, a system that senses fluctuations in nutrient availability and environmental changes, to promote bacterial survival in low pH environments. We identify a single residue within a highly conserved structural element of mcr-1 distal to its catalytic site that modulates resistance activity and triggers the ESR. Using mutational analysis, quantitative lipid A profiling and biochemical assays, we determined that growth in low pH environments dramatically increases colistin resistance levels and promotes resistance to bile acids and antimicrobial peptides. We exploited these findings to develop a targeted approach that eliminates mcr-1 and its plasmid carriers.202337071007
6771100.9965Triclosan at environmental concentrations can enhance the spread of extracellular antibiotic resistance genes through transformation. The dissemination of antibiotic resistance mediated by horizontal transfer of antibiotic resistance genes (ARGs) is exacerbating the global antibiotic crisis. Currently, little is known about whether non-antibiotic, anti-microbial (NAAM) chemicals are associated with the dissemination of ARGs in the environment. In this study, we aimed to evaluate whether a ubiquitous NAAM chemical, triclosan (TCS), is able to promote the transformation of plasmid-borne antibiotic resistance genes (ARGs). By using the plasmid pUC19 carrying ampicillin resistance genes as the extracellular ARG and a model microorganism Escherichia coli DH5ɑ as the recipient, we found that TCS at environmentally detected concentrations (0.2 μg/L to 20 μg/L) significantly enhanced the transformation of plasmid-borne ARGs into E. coli DH5ɑ for up to 1.4-fold. The combination of phenotypic experiments, genome-wide RNA sequencing and proteomic analyses revealed that TCS exposure stimulated the reactive oxygen species (ROS) production for 1.3- to 1.5-fold, induced bacterial membrane damage and up-regulated the translation of outer membrane porin. Moreover, general secretion system Sec (1.4-fold), twin arginine translocation system Tat (1.2-fold) and type IV pilus secretion systems (2.5-fold) were enhanced by TCS, which might contribute to the DNA searching/capture by pilus. Together, TCS might increase the transformation frequency of ARGs into E. coli DH5ɑ by ROS over-production, damaging cell membrane barrier, mediating the pilus capture of plasmid and the translocation of plasmid via cell membrane channels. This study reports that TCS could accelerate the transformation of extracellular ARGs to competent bacteria at environmentally relevant concentrations. The findings advance our understanding of the fate of ARGs in ecosystems and call for risk assessments of NAAM chemicals on disseminating antibiotic resistance.202032019018
9274110.9964Amelioration of the cost of conjugative plasmid carriage in Eschericha coli K12. Although plasmids can provide beneficial functions to their host bacteria, they might confer a physiological or energetic cost. This study examines how natural selection may reduce the cost of carrying conjugative plasmids with drug-resistance markers in the absence of antibiotic selection. We studied two plasmids, R1 and RP4, both of which carry multiple drug resistance genes and were shown to impose an initial fitness cost on Escherichia coli. To determine if and how the cost could be reduced, we subjected plasmid-containing bacteria to 1100 generations of evolution in batch cultures. Analysis of the evolved populations revealed that plasmid loss never occurred, but that the cost was reduced through genetic changes in both the plasmids and the bacteria. Changes in the plasmids were inferred by the demonstration that evolved plasmids no longer imposed a cost on their hosts when transferred to a plasmid-free clone of the ancestral E. coli. Changes in the bacteria were shown by the lowered cost when the ancestral plasmids were introduced into evolved bacteria that had been cured of their (evolved) plasmids. Additionally, changes in the bacteria were inferred because conjugative transfer rates of evolved R1 plasmids were lower in the evolved host than in the ancestral host. Our results suggest that once a conjugative bacterial plasmid has invaded a bacterial population it will remain even if the original selection is discontinued.200314704155
8303120.9964Spaceflight Modifies Escherichia coli Gene Expression in Response to Antibiotic Exposure and Reveals Role of Oxidative Stress Response. Bacteria grown in space experiments under microgravity conditions have been found to undergo unique physiological responses, ranging from modified cell morphology and growth dynamics to a putative increased tolerance to antibiotics. A common theory for this behavior is the loss of gravity-driven convection processes in the orbital environment, resulting in both reduction of extracellular nutrient availability and the accumulation of bacterial byproducts near the cell. To further characterize the responses, this study investigated the transcriptomic response of Escherichia coli to both microgravity and antibiotic concentration. E. coli was grown aboard International Space Station in the presence of increasing concentrations of the antibiotic gentamicin with identical ground controls conducted on Earth. Here we show that within 49 h of being cultured, E. coli adapted to grow at higher antibiotic concentrations in space compared to Earth, and demonstrated consistent changes in expression of 63 genes in response to an increase in drug concentration in both environments, including specific responses related to oxidative stress and starvation response. Additionally, we find 50 stress-response genes upregulated in response to the microgravity when compared directly to the equivalent concentration in the ground control. We conclude that the increased antibiotic tolerance in microgravity may be attributed not only to diminished transport processes, but also to a resultant antibiotic cross-resistance response conferred by an overlapping effect of stress response genes. Our data suggest that direct stresses of nutrient starvation and acid-shock conveyed by the microgravity environment can incidentally upregulate stress response pathways related to antibiotic stress and in doing so contribute to the increased antibiotic stress tolerance observed for bacteria in space experiments. These results provide insights into the ability of bacteria to adapt under extreme stress conditions and potential strategies to prevent antimicrobial-resistance in space and on Earth.201829615983
8526130.9964Size-dependent enhancement on conjugative transfer of antibiotic resistance genes by micro/nanoplastics. Recently micro/nanoplastics (MNPs) have raised intensive concerns due to their possible enhancement effect on the dissemination of antibiotic genes. Unfortunately, data is still lacking to verify the effect. In the study, the influence of polystyrene MNPs on the conjugative gene transfer was studied by using E. coli DH5ɑ with RP4 plasmid as the donor bacteria and E. coli K12 MG1655 as the recipient bacteria. We found that influence of MNPs on gene transfer was size-dependent. Small MNPs (10 nm in radius) caused an increase and then a decrease in gene transfer efficiency with their concentration increasing. Moderate-sized MNPs (50 nm in radius) caused an increase in gene transfer efficiency. Large MNPs (500 nm in radius) had almost no influence on gene transfer. The gene transfer could be further enhanced by optimizing mating time and mating ratio. Scavenging reactive oxygen species (ROS) production did not affect the cell membrane permeability, indicating that the increase in cell membrane permeability was not related to ROS production. The mechanism of the enhanced gene transfer efficiency was attributed to a combined effect of the increased ROS production and the increased cell membrane permeability, which ultimately regulated the expression of corresponding genes.202235278945
8606140.9964Pheromone effect of estradiol regulates the conjugative transfer of pCF10 carrying antibiotic resistance genes. Horizontal gene transfer (HGT) mediated by conjugative plasmids greatly contributes to bacteria evolution and the transmission of antibiotic resistance genes (ARGs). In addition to the selective pressure imposed by extensive antibiotic use, environmental chemical pollutants facilitate the dissemination of antibiotic resistance, consequently posing a serious threat to the ecological environment. Presently, the majority of studies focus on the effects of environmental compounds on R plasmid-mediated conjugation transfer, and pheromone-inducible conjugation has largely been neglected. In this study, we explored the pheromone effect and potential molecular mechanisms of estradiol in promoting the conjugative transfer of pCF10 plasmid in Enterococcus faecalis. Environmentally relevant concentrations of estradiol significantly increased the conjugative transfer of pCF10 with a maximum frequency of 3.2 × 10(-2), up to 3.5-fold change compared to that of control. Exposure to estradiol induced the activation of pheromone signaling cascade by increasing the expression of ccfA. Furthermore, estradiol might directly bind to the pheromone receptor PrgZ and promote pCF10 induction and finally enhance the conjugative transfer of pCF10. These findings cast valuable insights on the roles of estradiol and its homolog in increasing antibiotic resistance and the potential ecological risk.202336889077
6770150.9964Triclosan at environmentally relevant concentrations promotes horizontal transfer of multidrug resistance genes within and across bacterial genera. BACKGROUND: Antibiotic resistance poses an increasing threat to public health. Horizontal gene transfer (HGT) promoted by antibiotics is recognized as a significant pathway to disseminate antibiotic resistance genes (ARGs). However, it is unclear whether non-antibiotic, anti-microbial (NAAM) chemicals can directly promote HGT of ARGs in the environment. OBJECTIVES: We aimed to investigate whether triclosan (TCS), a widely-used NAAM chemical in personal care products, is able to stimulate the conjugative transfer of antibiotic multi-resistance genes carried by plasmid within and across bacterial genera. METHODS: We established two model mating systems, to investigate intra-genera transfer and inter-genera transfer. Escherichia coli K-12 LE392 carrying IncP-α plasmid RP4 was used as the donor, and E. coli K-12 MG1655 or Pseudomonas putida KT2440 were the intra- and inter-genera recipients, respectively. The mechanisms of the HGT promoted by TCS were unveiled by detecting oxidative stress and cell membrane permeability, in combination with Nanopore sequencing, genome-wide RNA sequencing and proteomic analyses. RESULTS: Exposure of the bacteria to environmentally relevant concentrations of TCS (from 0.02 μg/L to 20 μg/L) significantly stimulated the conjugative transfer of plasmid-encoded multi-resistance genes within and across genera. The TCS exposure promoted ROS generation and damaged bacterial membrane, and caused increased expression of the SOS response regulatory genes umuC, dinB and dinD in the donor. In addition, higher expression levels of ATP synthesis encoding genes in E. coli and P. putida were found with increased TCS dosage. CONCLUSIONS: TCS could enhance the conjugative ARGs transfer between bacteria by triggering ROS overproduction at environmentally relevant concentrations. These findings improve our awareness of the hidden risks of NAAM chemicals on the spread of antibiotic resistance.201830389380
8525160.9964Low-intensity ultrasound promotes the horizontal transfer of resistance genes mediated by plasmids in E. coli. Widespread of pathogenic bacteria resistant to antibiotics has become a worldwide public health concern. Conjugative transfer between bacteria is an important mechanism for the horizontal transfer of antibiotic resistance genes. Ultrasound has been widely applied in many fields, but the effect of ultrasound on horizontal transfer of antibiotic-resistant genes is still not clear. We discovered that low-intensity (≤ 0.05 W/cm(2)) ultrasound had no effect on bacterial growth and survival rates, but increased the permeability of cell membrane, and consequentially elevated the transfer rates of plasmid. Low-intensity  ultrasound enhanced conjugation between bacteria, induced expression of conjugation genes TrpBp and TrfAp, and inhibited expression of global regulatory genes KorA, KorB, TrbA, and TrbK. In conclusion, low-intensity ultrasound promoted horizontal transfer of antibiotic-resistant genes by enhancing conjugation and regulating expression of horizontal transfer-related genes.201829692961
6752170.9964Isolation of radiation-resistant bacteria without exposure to irradiation. Resistance to desiccation was utilized in the selection of highly radiation-resistant asporogenous bacteria from non-irradiated sources. A bacterial suspension in phosphate buffer was dried in a thin film at 25 degrees C and 33% relative humidity. Storage under these conditions for 15 days or more reduced the number of radiation-sensitive bacteria. Further selection for radiation-resistant bacteria was obtained by irradiation of bacteria on velveteen in the replication process, thereby avoiding the toxic effect of irradiated media. The similarity of radiation resistance and identifying characteristics in irradiated and non-irradiated isolates should allay some concerns that highly radiation-resistant bacteria have been permanently altered by radiation selection.1979394680
3812180.9964What Is the Impact of Antibiotic Resistance Determinants on the Bacterial Death Rate? Objectives: Antibiotic-resistant bacteria are widespread, with resistance arising from chromosomal mutations and resistance genes located in the chromosome or in mobile genetic elements. While resistance determinants often reduce bacterial growth rates, their influence on bacterial death under bactericidal antibiotics remains poorly understood. When bacteria are exposed to bactericidal antibiotics to which they are susceptible, they typically undergo a two-phase decline: a fast initial exponentially decaying phase, followed by a persistent slow-decaying phase. This study examined how resistance determinants affect death rates during both phases. Methods: We analyzed the death rates of ampicillin-exposed Escherichia coli populations of strains sensitive to ampicillin but resistant to nalidixic acid, rifampicin, or both, and bacteria carrying the conjugative plasmids RN3 or R702. Results: Single mutants resistant to nalidixic acid or rifampicin decayed faster than sensitive cells during the early phase, whereas the double-resistant mutant exhibited prolonged survival. These contrasting impacts suggest epistatic interactions between both chromosomal mutations. Persistent-phase death rates for chromosomal mutants did not differ significantly from wild-type cells. In contrast, plasmid-carrying bacteria displayed distinct dynamics: R702 plasmid-bearing cells showed higher persistent-phase death rates than plasmid-free cells, while RN3 plasmid-bearing cells exhibited lower rates. Conclusions: Bactericidal antibiotics may kill bacteria resistant to other antibiotics more effectively than wild-type cells. Moreover, epistasis may occur when different resistance determinants occur in the same cell, impacting the bactericidal potential of the antibiotic of choice. These results have significant implications for optimizing bacterial eradication protocols in clinical settings, as well as in animal health and industrial food safety management.202540001444
670190.9964ZntR is a critical regulator for zinc homeostasis and involved in pathogenicity in Riemerella anatipestifer. Zinc (Zn(2+)) is essential for all bacteria, but excessive Zn(2+) levels are toxic. Bacteria maintain zinc homeostasis through regulators, such as Zur, AdcR, and ZntR. Riemerella anatipestifer is a significant Flavobacteriales pathogen causing acute serositis in ducks and other birds. In this study, we identified a homolog of ZntR, a regulator for zinc homeostasis, and demonstrated its contribution to the pathogenicity of R. anatipestifer. Deletion of zntR makes the bacteria hypersensitive to excess Zn(2+) but not to other metals like manganese (Mn(2+)), copper (Cu(2+)), cobalt (Co(2+)), and nickel (Ni(2+)). Deletion of zntR also leads to intracellular zinc accumulation but not of other metals. Additionally, compared to the wild type, the deletion of zntR increases resistance to oxidants hydrogen peroxide (H(2)O(2)) and sodium hypochlorite (NaOCl), respectively. The deletion of zntR causes significant changes in transcriptional and protein expression levels, revealing 35 genes with potential zinc metabolism functions. Among them, zupT, which is inhibited by ZntR, is required for zinc transport and resistance to oxidative stress. Finally, deletion of zntR leads to attenuation of colonization in ducklings. In summary, ZntR is a crucial regulator for zinc homeostasis and contributes to the pathogenicity of R. anatipestifer.IMPORTANCEZinc homeostasis plays a critical role in the environmental adaptability of bacteria. Riemerella anatipestifer is a significant pathogen in poultry with the potential to encounter zinc-deficient or zinc-excess environment. The mechanism of zinc homeostasis in this bacterium remains largely unexplored. In this study, we showed that the transcriptional regulator ZntR of R. anatipestifer is critical for zinc homeostasis by altering the transcription and expression of a number of genes. Importantly, ZntR inhibits the transcription of zinc transporter ZupT and contributes to colonization in R. anatipestifer. The results are significant for understanding zinc homeostasis and the pathogenic mechanisms in R. anatipestifer.202540035565