# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9364 | 0 | 0.9959 | Predictable properties of fitness landscapes induced by adaptational tradeoffs. Fitness effects of mutations depend on environmental parameters. For example, mutations that increase fitness of bacteria at high antibiotic concentration often decrease fitness in the absence of antibiotic, exemplifying a tradeoff between adaptation to environmental extremes. We develop a mathematical model for fitness landscapes generated by such tradeoffs, based on experiments that determine the antibiotic dose-response curves of Escherichia coli strains, and previous observations on antibiotic resistance mutations. Our model generates a succession of landscapes with predictable properties as antibiotic concentration is varied. The landscape is nearly smooth at low and high concentrations, but the tradeoff induces a high ruggedness at intermediate antibiotic concentrations. Despite this high ruggedness, however, all the fitness maxima in the landscapes are evolutionarily accessible from the wild type. This implies that selection for antibiotic resistance in multiple mutational steps is relatively facile despite the complexity of the underlying landscape. | 2020 | 32423531 |
| 9361 | 1 | 0.9957 | Evolutionary consequences of bacterial resistance to a flagellotropic phage. Bacteria often rapidly evolve resistance to bacteriophages (phages) by mutating or suppressing the phage-receptors, the factors that phages first target to initiate infection. Flagellotropic phages infect bacteria by initially binding to the flagellum. Since motility is an important fitness factor that allows bacteria to efficiently explore their environment, losing flagellar function to evade infection by flagellotropic phages represents a crucial trade-off. In this study, we investigated the evolutionary responses of Escherichia coli when exposed to the flagellotropic phage χ. Using an experimental evolution approach, E. coli cells were repeatedly subjected to environments rich in phage χ but selective for motility. Unlike traditional well-mixed cultures, we employed swim-plate assays to simulate spatial confinement and promote motility. Whole genome sequencing of evolved populations revealed early emergence of non-motile, χ-resistant mutants with mutations disrupting motility-related genes. Motile mutants emerged in later passages, possessing mutations in the flagellin gene fliC. Swim-plate assays showed a diverse range of motility among these mutants, with some displaying slower, and others faster, expansion speeds compared to the ancestral strain. Single-cell tracking experiments indicated an increased tumble bias in χ-resistant mutants, suggesting an adaptive response involving altered flagellar rotation. Our findings demonstrate that motility can undergo trade-offs and trade-ups with phage resistance, shedding light on the complex evolutionary dynamics between motile bacteria and flagellotropic phages. | 2025 | 40654869 |
| 9376 | 2 | 0.9956 | Historical Contingency Drives Compensatory Evolution and Rare Reversal of Phage Resistance. Bacteria and lytic viruses (phages) engage in highly dynamic coevolutionary interactions over time, yet we have little idea of how transient selection by phages might shape the future evolutionary trajectories of their host populations. To explore this question, we generated genetically diverse phage-resistant mutants of the bacterium Pseudomonas syringae. We subjected the panel of mutants to prolonged experimental evolution in the absence of phages. Some populations re-evolved phage sensitivity, whereas others acquired compensatory mutations that reduced the costs of resistance without altering resistance levels. To ask whether these outcomes were driven by the initial genetic mechanisms of resistance, we next evolved independent replicates of each individual mutant in the absence of phages. We found a strong signature of historical contingency: some mutations were highly reversible across replicate populations, whereas others were highly entrenched. Through whole-genome sequencing of bacteria over time, we also found that populations with the same resistance gene acquired more parallel sets of mutations than populations with different resistance genes, suggesting that compensatory adaptation is also contingent on how resistance initially evolved. Our study identifies an evolutionary ratchet in bacteria-phage coevolution and may explain previous observations that resistance persists over time in some bacterial populations but is lost in others. We add to a growing body of work describing the key role of phages in the ecological and evolutionary dynamics of their host communities. Beyond this specific trait, our study provides a new insight into the genetic architecture of historical contingency, a crucial component of interpreting and predicting evolution. | 2022 | 35994371 |
| 9371 | 3 | 0.9955 | Coevolutionary history of predation constrains the evolvability of antibiotic resistance in prey bacteria. Understanding how the historical contingency of biotic interactions shapes the evolvability of bacterial populations is imperative for the predictability of the eco-evolutionary dynamics of microbial communities. While microbial predators like Myxococcus xanthus influence the frequency of antibiotic-resistant bacteria in nature, the effect of adaptation to the presence of predators on the evolvability of prey bacteria to future stressors is unclear. Hence, to understand the influence of the coevolutionary history of predation on the evolvability of antibiotic resistance, we propagated variants of E. coli, pre-adapted to distinct biotic and abiotic conditions, in gradually increasing concentrations of antibiotics. We show that pre-adaptation to predators limits the evolution of a high degree of antibiotic resistance. Moreover, lower degree of resistance in the evolved strains also incurs reduced fitness costs while preserving their ancestral ability to resist predation. Together, we demonstrate that the history of biotic interactions can strongly influence the evolvability of bacteria. | 2025 | 40461734 |
| 9736 | 4 | 0.9955 | Coevolutionary phage training leads to greater bacterial suppression and delays the evolution of phage resistance. The evolution of antibiotic-resistant bacteria threatens to become the leading cause of worldwide mortality. This crisis has renewed interest in the practice of phage therapy. Yet, bacteria's capacity to evolve resistance may debilitate this therapy as well. To combat the evolution of phage resistance and improve treatment outcomes, many suggest leveraging phages' ability to counter resistance by evolving phages on target hosts before using them in therapy (phage training). We found that in vitro, λtrn, a phage trained for 28 d, suppressed bacteria ∼1,000-fold for three to eight times longer than its untrained ancestor. Prolonged suppression was due to a delay in the evolution of resistance caused by several factors. Mutations that confer resistance to λtrn are ∼100× less common, and while the target bacterium can evolve complete resistance to the untrained phage in a single step, multiple mutations are required to evolve complete resistance to λtrn. Mutations that confer resistance to λtrn are more costly than mutations for untrained phage resistance. Furthermore, when resistance does evolve, λtrn is better able to suppress these forms of resistance. One way that λtrn improved was through recombination with a gene in a defunct prophage in the host genome, which doubled phage fitness. This transfer of information from the host genome is an unexpected but highly efficient mode of training phage. Lastly, we found that many other independently trained λ phages were able to suppress bacterial populations, supporting the important role training could play during phage therapeutic development. | 2021 | 34083444 |
| 606 | 5 | 0.9955 | Coexistence of SOS-Dependent and SOS-Independent Regulation of DNA Repair Genes in Radiation-Resistant Deinococcus Bacteria. Deinococcus bacteria are extremely resistant to radiation and able to repair a shattered genome in an essentially error-free manner after exposure to high doses of radiation or prolonged desiccation. An efficient, SOS-independent response mechanism to induce various DNA repair genes such as recA is essential for radiation resistance. This pathway, called radiation/desiccation response, is controlled by metallopeptidase IrrE and repressor DdrO that are highly conserved in Deinococcus. Among various Deinococcus species, Deinococcus radiodurans has been studied most extensively. Its genome encodes classical DNA repair proteins for error-free repair but no error-prone translesion DNA polymerases, which may suggest that absence of mutagenic lesion bypass is crucial for error-free repair of massive DNA damage. However, many other radiation-resistant Deinococcus species do possess translesion polymerases, and radiation-induced mutagenesis has been demonstrated. At least dozens of Deinococcus species contain a mutagenesis cassette, and some even two cassettes, encoding error-prone translesion polymerase DnaE2 and two other proteins, ImuY and ImuB-C, that are probable accessory factors required for DnaE2 activity. Expression of this mutagenesis cassette is under control of the SOS regulators RecA and LexA. In this paper, we review both the RecA/LexA-controlled mutagenesis and the IrrE/DdrO-controlled radiation/desiccation response in Deinococcus. | 2021 | 33923690 |
| 8267 | 6 | 0.9955 | Why put up with immunity when there is resistance: an excursion into the population and evolutionary dynamics of restriction-modification and CRISPR-Cas. Bacteria can readily generate mutations that prevent bacteriophage (phage) adsorption and thus make bacteria resistant to infections with these viruses. Nevertheless, the majority of bacteria carry complex innate and/or adaptive immune systems: restriction-modification (RM) and CRISPR-Cas, respectively. Both RM and CRISPR-Cas are commonly assumed to have evolved and be maintained to protect bacteria from succumbing to infections with lytic phage. Using mathematical models and computer simulations, we explore the conditions under which selection mediated by lytic phage will favour such complex innate and adaptive immune systems, as opposed to simple envelope resistance. The results of our analysis suggest that when populations of bacteria are confronted with lytic phage: (i) In the absence of immunity, resistance to even multiple bacteriophage species with independent receptors can evolve readily. (ii) RM immunity can benefit bacteria by preventing phage from invading established bacterial populations and particularly so when there are multiple bacteriophage species adsorbing to different receptors. (iii) Whether CRISPR-Cas immunity will prevail over envelope resistance depends critically on the number of steps in the coevolutionary arms race between the bacteria-acquiring spacers and the phage-generating CRISPR-escape mutants. We discuss the implications of these results in the context of the evolution and maintenance of RM and CRISPR-Cas and highlight fundamental questions that remain unanswered. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'. | 2019 | 30905282 |
| 9604 | 7 | 0.9954 | Extreme Antibiotic Persistence via Heterogeneity-Generating Mutations Targeting Translation. Antibiotic persistence, the noninherited tolerance of a subpopulation of bacteria to high levels of antibiotics, is a bet-hedging phenomenon with broad clinical implications. Indeed, the isolation of bacteria with substantially increased persistence rates from chronic infections suggests that evolution of hyperpersistence is a significant factor in clinical therapy resistance. However, the pathways that lead to hyperpersistence and the underlying cellular states have yet to be systematically studied. Here, we show that laboratory evolution can lead to increase in persistence rates by orders of magnitude for multiple independently evolved populations of Escherichia coli and that the driving mutations are highly enriched in translation-related genes. Furthermore, two distinct adaptive mutations converge on concordant transcriptional changes, including increased population heterogeneity in the expression of several genes. Cells with extreme expression of these genes showed dramatic differences in persistence rates, enabling isolation of subpopulations in which a substantial fraction of cells are persisters. Expression analysis reveals coherent regulation of specific pathways that may be critical to establishing the hyperpersistence state. Hyperpersister mutants can thus enable the systematic molecular characterization of this unique physiological state, a critical prerequisite for developing antipersistence strategies.IMPORTANCE Bacterial persistence is a fascinating phenomenon in which a small subpopulation of bacteria becomes phenotypically tolerant to lethal antibiotic exposure. There is growing evidence that populations of bacteria in chronic clinical infections develop a hyperpersistent phenotype, enabling a substantially larger subpopulation to survive repeated antibiotic treatment. The mechanisms of persistence and modes of increasing persistence rates remain largely unknown. Here, we utilized experimental evolution to select for Escherichia coli mutants that have more than a thousandfold increase in persistence rates. We discovered that a variety of individual mutations to translation-related processes are causally involved. Furthermore, we found that these mutations lead to population heterogeneity in the expression of specific genes. We show that this can be used to isolate populations in which the majority of bacteria are persisters, thereby enabling systems-level characterization of this fascinating and clinically significant microbial phenomenon. | 2020 | 31964772 |
| 8339 | 8 | 0.9954 | Dynamical model of antibiotic responses linking expression of resistance genes to metabolism explains emergence of heterogeneity during drug exposures. Antibiotic responses in bacteria are highly dynamic and heterogeneous, with sudden exposure of bacterial colonies to high drug doses resulting in the coexistence of recovered and arrested cells. The dynamics of the response is determined by regulatory circuits controlling the expression of resistance genes, which are in turn modulated by the drug's action on cell growth and metabolism. Despite advances in understanding gene regulation at the molecular level, we still lack a framework to describe how feedback mechanisms resulting from the interdependence between expression of resistance and cell metabolism can amplify naturally occurring noise and create heterogeneity at the population level. To understand how this interplay affects cell survival upon exposure, we constructed a mathematical model of the dynamics of antibiotic responses that links metabolism and regulation of gene expression, based on the tetracycline resistancetetoperon inE. coli. We use this model to interpret measurements of growth and expression of resistance in microfluidic experiments, both in single cells and in biofilms. We also implemented a stochastic model of the drug response, to show that exposure to high drug levels results in large variations of recovery times and heterogeneity at the population level. We show that stochasticity is important to determine how nutrient quality affects cell survival during exposure to high drug concentrations. A quantitative description of how microbes respond to antibiotics in dynamical environments is crucial to understand population-level behaviors such as biofilms and pathogenesis. | 2024 | 38412523 |
| 9372 | 9 | 0.9954 | The population genetics of collateral resistance and sensitivity. Resistance mutations against one drug can elicit collateral sensitivity against other drugs. Multi-drug treatments exploiting such trade-offs can help slow down the evolution of resistance. However, if mutations with diverse collateral effects are available, a treated population may evolve either collateral sensitivity or collateral resistance. How to design treatments robust to such uncertainty is unclear. We show that many resistance mutations in Escherichia coli against various antibiotics indeed have diverse collateral effects. We propose to characterize such diversity with a joint distribution of fitness effects (JDFE) and develop a theory for describing and predicting collateral evolution based on simple statistics of the JDFE. We show how to robustly rank drug pairs to minimize the risk of collateral resistance and how to estimate JDFEs. In addition to practical applications, these results have implications for our understanding of evolution in variable environments. | 2021 | 34889185 |
| 8899 | 10 | 0.9954 | Heterogeneity in efflux pump expression predisposes antibiotic-resistant cells to mutation. Antibiotic resistance is often the result of mutations that block drug activity; however, bacteria also evade antibiotics by transiently expressing genes such as multidrug efflux pumps. A crucial question is whether transient resistance can promote permanent genetic changes. Previous studies have established that antibiotic treatment can select tolerant cells that then mutate to achieve permanent resistance. Whether these mutations result from antibiotic stress or preexist within the population is unclear. To address this question, we focused on the multidrug pump AcrAB-TolC. Using time-lapse microscopy, we found that cells with higher acrAB expression have lower expression of the DNA mismatch repair gene mutS, lower growth rates, and higher mutation frequencies. Thus, transient antibiotic resistance from elevated acrAB expression can promote spontaneous mutations within single cells. | 2018 | 30409883 |
| 8291 | 11 | 0.9954 | Pseudomonas Can Survive Tailocin Killing via Persistence-Like and Heterogenous Resistance Mechanisms. Phage tail-like bacteriocins (tailocins) are bacterially produced protein toxins that mediate competitive interactions between cocolonizing bacteria. Both theoretical and experimental research has shown there are intransitive interactions between bacteriocin-producing, bacteriocin-sensitive, and bacteriocin-resistant populations, whereby producers outcompete sensitive cells, sensitive cells outcompete resistant cells, and resistant cells outcompete producers. These so-called rock-paper-scissors dynamics explain how all three populations occupy the same environment, without one driving the others extinct. Using Pseudomonas syringae as a model, we demonstrate that otherwise sensitive cells survive bacteriocin exposure through a physiological mechanism. This mechanism allows cells to survive bacteriocin killing without acquiring resistance. We show that a significant fraction of the target cells that survive a lethal dose of tailocin did not exhibit any detectable increase in survival during a subsequent exposure. Tailocin persister cells were more prevalent in stationary- rather than log-phase cultures. Of the fraction of cells that gained detectable resistance, there was a range from complete (insensitive) to incomplete (partially sensitive) resistance. By using genomic sequencing and genetic engineering, we showed that a mutation in a hypothetical gene containing 8 to 10 transmembrane domains causes tailocin high persistence and that genes of various glycosyltransferases cause incomplete and complete tailocin resistance. Importantly, of the several classes of mutations, only those causing complete tailocin resistance compromised host fitness. This result indicates that bacteria likely utilize persistence to survive bacteriocin-mediated killing without suffering the costs associated with resistance. This research provides important insight into how bacteria can escape the trap of fitness trade-offs associated with gaining de novo tailocin resistance.IMPORTANCE Bacteriocins are bacterially produced protein toxins that are proposed as antibiotic alternatives. However, a deeper understanding of the responses of target bacteria to bacteriocin exposure is lacking. Here, we show that target cells of Pseudomonas syringae survive lethal bacteriocin exposure through both physiological persistence and genetic resistance mechanisms. Cells that are not growing rapidly rely primarily on persistence, whereas those growing rapidly are more likely to survive via resistance. We identified various mutations in lipopolysaccharide biogenesis-related regions involved in tailocin persistence and resistance. By assessing host fitness of various classes of mutants, we showed that persistence and subtle resistance are mechanisms P. syringae uses to survive competition and preserve host fitness. These results have important implications for developing bacteriocins as alternative therapeutic agents. | 2020 | 32312747 |
| 8900 | 12 | 0.9953 | Adaptive Resistance Mutations at Suprainhibitory Concentrations Independent of SOS Mutagenesis. Emergence of resistant bacteria during antimicrobial treatment is one of the most critical and universal health threats. It is known that several stress-induced mutagenesis and heteroresistance mechanisms can enhance microbial adaptation to antibiotics. Here, we demonstrate that the pathogen Bartonella can undergo stress-induced mutagenesis despite the fact it lacks error-prone polymerases, the rpoS gene and functional UV-induced mutagenesis. We demonstrate that Bartonella acquire de novo single mutations during rifampicin exposure at suprainhibitory concentrations at a much higher rate than expected from spontaneous fluctuations. This is while exhibiting a minimal heteroresistance capacity. The emerged resistant mutants acquired a single rpoB mutation, whereas no other mutations were found in their whole genome. Interestingly, the emergence of resistance in Bartonella occurred only during gradual exposure to the antibiotic, indicating that Bartonella sense and react to the changing environment. Using a mathematical model, we demonstrated that, to reproduce the experimental results, mutation rates should be transiently increased over 1,000-folds, and a larger population size or greater heteroresistance capacity is required. RNA expression analysis suggests that the increased mutation rate is due to downregulation of key DNA repair genes (mutS, mutY, and recA), associated with DNA breaks caused by massive prophage inductions. These results provide new evidence of the hazard of antibiotic overuse in medicine and agriculture. | 2021 | 34175952 |
| 9382 | 13 | 0.9953 | The evolution of mutator genes in bacterial populations: the roles of environmental change and timing. Recent studies have found high frequencies of bacteria with increased genomic rates of mutation in both clinical and laboratory populations. These observations may seem surprising in light of earlier experimental and theoretical studies. Mutator genes (genes that elevate the genomic mutation rate) are likely to induce deleterious mutations and thus suffer an indirect selective disadvantage; at the same time, bacteria carrying them can increase in frequency only by generating beneficial mutations at other loci. When clones carrying mutator genes are rare, however, these beneficial mutations are far more likely to arise in members of the much larger nonmutator population. How then can mutators become prevalent? To address this question, we develop a model of the population dynamics of bacteria confronted with ever-changing environments. Using analytical and simulation procedures, we explore the process by which initially rare mutator alleles can rise in frequency. We demonstrate that subsequent to a shift in environmental conditions, there will be relatively long periods of time during which the mutator subpopulation can produce a beneficial mutation before the ancestral subpopulations are eliminated. If the beneficial mutation arises early enough, the overall frequency of mutators will climb to a point higher than when the process began. The probability of producing a subsequent beneficial mutation will then also increase. In this manner, mutators can increase in frequency over successive selective sweeps. We discuss the implications and predictions of these theoretical results in relation to antibiotic resistance and the evolution of mutation rates. | 2003 | 12871898 |
| 9388 | 14 | 0.9953 | Suboptimal environmental conditions prolong phage epidemics in bacterial populations. Infections by filamentous phages, which are usually nonlethal to the bacterial cells, influence bacterial fitness in various ways. While phage-encoded accessory genes, for example virulence genes, can be highly beneficial, the production of viral particles is energetically costly and often reduces bacterial growth. Consequently, if costs outweigh benefits, bacteria evolve resistance, which can shorten phage epidemics. Abiotic conditions are known to influence the net-fitness effect for infected bacteria. Their impact on the dynamics and trajectories of host resistance evolution, however, remains yet unknown. To address this, we experimentally evolved the bacterium Vibrio alginolyticus in the presence of a filamentous phage at three different salinity levels, that is (1) ambient, (2) 50% reduction and (3) fluctuations between reduced and ambient. In all three salinities, bacteria rapidly acquired resistance through super infection exclusion (SIE), whereby phage-infected cells acquired immunity at the cost of reduced growth. Over time, SIE was gradually replaced by evolutionary fitter surface receptor mutants (SRM). This replacement was significantly faster at ambient and fluctuating conditions compared with the low saline environment. Our experimentally parameterized mathematical model explains that suboptimal environmental conditions, in which bacterial growth is slower, slow down phage resistance evolution ultimately prolonging phage epidemics. Our results may explain the high prevalence of filamentous phages in natural environments where bacteria are frequently exposed to suboptimal conditions and constantly shifting selections regimes. Thus, our future ocean may favour the emergence of phage-born pathogenic bacteria and impose a greater risk for disease outbreaks, impacting not only marine animals but also humans. | 2024 | 37337348 |
| 8283 | 15 | 0.9953 | Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Bacteria encounter a myriad of potentially growth-compromising conditions in nature and in hosts of pathogenic bacteria. These 'stresses' typically elicit protective and/or adaptive responses that serve to enhance bacterial survivability. Because they impact upon many of the same cellular components and processes that are targeted by antimicrobials, adaptive stress responses can influence antimicrobial susceptibility. In targeting and interfering with key cellular processes, antimicrobials themselves are 'stressors' to which protective stress responses have also evolved. Cellular responses to nutrient limitation (nutrient stress), oxidative and nitrosative stress, cell envelope damage (envelope stress), antimicrobial exposure and other growth-compromising stresses, have all been linked to the development of antimicrobial resistance in Gram-negative bacteria - resulting from the stimulation of protective changes to cell physiology, activation of resistance mechanisms, promotion of resistant lifestyles (biofilms), and induction of resistance mutations. | 2012 | 22424589 |
| 9366 | 16 | 0.9953 | Impact of bacterial mutation rate on coevolutionary dynamics between bacteria and phages. Mutator bacteria are frequently found in natural populations of bacteria and although coevolution with parasitic viruses (phages) is thought to be one reason for their persistence, it remains unclear how the presence of mutators affects coevolutionary dynamics. We hypothesized that phages must themselves adapt more rapidly or go extinct, in the face of rapidly evolving mutator bacteria. We compared the coevolutionary dynamics of wild-type Pseudomonas fluorescens SBW25 with a lytic phage to the dynamics of an isogenic mutator of P. fluorescens SBW25 together with the same phage. At the beginning of the experiment both wild-type bacteria and mutator bacteria coevolved with phages. However, mutators rapidly evolved higher levels of sympatric resistance to phages. The phages were unable to "keep-up" with the mutator bacteria, and these rates of coevolution declined to less than the rates of coevolution between the phages and wild-type bacteria. By the end of the experiment, the sympatric resistance of the mutator bacteria was not significantly different to the sympatric resistance of the wild-type bacteria. This suggests that the importance of mutators in the coevolutionary interactions with a particular phage population is likely to be short-lived. More generally, the results demonstrate that coevolving enemies may escape from Red-Queen dynamics. | 2010 | 20497216 |
| 9192 | 17 | 0.9953 | Antimicrobial peptides: Sustainable application informed by evolutionary constraints. The proliferation and global expansion of multidrug-resistant (MDR) bacteria have deepened the need to develop novel antimicrobials. Antimicrobial peptides (AMPs) are regarded as promising antibacterial agents because of their broad-spectrum antibacterial activity and multifaceted mechanisms of action with non-specific targets. However, if AMPs are to be applied sustainably, knowledge of how they induce resistance in pathogenic bacteria must be mastered to avoid repeating the traditional antibiotic resistance mistakes currently faced. Furthermore, the evolutionary constraints on the acquisition of AMP resistance by microorganisms in the natural environment, such as functional compatibility and fitness trade-offs, inform the translational application of AMPs. Consequently, the shortcut to achieve sustainable utilization of AMPs is to uncover the evolutionary constraints of bacteria on AMP resistance in nature and find the tricks to exploit these constraints, such as applying AMP cocktails to minimize the efficacy of selection for resistance or combining nanomaterials to maximize the costs of AMP resistance. Altogether, this review dissects the benefits, challenges, and opportunities of utilizing AMPs against disease-causing bacteria, and highlights the use of AMP cocktails or nanomaterials to proactively address potential AMP resistance crises in the future. | 2022 | 35752270 |
| 8264 | 18 | 0.9952 | Anti-CRISPR Phages Cooperate to Overcome CRISPR-Cas Immunity. Some phages encode anti-CRISPR (acr) genes, which antagonize bacterial CRISPR-Cas immune systems by binding components of its machinery, but it is less clear how deployment of these acr genes impacts phage replication and epidemiology. Here, we demonstrate that bacteria with CRISPR-Cas resistance are still partially immune to Acr-encoding phage. As a consequence, Acr-phages often need to cooperate in order to overcome CRISPR resistance, with a first phage blocking the host CRISPR-Cas immune system to allow a second Acr-phage to successfully replicate. This cooperation leads to epidemiological tipping points in which the initial density of Acr-phage tips the balance from phage extinction to a phage epidemic. Furthermore, both higher levels of CRISPR-Cas immunity and weaker Acr activities shift the tipping points toward higher initial phage densities. Collectively, these data help elucidate how interactions between phage-encoded immune suppressors and the CRISPR systems they target shape bacteria-phage population dynamics. | 2018 | 30033365 |
| 9377 | 19 | 0.9952 | Experimental Evolution of the TolC-Receptor Phage U136B Functionally Identifies a Tail Fiber Protein Involved in Adsorption through Strong Parallel Adaptation. Bacteriophages have received recent attention for their therapeutic potential to treat antibiotic-resistant bacterial infections. One particular idea in phage therapy is to use phages that not only directly kill their bacterial hosts but also rely on particular bacterial receptors, such as proteins involved in virulence or antibiotic resistance. In such cases, the evolution of phage resistance would correspond to the loss of those receptors, an approach termed evolutionary steering. We previously found that during experimental evolution, phage U136B can exert selection pressure on Escherichia coli to lose or modify its receptor, the antibiotic efflux protein TolC, often resulting in reduced antibiotic resistance. However, for TolC-reliant phages like U136B to be used therapeutically, we also need to study their own evolutionary potential. Understanding phage evolution is critical for the development of improved phage therapies as well as the tracking of phage populations during infection. Here, we characterized phage U136B evolution in 10 replicate experimental populations. We quantified phage dynamics that resulted in five surviving phage populations at the end of the 10-day experiment. We found that phages from all five surviving populations had evolved higher rates of adsorption on either ancestral or coevolved E. coli hosts. Using whole-genome and whole-population sequencing, we established that these higher rates of adsorption were associated with parallel molecular evolution in phage tail protein genes. These findings will be useful in future studies to predict how key phage genotypes and phenotypes influence phage efficacy and survival despite the evolution of host resistance. IMPORTANCE Antibiotic resistance is a persistent problem in health care and a factor that may help maintain bacterial diversity in natural environments. Bacteriophages ("phages") are viruses that specifically infect bacteria. We previously discovered and characterized a phage called U136B, which infects bacteria through TolC. TolC is an antibiotic resistance protein that helps bacteria pump antibiotics out of the cell. Over short timescales, phage U136B can be used to evolutionarily "steer" bacterial populations to lose or modify the TolC protein, sometimes reducing antibiotic resistance. In this study, we investigate whether U136B itself evolves to better infect bacterial cells. We discovered that the phage can readily evolve specific mutations that increase its infection rate. This work will be useful for understanding how phages can be used to treat bacterial infections. | 2023 | 37191555 |