# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5435 | 0 | 0.9730 | Distribution of fibronectin-binding protein genes (prtF1 and prtF2) and streptococcal pyrogenic exotoxin genes (spe) among Streptococcus pyogenes in Japan. Two hundred and seventy-two strains of Streptococcus pyogenes isolated from patients with invasive and noninvasive infections in Japan were evaluated for the prevalence of fibronectin-binding protein genes (prtF1 and prtF2). The possible associations of the genes with streptococcal pyrogenic exotoxin genes, macrolide resistance genes, and emm types were also evaluated. Overall, about 50% of S. pyogenes isolates carried fibronectin-binding protein genes. The prevalence of the prtF1 gene was significantly higher among isolates from noninvasive infections (71.4%) than among isolates from invasive infections (30.8%; P = 0.0037). Strains possessing both the prtF1 and prtF2 genes were more likely to be isolates from noninvasive infections than isolates from invasive infections (50.6% vs 15.4%; P = 0.019). S. pyogenes isolates with streptococcus pyrogenic exotoxin genes (speA and speZ) were more common among isolates without fibronectin-binding protein genes. The speC gene was more frequently identified among isolates with fibronectin-binding protein genes (P = 0.05). Strains belonging to emm75 or emm12 types more frequently harbored macrolide resistance genes than other emm types (P = 0.0094 and P = 0.043, respectively). Strains carrying more than one repeat at the RD2 region of the prtF1 gene and the FBRD region of the prtF2 gene were more prevalent among strains with macrolide resistance genes than among strains negative for macrolide resistance genes. These genes (i.e., the prtF1, prtF2, and spe genes) may enable host-bacteria interaction, and internalization in the host cell, but may not enable infection complications such as invasive diseases. | 2009 | 20012726 |
| 3061 | 1 | 0.9712 | Tetracycline-resistance encoding plasmids from Paenibacillus larvae, the causal agent of American foulbrood disease, isolated from commercial honeys. Paenibacillus larvae, the causal agent of American foulbrood disease in honeybees, acquires tetracycline-resistance via native plasmids carrying known tetracycline-resistance determinants. From three P. larvae tetracycline-resistant strains isolated from honeys, 5-kb-circular plasmids with almost identical sequences, designated pPL373 in strain PL373, pPL374 in strain PL374, and pPL395 in strain PL395, were isolated. These plasmids were highly similar (99%) to small tetracycline-encoding plasmids (pMA67, pBHS24, pBSDMV46A, pDMV2, pSU1, pAST4, and pLS55) that replicate by the rolling circle mechanism. Nucleotide sequences comparisons showed that pPL373, pPL374, and pPL395 mainly differed from the previously reported P. larvae plasmid pMA67 in the oriT region and mob genes. These differences suggest alternative mobilization and/or conjugation capacities. Plasmids pPL373, pPL374, and pPL395 were individually transferred by electroporation and stably maintained in tetracycline-susceptible P. larvae NRRL B-14154, in which they autonomously replicated. The presence of nearly identical plasmids in five different genera of gram-positive bacteria, i.e., Bhargavaea, Bacillus, Lactobacillus, Paenibacillus, and Sporosarcina, inhabiting diverse ecological niches provides further evidence of the genetic transfer of tetracycline resistance among environmental bacteria from soils, food, and marine habitats and from pathogenic bacteria such as P. larvae. | 2014 | 25296446 |
| 3485 | 2 | 0.9708 | Abundance and Diversity of Phages, Microbial Taxa, and Antibiotic Resistance Genes in the Sediments of the River Ganges Through Metagenomic Approach. In this study, we have analyzed the metagenomic DNA from the pooled sediment sample of the river Ganges to explore the abundance and diversity of phages, microbial community, and antibiotic resistance genes (ARGs). Utilizing data from Illumina platform, 4,174 (∼0.0013%) reads were classified for the 285 different DNA viruses largely dominated by the group of 260 distinctive phages (3,602 reads, ∼86.3%). Among all, Microcystis (782 hits), Haemophilus (403), Synechococcus (386), Pseudomonas (279), Enterococcus (232), Bacillus (196), Rhodococcus (166), Caulobacter (163), Salmonella (146), Enterobacteria (143), Mycobacterium and (128) phages show the highest abundance and account for ∼90% of the total identified phages. In addition, we have also identified corresponding host pertaining to these phages. Mainly, Proteobacteria (∼69.3%) dominates the microbial population structure. Primarily, orders such as Caulobacterales (∼28%), Burkholderiales (∼13.9%), Actinomycetales (∼13.7%), and Pseudomonadales (∼7.5%) signify the core section. Furthermore, 21,869 (∼0.00695%) reads were classified in 20 ARG types (classes) and 240 ARGs (subtypes), among which 4 ARG types, namely multidrug resistance (12,041 reads, ∼55%), bacitracin (3,202 reads, ∼15%), macrolide-lincosamide-streptogramin (1,744 reads, ∼7.98%), and fosmidomycin (990 reads, ∼4.53%), have the highest abundance. Simultaneously, six resistance mechanisms were also recognized with the dominance of antibiotic efflux (72.8%, 15,919 reads). The results unveil the distribution of (pro)-phages; microbial community; and various ARGs in the Ganges river sediments. | 2021 | 33913739 |
| 1348 | 3 | 0.9707 | Prevalence and transmission of antimicrobial-resistant Staphylococci and Enterococci from shared bicycles in Chengdu, China. Shared bicycles are prevailing in China but the extent to which they contribute to maintaining and transmitting pathogens and antibiotic-resistant bacteria remain largely unknown. To fill the knowledge gap, herein, swab samples (n = 963) were collected from handlebars of shared bicycles in areas of hospital, school, metro station (n = 887) and riders (n = 76) in Chengdu, China. Staphylococci (n = 241) and Enterococci (n = 69) were widely distributed across sampling locations at a frequency of 2.3%-12.9%, and 0.08%-5.5%, respectively. Bicycle or rider-borne Gram-positive bacteria were frequently resistant to clinically important antibiotics including linezolid, fosfomycin, and vancomycin, and a significant portion of these isolates (3.4%-16.6% for Staphylococci and 0.1%-13.8% for Enterococci) indicated multidrug resistance. Nineteen Staphylococcus aureus isolates were identified in this collection and 52.6% of which were considered as methicillin-resistant S. aureus. Whole genome sequencing further characterized 26 antimicrobial resistance genes (ARGs) including fosB, fusB, and lnu(G) in S. aureus and 21 ARGs including optrA in Enterococci. Leveraging a complementary approach with conventional MLST, whole genome SNP and MLST analyses, we present that genetically closely-related bacteria were found in bicycles and riders across geographical-distinct locations suggesting bacterial transmission. Further, five new ST types 5697-5701 were firstly characterized in S. aureus. ST 942 and ST 1640 are new ST types observed in E. faecalis, and E. faecium, respectively. Our results highlighted the risk of shared bicycle system in disseminating pathogens and antibiotic resistance which warrants effective disinfections. | 2020 | 32531590 |
| 6118 | 4 | 0.9705 | Integrated genomics and transcriptomics reveal the extreme heavy metal tolerance and adsorption potentiality of Staphylococcus equorum. In this study, we successfully isolated 11 species of cadmium-tolerant bacterium from Pu-erh rhizosphere soil, of which Staphylococcus equorum PU1 showed the highest cadmium tolerance, with a minimum inhibitory concentration (MIC) value of 500 mg/L. The cadmium removal efficiency of PU1 in 400 mg/L cadmium medium reached 58.7 %. Based on the Nanopore PromethION and Illumina NovaSeq platforms, we successfully obtained the complete PU1 genome with a size of 2,705,540 bp, which encoded 2729 genes. We further detected 82 and 44 indel mutations in the PU1 genome compared with the KS1039 and KM1031 genomes from the database. Transcriptional analysis showed that the expression of 11 genes in PU1 increased with increasing cadmium concentrations (from 0 to 200, then to 400 mg/L), which encoded cadmium resistance, cadmium transport, and mercury resistance genes. In addition, some genes showed differential expression patterns with changes in cadmium concentration, including quinone oxidoreductase-like protein, ferrous iron transport protein, and flavohemoprotein. Gene Ontology (GO) functions, including oxidation reduction process and oxidoreductase activity functions, and KEGG pathways, including glycolysis/gluconeogenesis and biosynthesis of secondary metals, were also considered closely related to the extreme cadmium tolerance of PU1. This study provides novel insight into the cadmium tolerance mechanism of bacteria. | 2023 | 36592848 |
| 5216 | 5 | 0.9705 | Unraveling the draft genome and phylogenomic analysis of a multidrug-resistant Planococcus sp. NCCP-2050(T): a promising novel bacteria from Pakistan. Planococcus is a genus of Gram-positive bacteria known for potential industrial and agricultural applications. Here, we report the first draft genome sequence and phylogenomic analysis of a CRISPR-carrying, multidrug-resistant, novel candidate Planococcus sp. NCCP-2050(T) isolated from agricultural soil in Pakistan. The strain NCCP-2050(T) exhibited significant resistance to various classes of antibiotics, including fluoroquinolones (i.e., ciprofloxacin, levofloxacin, ofloxacin, moxifloxacin, and bacitracin), cephalosporins (cefotaxime, ceftazidime, cefoperazone), rifamycins (rifampicin), macrolides (erythromycin), and glycopeptides (vancomycin). Planococcus sp. NCCP-2050(T) consists of genome size of 3,463,905 bp, comprised of 3639 annotated genes, including 82 carbohydrate-active enzyme genes and 39 secondary metabolite genes. The genome also contained 80 antibiotic resistance, 162 virulence, and 305 pathogen-host interaction genes along with two CRISPR arrays. Based on phylogenomic analysis, digital DNA-DNA hybridization, and average nucleotide identity values (i.e., 35.4 and 88.5%, respectively) it was suggested that strain NCCP-2050(T) might represent a potential new species within the genus Planococcus. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-023-03748-z. | 2023 | 37663752 |
| 3008 | 6 | 0.9703 | Sequence of conjugative plasmid pIP1206 mediating resistance to aminoglycosides by 16S rRNA methylation and to hydrophilic fluoroquinolones by efflux. Self-transferable IncFI plasmid pIP1206, isolated from an Escherichia coli clinical isolate, carries two new resistance determinants: qepA, which confers resistance to hydrophylic fluoroquinolones by efflux, and rmtB, which specifies a 16S rRNA methylase conferring high-level aminoglycoside resistance. Analysis of the 168,113-bp sequence (51% G+C) revealed that pIP1206 was composed of several subregions separated by copies of insertion sequences. Of 151 open reading frames, 56 (37%) were also present in pRSB107, isolated from a bacterium in a sewage treatment plant. pIP1206 contained four replication regions (RepFIA, RepFIB, and two partial RepFII regions) and a transfer region 91% identical with that of pAPEC-O1-ColBM, a plasmid isolated from an avian pathogenic E. coli. A putative oriT region was found upstream from the transfer region. The antibiotic resistance genes tet(A), catA1, bla(TEM-1), rmtB, and qepA were clustered in a 33.5-kb fragment delineated by two IS26 elements that also carried a class 1 integron, including the sulI, qacEDelta1, aad4, and dfrA17 genes and Tn10, Tn21, and Tn3-like transposons. The plasmid also possessed a raffinose operon, an arginine deiminase pathway, a putative iron acquisition gene cluster, an S-methylmethionine metabolism operon, two virulence-associated genes, and a type I DNA restriction-modification (R-M) system. Three toxin/antitoxin systems and the R-M system ensured stabilization of the plasmid in the host bacteria. These data suggest that the mosaic structure of pIP1206 could have resulted from recombination between pRSB107 and a pAPEC-O1-ColBM-like plasmid, combined with structural rearrangements associated with acquisition of additional DNA by recombination and of mobile genetic elements by transposition. | 2008 | 18458128 |
| 6077 | 7 | 0.9701 | Brytella acorum gen. nov., sp. nov., a novel acetic acid bacterium from sour beverages. Polyphasic taxonomic and comparative genomic analyses revealed that a series of lambic beer isolates including strain LMG 32668(T) and the kombucha isolate LMG 32879 represent a novel species among the acetic acid bacteria, with Acidomonas methanolica as the nearest phylogenomic neighbor with a valid name. Overall genomic relatedness indices and phylogenomic and physiological analyses revealed that this novel species was best classified in a novel genus for which we propose the name Brytella acorum gen. nov., sp. nov., with LMG 32668(T) (=CECT 30723(T)) as the type strain. The B. acorum genomes encode a complete but modified tricarboxylic acid cycle, and complete pentose phosphate, pyruvate oxidation and gluconeogenesis pathways. The absence of 6-phosphofructokinase which rendered the glycolysis pathway non-functional, and an energy metabolism that included both aerobic respiration and oxidative fermentation are typical metabolic characteristics of acetic acid bacteria. Neither genome encodes nitrogen fixation or nitrate reduction genes, but both genomes encode genes for the biosynthesis of a broad range of amino acids. Antibiotic resistance genes or virulence factors are absent. | 2023 | 37429096 |
| 5134 | 8 | 0.9699 | Genomic analysis and antibiotic resistance of a multidrug-resistant bacterium isolated from pharmaceutical wastewater treatment plant sludge. Pharmaceutical wastewater treatment plants (PWWTPs) serve as reservoirs for antibiotic-resistant bacteria (ARBs) and antibiotic resistance genes (ARGs). In this study, a multiantibiotic-resistant strain of Acinetobacter lwoffii (named N4) was isolated from the dewatered sludge of a PWWTP. N4 exhibited high resistance to both antibiotics and metals, with minimum inhibitory concentrations (MICs) of chloramphenicol and cefazolin reaching 1024 mg·L(-1) and MICs of Cu(2+) and Zn(2+) reaching 512 mg·L(-1). Co-sensitization experiments revealed that when antibiotics are co-existing with heavy metal ions (such as TET and Cd(2+), AMP and Cu(2+)) could enhance the resistance of N4 to them. Whole-genome sequencing of N4 revealed a genome size of 0.37 Mb encoding 3359 genes. Among these, 23 ARGs were identified, including dfrA26, bl2be(CTXM), catB3, qnrB, rosB, tlrC, smeD, smeE, mexE, ceoB, oprN, acrB, adeF, ykkC, ksgA and sul2, which confer resistance through mechanisms such as efflux pumps, enzyme modification and target bypass. Additionally, the N4 genome contained 187 genes associated with human disease and 249 virulence factors, underscoring its potential pathogenicity. Overall, this study provides valuable insights into ARBs in PWWTPs and highlights the potential risks posed by multidrug-resistant strains such as N4. | 2025 | 39626482 |
| 7733 | 9 | 0.9699 | A glance at the gut microbiota and the functional roles of the microbes based on marmot fecal samples. Research on the gut microbiota, which involves a large and complex microbial community, is an important part of infectious disease control. In China, few studies have been reported on the diversity of the gut microbiota of wild marmots. To obtain full details of the gut microbiota, including bacteria, fungi, viruses and archaea, in wild marmots, we have sequenced metagenomes from five sample-sites feces on the Hulun Buir Grassland in Inner Mongolia, China. We have created a comprehensive database of bacterial, fungal, viral, and archaeal genomes and aligned metagenomic sequences (determined based on marmot fecal samples) against the database. We delineated the detailed and distinct gut microbiota structures of marmots. A total of 5,891 bacteria, 233 viruses, 236 fungi, and 217 archaea were found. The dominant bacterial phyla were Firmicutes, Proteobacteria, Bacteroidetes, and Actinomycetes. The viral families were Myoviridae, Siphoviridae, Phycodnaviridae, Herpesviridae and Podoviridae. The dominant fungi phyla were Ascomycota, Basidiomycota, and Blastocladiomycota. The dominant archaea were Biobacteria, Omoarchaea, Nanoarchaea, and Microbacteria. Furthermore, the gut microbiota was affected by host species and environment, and environment was the most important factor. There were 36,989 glycoside hydrolase genes in the microbiota, with 365 genes homologous to genes encoding β-glucosidase, cellulase, and cellulose β-1,4-cellobiosidase. Additionally, antibiotic resistance genes such as macB, bcrA, and msbA were abundant. To sum up, the gut microbiota of marmot had population diversity and functional diversity, which provides a basis for further research on the regulatory effects of the gut microbiota on the host. In addition, metagenomics revealed that the gut microbiota of marmots can degrade cellulose and hemicellulose. | 2023 | 37125200 |
| 5213 | 10 | 0.9699 | Draft genome sequences of Limosilactobacillus fermentum IJAL 01 335, isolated from a traditional cereal fermented dough. Limosilactobacillus fermentum IJAL 01 335 was isolated from mawè, a spontaneously fermented cereal dough from Benin. The 1.83 Mb draft genome sequence (52.37% GC) comprises 154 contigs, 1,836 coding sequences, and 23 predicted antibiotic resistance genes, providing insights into its genetic features and potential application in food fermentation. | 2025 | 41170963 |
| 7738 | 11 | 0.9698 | The microbiome and its association with antibiotic resistance genes in the hadal biosphere at the Yap Trench. The hadal biosphere, the deepest part of the ocean, is known as the least-explored aquatic environment and hosts taxonomically diverse microbial communities. However, the microbiome and its association with antibiotic resistance genes (ARGs) in the hadal ecosystem remain unknown. Here, we profiled the microbiome diversity and ARG occurrence in seawater and sediments of the Yap Trench (YT) using metagenomic sequencing. Within the prokaryote (bacteria and archaea) lineages, the main components of bacteria were Gammaproteobacteria (77.76 %), Firmicutes (8.36 %), and Alphaproteobacteria (2.25 %), whereas the major components of archaea were Nitrososphaeria (6.51 %), Nanoarchaeia (0.42 %), and Thermoplasmata (0.25 %), respectively. Taxonomy of viral contigs showed that the classified viral communities in YT seawater and sediments were dominated by Podoviridae (45.96 %), Siphoviridae (29.41 %), and Myoviridae (24.63 %). A large majority of viral contigs remained uncharacterized and exhibited endemicity. A total of 48 ARGs encoding resistance to 12 antibiotic classes were identified and their hosts were bacteria and viruses. Novel ARG subtypes mexF(YTV-1), mexF(YTV-2), mexF(YTV-3), vanR(YTV-1), vanS(YTV-1) (carried by unclassified viruses), and bacA(YTB-1) (carried by phylum Firmicutes) were detected in seawater samples. Overall, our findings imply that the hadal environment of the YT is a repository of viral and ARG diversity. | 2022 | 35870206 |
| 1494 | 12 | 0.9697 | Characterization of a Novel Chromosomal Class C β-Lactamase, YOC-1, and Comparative Genomics Analysis of a Multidrug Resistance Plasmid in Yokenella regensburgei W13. Yokenella regensburgei, a member of the family Enterobacteriaceae, is usually isolated from environmental samples and generally resistant to early generations of cephalosporins. To characterize the resistance mechanism of Y. regensburgei strain W13 isolated from the sewage of an animal farm, whole genome sequencing, comparative genomics analysis and molecular cloning were performed. The results showed that a novel chromosomally encoded class C β-lactamase gene with the ability to confer resistance to β-lactam antibiotics, designated bla (YOC) (-) (1), was identified in the genome of Y. regensburgei W13. Kinetic analysis revealed that the β-lactamase YOC-1 has a broad spectrum of substrates, including penicillins, cefazolin, cefoxitin and cefotaxime. The two functionally characterized β-lactamases with the highest amino acid identities to YOC-1 were CDA-1 (71.69%) and CMY-2 (70.65%). The genetic context of the bla (YOC) (-) (1) -ampR-encoding region was unique compared with the sequences in the NCBI nucleotide database. The plasmid pRYW13-125 of Y. regensburgei W13 harbored 11 resistance genes (bla (OXA) (-) (10), bla (LAP) (-) (2), dfrA14, tetA, tetR, cmlA5, floR, sul2, ant(3″)-IIa, arr-2 and qnrS1) within an ∼34 kb multidrug resistance region; these genes were all related to mobile genetic elements. The multidrug resistance region of pYRW13-125 shared the highest identities with those of two plasmids from clinical Klebsiella pneumoniae isolates, indicating the possibility of horizontal transfer of these resistance genes between bacteria of various origins. | 2020 | 32973731 |
| 6081 | 13 | 0.9696 | In vitro probiotic characteristics and whole-genome sequence analysis of lactic acid bacteria isolated from monkey faeces. This study aimed to isolate lactic acid bacteria from monkey faeces and evaluate their safety and probiotic properties through a combination of in vitro assays and complete genomic sequencing. The results revealed that two Limosilactobacillus reuteri strains (LDHa and LSHe) exhibited promising probiotic attributes: no hemolytic activity, remarkable antibacterial activity against intestinal pathogens, high bile salt tolerance (77.46% survival rate for LDHa at 0.3% bile salt concentration), excellent gastrointestinal resistance (survival rate > 40%), and favorable surface characteristics (63.92-66.00% auto-aggregation; 91.33-93.80% hydrophobicity). The whole genome sequencing results revealed that strain LDHa has a total length of 2,031,794 bp with a GC content of 39.02% and contains (Strompfová et al. 2014) coding genes. The LSHe strain has a total length of 2,031,507 bp with a GC content of 39.02% and contains 1954 coding genes. Genomic analysis revealed that both strains possess four CRISPR sequences and one secondary metabolic gene cluster, with functional annotations from the EGGNOG, KEGG, and CAZy databases demonstrating genome stability; the absence of horizontally transferable antibiotic resistance genes; the enrichment of metabolic pathway-related genes, and probiotic-associated functional potential including antimicrobial, anti-inflammatory, immunomodulatory, and antitumor activities. This study demonstrated that L. reuteri LDHa and LSHe exhibit favorable safety profiles and probiotic potential at both physiological and genomic levels, positioning them as promising candidates for probiotic formulations in captive primate populations. | 2025 | 40852645 |
| 3016 | 14 | 0.9696 | Complete nucleotide sequence of the conjugative tetracycline resistance plasmid pFBAOT6, a member of a group of IncU plasmids with global ubiquity. This study presents the first complete sequence of an IncU plasmid, pFBAOT6. This plasmid was originally isolated from a strain of Aeromonas caviae from hospital effluent (Westmorland General Hospital, Kendal, United Kingdom) in September 1997 (G. Rhodes, G. Huys, J. Swings, P. McGann, M. Hiney, P. Smith, and R. W. Pickup, Appl. Environ. Microbiol. 66:3883-3890, 2000) and belongs to a group of related plasmids with global ubiquity. pFBAOT6 is 84,748 bp long and has 94 predicted coding sequences, only 12 of which do not have a possible function that has been attributed. Putative replication, maintenance, and transfer functions have been identified and are located in a region in the first 31 kb of the plasmid. The replication region is poorly understood but exhibits some identity at the protein level with replication proteins from the gram-positive bacteria Bacillus and Clostridium. The mating pair formation system is a virB homologue, type IV secretory pathway that is similar in its structural organization to the mating pair formation systems of the related broad-host-range (BHR) environmental plasmids pIPO2, pXF51, and pSB102 from plant-associated bacteria. Partitioning and maintenance genes are homologues of genes in IncP plasmids. The DNA transfer genes and the putative oriT site also exhibit high levels of similarity with those of plasmids pIPO2, pXF51, and pSB102. The genetic load region encompasses 54 kb, comprises the resistance genes, and includes a class I integron, an IS630 relative, and other transposable elements in a 43-kb region that may be a novel Tn1721-flanked composite transposon. This region also contains 24 genes that exhibit the highest levels of identity to chromosomal genes of several plant-associated bacteria. The features of the backbone of pFBAOT6 that are shared with this newly defined group of environmental BHR plasmids suggest that pFBAOT6 may be a relative of this group, but a relative that was isolated from a clinical bacterial environment rather than a plant-associated bacterial environment. | 2004 | 15574953 |
| 5239 | 15 | 0.9695 | The mobile gene cassette carrying tetracycline resistance genes in Aeromonas veronii strain Ah5S-24 isolated from catfish pond sediments shows similarity with a cassette found in other environmental and foodborne bacteria. Aeromonas veronii is a Gram-negative bacterium ubiquitously found in aquatic environments. It is a foodborne pathogen that causes diarrhea in humans and hemorrhagic septicemia in fish. In the present study, we used whole-genome sequencing (WGS) to evaluate the presence of antimicrobial resistance (AMR) and virulence genes found in A. veronii Ah5S-24 isolated from catfish pond sediments in South-East, United States. We found cphA4, dfrA3, mcr-7.1, valF, bla (FOX-7), and bla (OXA-12) resistance genes encoded in the chromosome of A. veronii Ah5S-24. We also found the tetracycline tet(E) and tetR genes placed next to the IS5/IS1182 transposase, integrase, and hypothetical proteins that formed as a genetic structure or transposon designated as IS5/IS1182/hp/tet(E)/tetR/hp. BLAST analysis showed that a similar mobile gene cassette (MGC) existed in chromosomes of other bacteria species such as Vibrio parahaemolyticus isolated from retail fish at markets, Aeromonas caviae from human stool and Aeromonas media from a sewage bioreactor. In addition, the IS5/IS1182/hp/tet(E)/tetR/hp cassette was also found in the plasmid of Vibrio alginolyticus isolated from shrimp. As for virulence genes, we found the tap type IV pili (tapA and tapY), polar flagellae (flgA and flgN), lateral flagellae (ifgA and IfgL), and fimbriae (pefC and pefD) genes responsible for motility and adherence. We also found the hemolysin genes (hylII, hylA, and TSH), aerA toxin, biofilm formation, and quorum sensing (LuxS, mshA, and mshQ) genes. However, there were no MGCs encoding virulence genes found in A. veronii AhS5-24. Thus, our findings show that MGCs could play a vital role in the spread of AMR genes between chromosomes and plasmids among bacteria in aquatic environments. Overall, our findings are suggesting that MGCs encoding AMR genes could play a vital role in the spread of resistance acquired from high usage of antimicrobials in aquaculture to animals and humans. | 2023 | 37007502 |
| 6015 | 16 | 0.9692 | Integrative genome analysis of bacteriocin-producing Lactiplantibacillus pentosus LNP1-39 and its synbiotic role in suppressing food-borne pathogens. Lactic acid bacteria were isolated from traditional Thai-fermented foods. Among these, the strain LNP1-39, closely related to Lactiplantibacillus pentosus, was selected for further study because of its non-pathogenic profile. The bacteriocins produced by L. pentosus LNP1-39 were proteinaceous substances that exhibited strong antimicrobial activity across a wide pH range (pH 2-11; 6400-2400 AU/mL) and thermal stability at 100 °C for 40 min (400 AU/mL). These bacteriocins showed a narrow antimicrobial spectrum, effectively targeting Gram-positive pathogens, such as Kocuria rhizophila MIII, Enterococcus faecalis JCM 5803( T), and Listeria monocytogenes ATCC 19115. Comprehensive safety assessments, including whole-genome analysis and in vitro tests, confirmed a low risk of antibiotic resistance and the absence of virulence factors. Strain LNP1-39 was confirmed to be closely related to L. pentosus DSM 20314( T) via digital DNA‒DNA hybridization (dDDH; 75.4%), with average nucleotide identity (ANI) at 96.56% ANIb and 97.22% ANIm values. Additionally, LNP1-39 produces pediocin with notable similarity (76.29% identity to pediocin) and presents low risks for antibiotic-resistance genes or transfer genes while providing antioxidant properties. Strain LNP1-39 survived harsh gastrointestinal tract conditions and exhibited a favorable prebiotic index and positive prebiotic activity score when paired with polydextrose or isomalto-oligosaccharide. These findings support L. pentosus LNP1-39 as potential bacteriocin-producing lactic acid bacteria for further application in food preservation and pathogen control or as a synbiotic. | 2025 | 40622670 |
| 3036 | 17 | 0.9692 | Complete nucleotide sequences of 84.5- and 3.2-kb plasmids in the multi-antibiotic resistant Salmonella enterica serovar Typhimurium U302 strain G8430. The multi-antibiotic resistant (MR) Salmonella enterica serovar Typhimurium phage type U302 strain G8430 exhibits the penta-resistant ACSSuT-phenotype (ampicillin, chloramphenicol, streptomycin, sulfonamides and tetracycline), and is also resistant to carbenicillin, erythromycin, kanamycin, and gentamicin. Two plasmids, 3.2- and 84.5-kb in size, carrying antibiotic resistance genes were isolated from this strain, and the nucleotide sequences were determined and analyzed. The 3.2-kb plasmid, pU302S, belongs to the ColE1 family and carries the aph(3')-I gene (Kan(R)). The 84.5-kb plasmid, pU302L, is an F-like plasmid and contains 14 complete IS elements and multiple resistance genes including aac3, aph(3')-I, sulII, tetA/R, strA/B, bla(TEM-1), mph, and the mer operon. Sequence analyses of pU302L revealed extensive homology to various plasmids or transposons, including F, R100, pHCM1, pO157, and pCTX-M3 plasmids and TnSF1 transposon, in regions involved in plasmid replication/maintenance functions and/or in antibiotic resistance gene clusters. Though similar to the conjugative plasmids F and R100 in the plasmid replication regions, pU302L does not contain oriT and the tra genes necessary for conjugal transfer. This mosaic pattern of sequence similarities suggests that pU302L acquired the resistance genes from a variety of enteric bacteria and underscores the importance of a further understanding of horizontal gene transfer among the enteric bacteria. | 2007 | 16828159 |
| 3007 | 18 | 0.9692 | Analysis of the complete nucleotide sequence of an Actinobacillus pleuropneumoniae streptomycin-sulfonamide resistance plasmid, pMS260. pMS260 is an 8.1-kb non-conjugative but mobilizable plasmid that was isolated from Actinobacillus pleuropneumoniae and encodes streptomycin (SM) and sulfonamide (SA) resistances. The analysis of the complete nucleotide sequence of the plasmid revealed a high degree of similarity between pMS260 and the broad-host-range IncQ family plasmids. pMS260 had a single copy of an origin of vegetative replication (oriV). This sequence was identical to a functional oriV of the IncQ-like plasmid pIE1130 that had been exogenously isolated from piggery manure. However, pMS260 did not carry the second IncQ plasmid RSF1010-like oriV region present in pIE1130. A pIE1130-identical transfer origin was also found in pMS260. In addition, the deduced amino acid sequences from 10 open reading frames identified in pMS260 were entirely or nearly identical to those from genes for the replication, mobilization, and SM-SA resistance of pIE1130, indicating that pMS260 belongs to the IncQ-1 gamma subgroup. pMS260 is physically indistinguishable from pIE1130 apart from two DNA regions that contain the chloramphenicol and kanamycin resistance genes (catIII and aphI, respectively) and the second oriV-like region of pIE1130. The codon bias analysis of each gene of pIE1130 and the presence of potential recombination sites in the sulII-strA intergenic regions suggest that pIE1130 seems to have acquired the catIII and aphI genes more recently than the other genes of pIE1130. Therefore, pMS260 may be the ancestor of pIE1130. Information regarding the broad-host-range replicon of pMS260 will be useful in the development of genetic systems for a wide range of bacteria including A. pleuropneumoniae. | 2004 | 14711528 |
| 3091 | 19 | 0.9692 | 16S rDNA-Based Amplicon Analysis Unveiled a Correlation Between the Bacterial Diversity and Antibiotic Resistance Genes of Bacteriome of Commercial Smokeless Tobacco Products. The distribution of bacterial-derived antibiotic resistance genes (ARGs) in smokeless tobacco products is less explored and encourages understanding of the ARG profile of Indian smokeless tobacco products. Therefore, in the present investigation, ten commercial smokeless tobacco products were assessed for their bacterial diversity to understand the correlation between the inhabitant bacteria and predicted ARGs using a 16S rDNA-based metagenome analysis. Overall analysis showed the dominance of two phyla, i.e., Firmicutes (43.07%) and Proteobacteria (8.13%) among the samples, where Bacillus (9.76%), Terribacillus (8.06%), Lysinibacillus (5.8%), Alkalibacterium (5.6%), Oceanobacillus (3.52%), and Dickeya (3.1%) like genera were prevalent among these phyla. The phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt)-based analysis revealed 217 ARGs which were categorized into nine groups. Cationic antimicrobial polypeptides (CAMP, 33.8%), vancomycin (23.4%), penicillin-binding protein (13.8%), multidrug resistance MDR (10%), and β-lactam (9.3%) were among the top five contributors to ARGs. Staphylococcus, Dickeya, Bacillus, Aerococcus, and Alkalibacterium showed their strong and significant correlation (p value < 0.05) with various antibiotic resistance mechanisms. ARGs of different classes (blaTEM, blaSHV, blaCTX, tetX, vanA, aac3-II, mcr-1, intI-1, and intI2) were also successfully amplified in the metagenomes of SMT samples using their specific primers. The prevalence of ARGs in inhabitant bacteria of smokeless tobacco products suggests making steady policies to regulate the hygiene of commercial smokeless tobacco products. | 2024 | 38407781 |