# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9478 | 0 | 0.9988 | General principles of antibiotic resistance in bacteria. Given the impact of antibiotic resistance on human health, its study is of great interest from a clinical view- point. In addition, antibiotic resistance is one of the few examples of evolution that can be studied in real time. Knowing the general principles involved in the acquisition of antibiotic resistance is therefore of interest to clinicians, evolutionary biologists and ecologists. The origin of antibiotic resistance genes now possessed by human pathogens can be traced back to environmental microorganisms. Consequently, a full understanding of the evolution of antibiotic resistance requires the study of natural environments as well as clinical ecosystems. Updated information on the evolutionary mechanisms behind resistance, indicates that ecological connectivity, founder effect and fitness costs are important bottle- necks that modulate the transfer of resistance from environmental microorganisms to pathogens. | 2014 | 24847651 |
| 8328 | 1 | 0.9987 | The Diverse Impacts of Phage Morons on Bacterial Fitness and Virulence. The viruses that infect bacteria, known as phages, are the most abundant biological entity on earth. They play critical roles in controlling bacterial populations through phage-mediated killing, as well as through formation of bacterial lysogens. In this form, the survival of the phage depends on the survival of the bacterial host in which it resides. Thus, it is advantageous for phages to encode genes that contribute to bacterial fitness and expand the environmental niche. In many cases, these fitness factors also make the bacteria better able to survive in human infections and are thereby considered pathogenesis or virulence factors. The genes that encode these fitness factors, known as "morons," have been shown to increase bacterial fitness through a wide range of mechanisms and play important roles in bacterial diseases. This review outlines the benefits provided by phage morons in various aspects of bacterial life, including phage and antibiotic resistance, motility, adhesion and quorum sensing. | 2019 | 30635074 |
| 9530 | 2 | 0.9987 | The role of biofilms in otolaryngologic infections. PURPOSE OF REVIEW: Bacterial biofilms have recently been shown to be important in diseases of the head and neck. Because the concept of biofilms is novel to most practitioners, it is important to gain a basic understanding of biofilms and to recognize that strategies developed to treat planktonic bacteria are ineffective against bacteria in a biofilm. RECENT FINDINGS: Bacteria preferentially exist in complex, surface-attached organizations known as biofilms. Bacteria in biofilms express a different set of genes than their planktonic counterparts and have markedly different phenotypes. Biofilm bacteria communicate with each other, and have mechanisms to diffuse nutrients and dispose of waste. Biofilms provide bacteria with distinct advantages, including antimicrobial resistance and protection from host defenses. Thus, bacteria exist in a far more complex fashion than previously thought and can best be thought of as "self-assembling multicellular communities." Although a focus on the planktonic form of bacteria has been useful in understanding acute infections, chronic infections are much better understood as biofilm illnesses. Biofilms have been shown to be involved in chronic otitis media, chronic tonsillitis, cholesteatoma, and device-associated infections. SUMMARY: Now that basic research has demonstrated that the vast majority of bacteria exist in biofilms, the biofilm concept of disease is beginning to spread throughout the clinical world. Understanding that many of the infections that affect structures of the head and neck are actually biofilm related is fundamental to developing rational strategies for treatment and prevention. | 2004 | 15167027 |
| 9724 | 3 | 0.9987 | Characteristics of phage-plasmids and their impact on microbial communities. Bacteria host various foreign genetic elements, most notably plasmids and bacteriophages (or phages). Historically, these two classes were seen as separate, but recent research has shown considerable interplay between them. Phage-plasmids (P-Ps) exhibit characteristics of both phages and plasmids, allowing them to exist extrachromosomally within bacterial hosts as plasmids, but also to infect and lyse bacteria as phages. This dual functionality enables P-Ps to utilize the modes of transmission of both phage and plasmids, facilitating the rapid dissemination of genetic material, including antibiotic resistance and virulence genes, throughout bacterial populations. Additionally, P-Ps have been found to encode toxin-antitoxin and CRISPR-Cas adaptive immune systems, which enhance bacterial survival under stress and provide immunity against other foreign genetic elements. Despite a growing body of literature on P-Ps, large gaps remain in our understanding of their ecological roles and environmental prevalence. This review aims to synthesise existing knowledge and identify research gaps on the impacts of P-Ps on microbial communities. | 2024 | 39611587 |
| 9525 | 4 | 0.9986 | Is there a serious risk of resistance development to azoles among fungi due to the widespread use and long-term application of azole antifungals in medicine? It is well known that development of antibiotic resistance in bacteria is not a matter of if but of when. Recently, azoles have been recommended for long-term prophylaxis of invasive fungal infections; hence, it could be argued that fungi also will become resistant to these agents. However, fungi are different from bacteria in several critical points. Bacteria display several resistance mechanisms: alteration of the target, limited access to the target and modification/inactivation of the antibacterial compound. In fungi some mechanisms of resistance to azoles are also known; with azoles for example, alterations of the 14alpha-demethylase target, as well as efflux pumps. It has been observed that these phenotypes develop in yeast populations either due to mutations or to selection processes. However, enzymes which destroy azoles are not found. Furthermore, a horizontal transfer of genes coding resistance traits does not occur in fungi, which means that an explosive expansion of resistances is unlikely to occur, especially in moulds. Indeed, in epidemiologic studies on human and environmental isolates there is convincing evidence that azole resistance is quite uncommon. | 2008 | 18325827 |
| 9490 | 5 | 0.9986 | The superbugs: evolution, dissemination and fitness. Since the introduction of antibiotics, bacteria have not only evolved elegant resistance mechanisms to thwart their effect, but have also evolved ways in which to disseminate themselves or their resistance genes to other susceptible bacteria. During the past few years, research has revealed not only how such resistance mechanisms have been able to evolve and to rapidly disseminate, but also how bacteria have, in some cases, been able to adapt to this new burden of resistance with little or no cost to their fitness. Such adaptations make the control of these superbugs all the more difficult. | 1998 | 10066531 |
| 9597 | 6 | 0.9986 | Role of xenobiotic transporters in bacterial drug resistance and virulence. Since the discovery of antibiotic therapeutics, the battles between humans and infectious diseases have never been stopped. Humans always face the appearance of a new bacterial drug-resistant strain followed by new antibiotic development. However, as the genome sequences of infectious bacteria have been gradually determined, a completely new approach has opened. This approach can analyze the entire gene resources of bacterial drug resistance. Through analysis, it may be possible to discover the underlying mechanism of drug resistance that will appear in the future. In this review article, we will first introduce the method to analyze all the xenobiotic transporter genes by using the genomic information. Next, we will discuss the regulation of xenobiotic transporter gene expression through the two-component signal transduction system, the principal environmental sensing and response system in bacteria. Furthermore, we will also introduce the virulence roles of xenobiotic transporters, which is an ongoing research area. | 2008 | 18481812 |
| 9585 | 7 | 0.9986 | When Humans Met Superbugs: Strategies to Tackle Bacterial Resistances to Antibiotics. Bacterial resistance to antibiotics poses enormous health and economic burdens to our society, and it is of the essence to explore old and new ways to deal with these problems. Here we review the current status of multi-resistance genes and how they spread among bacteria. We discuss strategies to deal with resistant bacteria, namely the search for new targets and the use of inhibitors of protein-protein interactions, fragment-based methods, or modified antisense RNAs. Finally, we discuss integrated approaches that consider bacterial populations and their niches, as well as the role of global regulators that activate and/or repress the expression of multiple genes in fluctuating environments and, therefore, enable resistant bacteria to colonize new niches. Understanding how the global regulatory circuits work is, probably, the best way to tackle bacterial resistance. | 2018 | 30811343 |
| 9699 | 8 | 0.9986 | Bottlenecks in the transferability of antibiotic resistance from natural ecosystems to human bacterial pathogens. It is generally accepted that resistance genes acquired by human pathogens through horizontal gene transfer originated in environmental, non-pathogenic bacteria. As a consequence, there is increasing concern on the roles that natural, non-clinical ecosystems, may play in the evolution of resistance. Recent studies have shown that the variability of determinants that can provide antibiotic resistance on their expression in a heterologous host is much larger than what is actually found in human pathogens, which implies the existence of bottlenecks modulating the transfer, spread, and stability of antibiotic resistance genes. In this review, the role that different factors such as founder effects, ecological connectivity, fitness costs, or second-order selection may have on the establishment of a specific resistance determinant in a population of bacterial pathogens is analyzed. | 2011 | 22319513 |
| 9701 | 9 | 0.9986 | Environmental factors influencing the development and spread of antibiotic resistance. Antibiotic resistance and its wider implications present us with a growing healthcare crisis. Recent research points to the environment as an important component for the transmission of resistant bacteria and in the emergence of resistant pathogens. However, a deeper understanding of the evolutionary and ecological processes that lead to clinical appearance of resistance genes is still lacking, as is knowledge of environmental dispersal barriers. This calls for better models of how resistance genes evolve, are mobilized, transferred and disseminated in the environment. Here, we attempt to define the ecological and evolutionary environmental factors that contribute to resistance development and transmission. Although mobilization of resistance genes likely occurs continuously, the great majority of such genetic events do not lead to the establishment of novel resistance factors in bacterial populations, unless there is a selection pressure for maintaining them or their fitness costs are negligible. To enable preventative measures it is therefore critical to investigate under what conditions and to what extent environmental selection for resistance takes place. In addition, understanding dispersal barriers is not only key to evaluate risks, but also to prevent resistant pathogens, as well as novel resistance genes, from reaching humans. | 2018 | 29069382 |
| 9494 | 10 | 0.9986 | Within-Host Mathematical Models of Antibiotic Resistance. Mathematical models have been used to study the spread of infectious diseases from person to person. More recently studies are developing within-host modeling which provides an understanding of how pathogens-bacteria, fungi, parasites, or viruses-develop, spread, and evolve inside a single individual and their interaction with the host's immune system.Such models have the potential to provide a more detailed and complete description of the pathogenesis of diseases within-host and identify other influencing factors that may not be detected otherwise. Mathematical models can be used to aid understanding of the global antibiotic resistance (ABR) crisis and identify new ways of combating this threat.ABR occurs when bacteria respond to random or selective pressures and adapt to new environments through the acquisition of new genetic traits. This is usually through the acquisition of a piece of DNA from other bacteria, a process called horizontal gene transfer (HGT), the modification of a piece of DNA within a bacterium, or through. Bacteria have evolved mechanisms that enable them to respond to environmental threats by mutation, and horizontal gene transfer (HGT): conjugation; transduction; and transformation. A frequent mechanism of HGT responsible for spreading antibiotic resistance on the global scale is conjugation, as it allows the direct transfer of mobile genetic elements (MGEs). Although there are several MGEs, the most important MGEs which promote the development and rapid spread of antimicrobial resistance genes in bacterial populations are plasmids and transposons. Each of the resistance-spread-mechanisms mentioned above can be modeled allowing us to understand the process better and to define strategies to reduce resistance. | 2024 | 38949703 |
| 9489 | 11 | 0.9986 | The origins of antibiotic resistance. Antibiotics remain one of our most important pharmacological tools for the control of infectious disease. However, unlike most other drugs, the use of antibiotics selects for resistant organisms and erodes their clinical utility. Resistance can emerge within populations of bacteria by mutation and be retained by subsequent selection or by the acquisition of resistance elements laterally from other organisms. The source of these resistance genes is only now being understood. The evidence supports a large bacterial resistome-the collection of all resistance genes and their precursors in both pathogenic and nonpathogenic bacteria. These genes have arisen by various means including self-protection in the case of antibiotic producers, transport of small molecules for various reasons including nutrition and detoxification of noxious chemicals, and to accomplish other goals, such as metabolism, and demonstrate serendipitous selectivity for antibiotics. Regardless of their origins, resistance genes can rapidly move through bacterial populations and emerge in pathogenic bacteria. Understanding the processes that contribute to the evolution and selection of resistance is essential to mange current stocks of antibiotics and develop new ones. | 2012 | 23090593 |
| 9481 | 12 | 0.9986 | Genetic linkage and horizontal gene transfer, the roots of the antibiotic multi-resistance problem. Bacteria carrying resistance genes for many antibiotics are moving beyond the clinic into the community, infecting otherwise healthy people with untreatable and frequently fatal infections. This state of affairs makes it increasingly important that we understand the sources of this problem in terms of bacterial biology and ecology and also that we find some new targets for drugs that will help control this growing epidemic. This brief and eclectic review takes the perspective that we have too long thought about the problem in terms of treatment with or resistance to a single antibiotic at a time, assuming that dissemination of the resistance gene was affected by simple vertical inheritance. In reality antibiotic resistance genes are readily transferred horizontally, even to and from distantly related bacteria. The common agents of bacterial gene transfer are described and also one of the processes whereby nonantibiotic chemicals, specifically toxic metals, in the environment can select for and enrich bacteria with antibiotic multiresistance. Lastly, some speculation is offered on broadening our perspective on this problem to include drugs directed at compromising the ability of the mobile elements themselves to replicate, transfer, and recombine, that is, the three "infrastructure" processes central to the movement of genes among bacteria. | 2006 | 17127524 |
| 4018 | 13 | 0.9986 | Mobile elements, zoonotic pathogens and commensal bacteria: conduits for the delivery of resistance genes into humans, production animals and soil microbiota. Multiple antibiotic resistant pathogens represent a major clinical challenge in both human and veterinary context. It is now well-understood that the genes that encode resistance are context independent. That is, the same gene is commonly present in otherwise very disparate pathogens in both humans and production and companion animals, and among bacteria that proliferate in an agricultural context. This can be true even for pathogenic species or clonal types that are otherwise confined to a single host or ecological niche. It therefore follows that mechanisms of gene flow must exist to move genes from one part of the microbial biosphere to another. It is widely accepted that lateral (or horizontal) gene transfer (L(H)GT) drives this gene flow. LGT is relatively well-understood mechanistically but much of this knowledge is derived from a reductionist perspective. We believe that this is impeding our ability to deal with the medical ramifications of LGT. Resistance genes and the genetic scaffolds that mobilize them in multiply drug resistant bacteria of clinical significance are likely to have their origins in completely unrelated parts of the microbial biosphere. Resistance genes are increasingly polluting the microbial biosphere by contaminating environmental niches where previously they were not detected. More attention needs to be paid to the way that humans have, through the widespread application of antibiotics, selected for combinations of mobile elements that enhance the flow of resistance genes between remotely linked parts of the microbial biosphere. Attention also needs to be paid to those bacteria that link human and animal ecosystems. We argue that multiply antibiotic resistant commensal bacteria are especially important in this regard. More generally, the post genomics era offers the opportunity for understanding how resistance genes are mobilized from a one health perspective. In the long term, this holistic approach offers the best opportunity to better manage what is an enormous problem to humans both in terms of health and food security. | 2013 | 23641238 |
| 9479 | 14 | 0.9986 | Bacterial antimicrobial metal ion resistance. Metals such as mercury, arsenic, copper and silver have been used in various forms as antimicrobials for thousands of years with until recently, little understanding of their mode of action. The discovery of antibiotics and new organic antimicrobial compounds during the twentieth century saw a general decline in the clinical use of antimicrobial metal compounds, with the exception of the rediscovery of the use of silver for burns treatments and niche uses for other metal compounds. Antibiotics and new antimicrobials were regarded as being safer for the patient and more effective than the metal-based compounds they supplanted. Bacterial metal ion resistances were first discovered in the second half of the twentieth century. The detailed mechanisms of resistance have now been characterized in a wide range of bacteria. As the use of antimicrobial metals is limited, it is legitimate to ask: are antimicrobial metal resistances in pathogenic and commensal bacteria important now? This review details the new, rediscovered and 'never went away' uses of antimicrobial metals; examines the prevalence and linkage of antimicrobial metal resistance genes to other antimicrobial resistance genes; and examines the evidence for horizontal transfer of these genes between bacteria. Finally, we discuss the possible implications of the widespread dissemination of these resistances on re-emergent uses of antimicrobial metals and how this could impact upon the antibiotic resistance problem. | 2015 | 25418738 |
| 9496 | 15 | 0.9986 | Biofilm Lifestyle in Recurrent Urinary Tract Infections. Urinary tract infections (UTIs) represent one of the most common infections that are frequently encountered in health care facilities. One of the main mechanisms used by bacteria that allows them to survive hostile environments is biofilm formation. Biofilms are closed bacterial communities that offer protection and safe hiding, allowing bacteria to evade host defenses and hide from the reach of antibiotics. Inside biofilm communities, bacteria show an increased rate of horizontal gene transfer and exchange of resistance and virulence genes. Additionally, bacterial communication within the biofilm allows them to orchestrate the expression of virulence genes, which further cements the infestation and increases the invasiveness of the infection. These facts stress the necessity of continuously updating our information and understanding of the etiology, pathogenesis, and eradication methods of this growing public health concern. This review seeks to understand the role of biofilm formation in recurrent urinary tact infections by outlining the mechanisms underlying biofilm formation in different uropathogens, in addition to shedding light on some biofilm eradication strategies. | 2023 | 36676100 |
| 9586 | 16 | 0.9986 | Antibiotic resistance. Through billions of years of evolution, microbes have developed myriad defense mechanisms designed to ensure their survival. This protection is readily transferred to their fellow life forms via transposable elements. Despite very early warnings, humans have chosen to abuse the gift of antibiotics and have created a situation where all microorganisms are resistant to some antibiotics and some microorganisms are resistant to all antibiotics. When antibiotics are used, six events may occur with only one being beneficial: when the antibiotic aids the host defenses to gain control and eliminate the infection. Alternatively, the antibiotic may cause toxicity or allergy, initiate a superinfection with resistant bacteria, promote microbial chromosomal mutations to resistance, encourage resistance gene transfer to susceptible species, or promote the expression of dormant resistance genes. | 2003 | 14664456 |
| 6677 | 17 | 0.9986 | Biofilm exacerbates antibiotic resistance: Is this a current oversight in antimicrobial stewardship? OBJECTIVE: To raise awareness of the role of environmental biofilm in the emergence and spread of antibiotic resistance and its consideration in antimicrobial stewardship. BACKGROUND: Antibiotic resistance is a major threat to public health. Overuse of antibiotics, increased international travel, and genetic promiscuity amongst bacteria have contributed to antibiotic resistance, and global containment efforts have so far met with limited success. Antibiotic resistance is a natural mechanism by which bacteria have adapted to environmental threats over billions of years and is caused either by genetic mutations or by horizontal gene transfer. Another ancient survival strategy involves bacteria existing within a self-produced polymeric matrix, which today is termed biofilm. Biofilm similarly enables bacterial tolerance to environmental threats, and also encourages the transfer of antibiotic resistance genes between bacterial species. This natural and ubiquitous mode of bacterial life has not been considered amongst strategies to tackle antibiotic resistance in healthcare facilities, despite its ability to significantly enhance bacterial survival and persistence, and to encourage antibiotic resistance. CONCLUSION: Biofilm must be considered synonymously with antibiotic resistance because of its proficiency in transferring resistance genes as well as its innate phenotypic tolerance to antibiotics. Although biofilm falls outside of the current definition of antimicrobial stewardship, greater awareness of the existence, ubiquity, and consequences of environmental biofilm amongst healthcare practitioners is crucial to improving hygiene practices and controlling the emergence and spread of antibiotic resistance in healthcare facilities. | 2020 | 33081846 |
| 9689 | 18 | 0.9986 | Evolution of foodborne pathogens via temperate bacteriophage-mediated gene transfer. Temperate bacteriophages have always been central to the evolution of bacteria, although their importance has been consistently underestimated compared to transformation and conjugation. In the last 20 years, as more gene and genome sequences have become available and researchers have more accurately determined bacteriophage populations in the environment, we are gaining a clearer picture of their role in the past and potential role in the future. The transductive and lysogenic capacities of this class of bacteriophages have contributed to the evolution and shaping of emerging foodborne pathogenic bacteria through the dissemination of virulence and antibiotic resistance genes. For example, the genome sequences of Shigella dysenteriae, Escherichia coli O157:H7, and the Stxencoding bacteriophages demonstrate the critical role bacteriophage-mediated gene transfer events played in the evolution of these high-profile human pathogens. In this review, we describe the basic genetic exchange mechanisms mediated by temperate bacteriophages and how these mechanisms have been central to the dissemination of virulence genes, such as toxins and antibiotics from one species to another (the shiga-like toxins, and multiple antibiotic resistance dissemination in Salmonella are used as specific examples). Data demonstrating the role of bacteriophages in the spread of antimicrobial resistance in bacteria, including interspecies transduction, are also presented. That temperate bacteriophages play a role in the on-going evolution of emerging pathogenic bacteria is obvious, but it is also clearly an on-going process with a breadth that must be appreciated as well as studied further if we are to be able to foresee what new challenges will arise to imperil food safety. | 2005 | 16366852 |
| 9703 | 19 | 0.9986 | Ecology and evolution of antibiotic resistance. The evolution of bacterial pathogens towards antibiotic resistance is not just a relevant problem for human health, but a fascinating example of evolution that can be studied in real time as well. Although most antibiotics are natural compounds produced by environmental microbiota, exposure of bacterial populations to high concentrations of these compounds as the consequence of their introduction for human therapy (and later on for farming) a few decades ago is a very recent situation in evolutionary terms. Resistance genes are originated in environmental bacteria, where they have evolved for millions of years to play different functions that include detoxification, signal trafficking or metabolic functions among others. However, as the consequence of the strong selective pressure exerted by antimicrobials at clinical settings, farms and antibiotic-contaminated natural ecosystems, the selective forces driving the evolution of these potential resistance determinants have changed in the last few decades. Natural ecosystems contain a large number of potential resistance genes; nevertheless, just a few of them are currently present in gene-transfer units and disseminated among pathogens. Along the review, the processes implied in this situation and the consequences for the future evolution of resistance and the environmental microbiota are discussed. | 2009 | 23765924 |