# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9238 | 0 | 0.9894 | Sexual isolation and speciation in bacteria. Like organisms from all other walks of life, bacteria are capable of sexual recombination. However, unlike most plants and animals, bacteria recombine only rarely, and when they do they are extremely promiscuous in their choice of sexual partners. There may be no absolute constraints on the evolutionary distances that can be traversed through recombination in the bacterial world, but interspecies recombination is reduced by a variety of factors, including ecological isolation, behavioral isolation, obstacles to DNA entry, restriction endonuclease activity, resistance to integration of divergent DNA sequences, reversal of recombination by mismatch repair, and functional incompatibility of recombined segments. Typically, individual bacterial species are genetically variable for most of these factors. Therefore, natural selection can modulate levels of sexual isolation, to increase the transfer of genes useful to the recipient while minimizing the transfer of harmful genes. Interspecies recombination is optimized when recombination involves short segments that are just long enough to transfer an adaptation, without co-transferring potentially harmful DNA flanking the adaptation. Natural selection has apparently acted to reduce sexual isolation between bacterial species. Evolution of sexual isolation is not a milestone toward speciation in bacteria, since bacterial recombination is too rare to oppose adaptive divergence between incipient species. Ironically, recombination between incipient bacterial species may actually foster the speciation process, by prohibiting one incipient species from out-competing the other to extinction. Interspecific recombination may also foster speciation by introducing novel gene loci from divergent species, allowing invasion of new niches. | 2002 | 12555790 |
| 8362 | 1 | 0.9894 | Lifestyle evolution in symbiotic bacteria: insights from genomics. Bacteria that live only in eukaryotic cells and tissues, including chronic pathogens and mutualistic bacteriocyte associates, often possess a distinctive set of genomic traits, including reduced genome size, biased nucleotide base composition and fast polypeptide evolution. These phylogenetically diverse bacteria have lost certain functional categories of genes, including DNA repair genes, which affect mutational patterns. However, pathogens and mutualistic symbionts retain loci that underlie their unique interaction types, such as genes enabling nutrient provisioning by mutualistic bacteria-inhabiting animals. Recent genomic studies suggest that many of these bacteria are irreversibly specialized, precluding shifts between pathogenesis and mutualism. | 2000 | 10884696 |
| 9237 | 2 | 0.9893 | The gossip paradox: Why do bacteria share genes? Bacteria, in contrast to eukaryotic cells, contain two types of genes: chromosomal genes that are fixed to the cell, and plasmids, smaller loops of DNA capable of being passed from one cell to another. The sharing of plasmid genes between individual bacteria and between bacterial lineages has contributed vastly to bacterial evolution, allowing specialized traits to 'jump ship' between one lineage or species and the next. The benefits of this generosity from the point of view of both recipient cell and plasmid are generally understood: plasmids receive new hosts and ride out selective sweeps across the population, recipient cells gain new traits (such as antibiotic resistance). Explaining this behavior from the point of view of donor cells is substantially more difficult. Donor cells pay a fitness cost in order to share plasmids, and run the risk of sharing advantageous genes with their competition and rendering their own lineage redundant, while seemingly receiving no benefit in return. Using both compartment based models and agent based simulations we demonstrate that 'secretive' genes which restrict horizontal gene transfer are favored over a wide range of models and parameter values, even when sharing carries no direct cost. 'Generous' chromosomal genes which are more permissive of plasmid transfer are found to have neutral fitness at best, and are generally disfavored by selection. Our findings lead to a peculiar paradox: given the obvious benefits of keeping secrets, why do bacteria share information so freely? | 2022 | 35603365 |
| 9346 | 3 | 0.9893 | Horizontal gene transfer in prokaryotes: quantification and classification. Comparative analysis of bacterial, archaeal, and eukaryotic genomes indicates that a significant fraction of the genes in the prokaryotic genomes have been subject to horizontal transfer. In some cases, the amount and source of horizontal gene transfer can be linked to an organism's lifestyle. For example, bacterial hyperthermophiles seem to have exchanged genes with archaea to a greater extent than other bacteria, whereas transfer of certain classes of eukaryotic genes is most common in parasitic and symbiotic bacteria. Horizontal transfer events can be classified into distinct categories of acquisition of new genes, acquisition of paralogs of existing genes, and xenologous gene displacement whereby a gene is displaced by a horizontally transferred ortholog from another lineage (xenolog). Each of these types of horizontal gene transfer is common among prokaryotes, but their relative contributions differ in different lineages. The fixation and long-term persistence of horizontally transferred genes suggests that they confer a selective advantage on the recipient organism. In most cases, the nature of this advantage remains unclear, but detailed examination of several cases of acquisition of eukaryotic genes by bacteria seems to reveal the evolutionary forces involved. Examples include isoleucyl-tRNA synthetases whose acquisition from eukaryotes by several bacteria is linked to antibiotic resistance, ATP/ADP translocases acquired by intracellular parasitic bacteria, Chlamydia and Rickettsia, apparently from plants, and proteases that may be implicated in chlamydial pathogenesis. | 2001 | 11544372 |
| 9347 | 4 | 0.9891 | Multilevel populations and the evolution of antibiotic resistance through horizontal gene transfer. Horizontal gene transfer (HGT) can create diversity in the genetic repertoire of a lineage. Successful gene transfer likely occurs more frequently between more closely related organisms, leading to the formation of higher-level exchange groups that in some respects are comparable to single-species populations. Genes that appear fixed in a single species can be replaced through distant homologs or iso-functional analogs acquired through HGT. These genes may originate from other species or they may be acquired by an individual strain from the species pan-genome. Because of their similarity to alleles in a population, we label these gene variants that are exchanged between related species as homeoalleles. In a case study, we show that biased gene transfer plays an important role in the evolution of aminoacyl-tRNA synthetases (aaRS). Many microorganisms make use of these genes against naturally occurring antibiotics. We suggest that the resistance against naturally occurring antibiotics is the likely driving force behind the frequent switching between divergent aaRS types and the reason for the maintenance of these homeoalleles in higher-level exchange groups. Resistance to naturally occurring antibiotics may lead to the maintenance of different types of aminoacyl-tRNA synthetases in Bacteria through gene transfer. | 2011 | 21521245 |
| 9173 | 5 | 0.9891 | Bacterial defences: mechanisms, evolution and antimicrobial resistance. Throughout their evolutionary history, bacteria have faced diverse threats from other microorganisms, including competing bacteria, bacteriophages and predators. In response to these threats, they have evolved sophisticated defence mechanisms that today also protect bacteria against antibiotics and other therapies. In this Review, we explore the protective strategies of bacteria, including the mechanisms, evolution and clinical implications of these ancient defences. We also review the countermeasures that attackers have evolved to overcome bacterial defences. We argue that understanding how bacteria defend themselves in nature is important for the development of new therapies and for minimizing resistance evolution. | 2023 | 37095190 |
| 9985 | 6 | 0.9891 | Identification of the First Gene Transfer Agent (GTA) Small Terminase in Rhodobacter capsulatus and Its Role in GTA Production and Packaging of DNA. Genetic exchange mediated by viruses of bacteria (bacteriophages) is the primary driver of rapid bacterial evolution. The priority of viruses is usually to propagate themselves. Most bacteriophages use the small terminase protein to identify their own genome and direct its inclusion into phage capsids. Gene transfer agents (GTAs) are descended from bacteriophages, but they instead package fragments of the entire bacterial genome without preference for their own genes. GTAs do not selectively target specific DNA, and no GTA small terminases are known. Here, we identified the small terminase from the model Rhodobacter capsulatus GTA, which then allowed prediction of analogues in other species. We examined the role of the small terminase in GTA production and propose a structural basis for random DNA packaging.IMPORTANCE Random transfer of any and all genes between bacteria could be influential in the spread of virulence or antimicrobial resistance genes. Discovery of the true prevalence of GTAs in sequenced genomes is hampered by their apparent similarity to bacteriophages. Our data allowed the prediction of small terminases in diverse GTA producer species, and defining the characteristics of a "GTA-type" terminase could be an important step toward novel GTA identification. Importantly, the GTA small terminase shares many features with its phage counterpart. We propose that the GTA terminase complex could become a streamlined model system to answer fundamental questions about double-stranded DNA (dsDNA) packaging by viruses that have not been forthcoming to date. | 2019 | 31534034 |
| 9240 | 7 | 0.9891 | CRISPR-Cas-Mediated Phage Resistance Enhances Horizontal Gene Transfer by Transduction. A powerful contributor to prokaryotic evolution is horizontal gene transfer (HGT) through transformation, conjugation, and transduction, which can be advantageous, neutral, or detrimental to fitness. Bacteria and archaea control HGT and phage infection through CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) adaptive immunity. Although the benefits of resisting phage infection are evident, this can come at a cost of inhibiting the acquisition of other beneficial genes through HGT. Despite the ability of CRISPR-Cas to limit HGT through conjugation and transformation, its role in transduction is largely overlooked. Transduction is the phage-mediated transfer of bacterial DNA between cells and arguably has the greatest impact on HGT. We demonstrate that in Pectobacterium atrosepticum, CRISPR-Cas can inhibit the transduction of plasmids and chromosomal loci. In addition, we detected phage-mediated transfer of a large plant pathogenicity genomic island and show that CRISPR-Cas can inhibit its transduction. Despite these inhibitory effects of CRISPR-Cas on transduction, its more common role in phage resistance promotes rather than diminishes HGT via transduction by protecting bacteria from phage infection. This protective effect can also increase transduction of phage-sensitive members of mixed populations. CRISPR-Cas systems themselves display evidence of HGT, but little is known about their lateral dissemination between bacteria and whether transduction can contribute. We show that, through transduction, bacteria can acquire an entire chromosomal CRISPR-Cas system, including cas genes and phage-targeting spacers. We propose that the positive effect of CRISPR-Cas phage immunity on enhancing transduction surpasses the rarer cases where gene flow by transduction is restricted.IMPORTANCE The generation of genetic diversity through acquisition of DNA is a powerful contributor to microbial evolution and occurs through transformation, conjugation, and transduction. Of these, transduction, the phage-mediated transfer of bacterial DNA, is arguably the major route for genetic exchange. CRISPR-Cas adaptive immune systems control gene transfer by conjugation and transformation, but transduction has been mostly overlooked. Our results indicate that CRISPR-Cas can impede, but typically enhances the transduction of plasmids, chromosomal genes, and pathogenicity islands. By limiting wild-type phage replication, CRISPR-Cas immunity increases transduction in both phage-resistant and -sensitive members of mixed populations. Furthermore, we demonstrate mobilization of a chromosomal CRISPR-Cas system containing phage-targeting spacers by generalized transduction, which might partly account for the uneven distribution of these systems in nature. Overall, the ability of CRISPR-Cas to promote transduction reveals an unexpected impact of adaptive immunity on horizontal gene transfer, with broader implications for microbial evolution. | 2018 | 29440578 |
| 9589 | 8 | 0.9890 | Phage Therapy: Going Temperate? Strictly lytic phages have been consensually preferred for phage therapy purposes. In contrast, temperate phages have been avoided due to an inherent capacity to mediate transfer of genes between bacteria by specialized transduction - an event that may increase bacterial virulence, for example, by promoting antibiotic resistance. Now, advances in sequencing technologies and synthetic biology are providing new opportunities to explore the use of temperate phages for therapy against bacterial infections. By doing so we can considerably expand our armamentarium against the escalating threat of antibiotic-resistant bacteria. | 2019 | 30466900 |
| 9341 | 9 | 0.9890 | Horizontal gene transfers in insects. Horizontal gene transfer is the transfer of genetic material across species boundaries. Although horizontal gene transfers are relatively rare in animals, the recent rapid accumulation of genomic data has identified increasing amounts of exogenous DNA inserts in insect genomes. Most of the horizontally acquired sequences appear to be non-functional; however, there is growing evidence that some genes are truly expressed and confer novel functions on the recipient insects. These include previously unavailable metabolic properties including digesting food, degrading toxins, providing resistance to pathogens, and facilitating an obligate mutualistic relationship with intracellular bacteria. A recent analysis revealed that an aphid gene of bacterial origin encodes a protein that is transported into the obligate symbiont, paralleling the evolution of endosymbiotic organelles. | 2015 | 32131363 |
| 9833 | 10 | 0.9890 | Evolution of satellite plasmids can prolong the maintenance of newly acquired accessory genes in bacteria. Transmissible plasmids spread genes encoding antibiotic resistance and other traits to new bacterial species. Here we report that laboratory populations of Escherichia coli with a newly acquired IncQ plasmid often evolve 'satellite plasmids' with deletions of accessory genes and genes required for plasmid replication. Satellite plasmids are molecular parasites: their presence reduces the copy number of the full-length plasmid on which they rely for their continued replication. Cells with satellite plasmids gain an immediate fitness advantage from reducing burdensome expression of accessory genes. Yet, they maintain copies of these genes and the complete plasmid, which potentially enables them to benefit from and transmit the traits they encode in the future. Evolution of satellite plasmids is transient. Cells that entirely lose accessory gene function or plasmid mobility dominate in the long run. Satellite plasmids also evolve in Snodgrassella alvi colonizing the honey bee gut, suggesting that this mechanism may broadly contribute to the importance of IncQ plasmids as agents of bacterial gene transfer in nature. | 2019 | 31863068 |
| 9848 | 11 | 0.9890 | Cargo Genes of Tn7-Like Transposons Comprise an Enormous Diversity of Defense Systems, Mobile Genetic Elements, and Antibiotic Resistance Genes. Transposition is a major mechanism of horizontal gene mobility in prokaryotes. However, exploration of the genes mobilized by transposons (cargo) is hampered by the difficulty in delineating integrated transposons from their surrounding genetic context. Here, we present a computational approach that allowed us to identify the boundaries of 6,549 Tn7-like transposons. We found that 96% of these transposons carry at least one cargo gene. Delineation of distinct communities in a gene-sharing network demonstrates how transposons function as a conduit of genes between phylogenetically distant hosts. Comparative analysis of the cargo genes reveals significant enrichment of mobile genetic elements (MGEs) nested within Tn7-like transposons, such as insertion sequences and toxin-antitoxin modules, and of genes involved in recombination, anti-MGE defense, and antibiotic resistance. More unexpectedly, cargo also includes genes encoding central carbon metabolism enzymes. Twenty-two Tn7-like transposons carry both an anti-MGE defense system and antibiotic resistance genes, illustrating how bacteria can overcome these combined pressures upon acquisition of a single transposon. This work substantially expands the distribution of Tn7-like transposons, defines their evolutionary relationships, and provides a large-scale functional classification of prokaryotic genes mobilized by transposition. IMPORTANCE Transposons are major vehicles of horizontal gene transfer that, in addition to genes directly involved in transposition, carry cargo genes. However, characterization of these genes is hampered by the difficulty of identification of transposon boundaries. We developed a computational approach for detecting transposon ends and applied it to perform a comprehensive census of the cargo genes of Tn7-like transposons, a large class of bacterial mobile genetic elements (MGE), many of which employ a unique, CRISPR-mediated mechanism of site-specific transposition. The cargo genes encompass a striking diversity of MGE, defense, and antibiotic resistance systems. Unexpectedly, we also identified cargo genes encoding metabolic enzymes. Thus, Tn7-like transposons mobilize a vast repertoire of genes that can have multiple effects on the host bacteria. | 2021 | 34872347 |
| 9835 | 12 | 0.9889 | Genomic islands: tools of bacterial horizontal gene transfer and evolution. Bacterial genomes evolve through mutations, rearrangements or horizontal gene transfer. Besides the core genes encoding essential metabolic functions, bacterial genomes also harbour a number of accessory genes acquired by horizontal gene transfer that might be beneficial under certain environmental conditions. The horizontal gene transfer contributes to the diversification and adaptation of microorganisms, thus having an impact on the genome plasticity. A significant part of the horizontal gene transfer is or has been facilitated by genomic islands (GEIs). GEIs are discrete DNA segments, some of which are mobile and others which are not, or are no longer mobile, which differ among closely related strains. A number of GEIs are capable of integration into the chromosome of the host, excision, and transfer to a new host by transformation, conjugation or transduction. GEIs play a crucial role in the evolution of a broad spectrum of bacteria as they are involved in the dissemination of variable genes, including antibiotic resistance and virulence genes leading to generation of hospital 'superbugs', as well as catabolic genes leading to formation of new metabolic pathways. Depending on the composition of gene modules, the same type of GEIs can promote survival of pathogenic as well as environmental bacteria. | 2009 | 19178566 |
| 8267 | 13 | 0.9888 | Why put up with immunity when there is resistance: an excursion into the population and evolutionary dynamics of restriction-modification and CRISPR-Cas. Bacteria can readily generate mutations that prevent bacteriophage (phage) adsorption and thus make bacteria resistant to infections with these viruses. Nevertheless, the majority of bacteria carry complex innate and/or adaptive immune systems: restriction-modification (RM) and CRISPR-Cas, respectively. Both RM and CRISPR-Cas are commonly assumed to have evolved and be maintained to protect bacteria from succumbing to infections with lytic phage. Using mathematical models and computer simulations, we explore the conditions under which selection mediated by lytic phage will favour such complex innate and adaptive immune systems, as opposed to simple envelope resistance. The results of our analysis suggest that when populations of bacteria are confronted with lytic phage: (i) In the absence of immunity, resistance to even multiple bacteriophage species with independent receptors can evolve readily. (ii) RM immunity can benefit bacteria by preventing phage from invading established bacterial populations and particularly so when there are multiple bacteriophage species adsorbing to different receptors. (iii) Whether CRISPR-Cas immunity will prevail over envelope resistance depends critically on the number of steps in the coevolutionary arms race between the bacteria-acquiring spacers and the phage-generating CRISPR-escape mutants. We discuss the implications of these results in the context of the evolution and maintenance of RM and CRISPR-Cas and highlight fundamental questions that remain unanswered. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'. | 2019 | 30905282 |
| 9233 | 14 | 0.9888 | The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Bacteria and Archaea have developed several defence strategies against foreign nucleic acids such as viral genomes and plasmids. Among them, clustered regularly interspaced short palindromic repeats (CRISPR) loci together with cas (CRISPR-associated) genes form the CRISPR/Cas immune system, which involves partially palindromic repeats separated by short stretches of DNA called spacers, acquired from extrachromosomal elements. It was recently demonstrated that these variable loci can incorporate spacers from infecting bacteriophages and then provide immunity against subsequent bacteriophage infections in a sequence-specific manner. Here we show that the Streptococcus thermophilus CRISPR1/Cas system can also naturally acquire spacers from a self-replicating plasmid containing an antibiotic-resistance gene, leading to plasmid loss. Acquired spacers that match antibiotic-resistance genes provide a novel means to naturally select bacteria that cannot uptake and disseminate such genes. We also provide in vivo evidence that the CRISPR1/Cas system specifically cleaves plasmid and bacteriophage double-stranded DNA within the proto-spacer, at specific sites. Our data show that the CRISPR/Cas immune system is remarkably adapted to cleave invading DNA rapidly and has the potential for exploitation to generate safer microbial strains. | 2010 | 21048762 |
| 9581 | 15 | 0.9888 | Lateral gene transfer, bacterial genome evolution, and the Anthropocene. Lateral gene transfer (LGT) has significantly influenced bacterial evolution since the origins of life. It helped bacteria generate flexible, mosaic genomes and enables individual cells to rapidly acquire adaptive phenotypes. In turn, this allowed bacteria to mount strong defenses against human attempts to control their growth. The widespread dissemination of genes conferring resistance to antimicrobial agents has precipitated a crisis for modern medicine. Our actions can promote increased rates of LGT and also provide selective forces to fix such events in bacterial populations. For instance, the use of selective agents induces the bacterial SOS response, which stimulates LGT. We create hotspots for lateral transfer, such as wastewater systems, hospitals, and animal production facilities. Conduits of gene transfer between humans and animals ensure rapid dissemination of recent transfer events, as does modern transport and globalization. As resistance to antibacterial compounds becomes universal, there is likely to be increasing selection pressure for phenotypes with adverse consequences for human welfare, such as enhanced virulence, pathogenicity, and transmission. Improved understanding of the ecology of LGT could help us devise strategies to control this fundamental evolutionary process. | 2017 | 27706829 |
| 9474 | 16 | 0.9888 | Broadscale phage therapy is unlikely to select for widespread evolution of bacterial resistance to virus infection. Multi-drug resistant bacterial pathogens are alarmingly on the rise, signaling that the golden age of antibiotics may be over. Phage therapy is a classic approach that often employs strictly lytic bacteriophages (bacteria-specific viruses that kill cells) to combat infections. Recent success in using phages in patient treatment stimulates greater interest in phage therapy among Western physicians. But there is concern that widespread use of phage therapy would eventually lead to global spread of phage-resistant bacteria and widespread failure of the approach. Here, we argue that various mechanisms of horizontal genetic transfer (HGT) have largely contributed to broad acquisition of antibiotic resistance in bacterial populations and species, whereas similar evolution of broad resistance to therapeutic phages is unlikely. The tendency for phages to infect only particular bacterial genotypes limits their broad use in therapy, in turn reducing the likelihood that bacteria could acquire beneficial resistance genes from distant relatives via HGT. We additionally consider whether HGT of clustered regularly interspaced short palindromic repeats (CRISPR) immunity would thwart generalized use of phages in therapy, and argue that phage-specific CRISPR spacer regions from one taxon are unlikely to provide adaptive value if horizontally-transferred to other taxa. For these reasons, we conclude that broadscale phage therapy efforts are unlikely to produce widespread selection for evolution of bacterial resistance. | 2020 | 33365149 |
| 6 | 17 | 0.9888 | YprA family helicases provide the missing link between diverse prokaryotic immune systems. Bacteria and archaea possess an enormous variety of antivirus immune systems that often share homologous proteins and domains, some of which contribute to diverse defense strategies. YprA family helicases are central to widespread defense systems DISARM, Dpd, and Druantia. Here, through comprehensive phylogenetic and structural prediction analysis of the YprA family, we identify several major, previously unrecognized clades, with unique signatures of domain architecture and associations with other genes. Each YprA family clade defines a distinct class of defense systems, which we denote ARMADA (disARM-related Antiviral Defense Array), BRIGADE (Base hypermodification and Restriction Involving Genes encoding ARMADA-like and Dpd-like Effectors), or TALON (TOTE-like and ARMADA-Like Operon with Nuclease). In addition to the YprA-like helicase, ARMADA systems share two more proteins with DISARM. However, ARMADA YprA homologs are most similar to those of Druantia, suggesting ARMADA is a 'missing link' connecting DISARM and Druantia. We show experimentally that ARMADA protects bacteria against a broad range of phages via a direct, non-abortive mechanism. We also discovered multiple families of satellite phage-like mobile genetic elements that often carry both ARMADA and Druantia Type III systems and show that these can provide synergistic resistance against diverse phages. | 2025 | 41000832 |
| 8235 | 18 | 0.9887 | The bacterial defense system MADS interacts with CRISPR-Cas to limit phage infection and escape. The constant arms race between bacteria and their parasites has resulted in a large diversity of bacterial defenses, with many bacteria carrying multiple systems. Here, we report the discovery of a phylogenetically widespread defense system, coined methylation-associated defense system (MADS), which is distributed across gram-positive and gram-negative bacteria. MADS interacts with a CRISPR-Cas system in its native host to provide robust and durable resistance against phages. While phages can acquire epigenetic-mediated resistance against MADS, co-existence of MADS and a CRISPR-Cas system limits escape emergence. MADS comprises eight genes with predicted nuclease, ATPase, kinase, and methyltransferase domains, most of which are essential for either self/non-self discrimination, DNA restriction, or both. The complex genetic architecture of MADS and MADS-like systems, relative to other prokaryotic defenses, points toward highly elaborate mechanisms of sensing infections, defense activation, and/or interference. | 2024 | 39094583 |
| 8264 | 19 | 0.9887 | Anti-CRISPR Phages Cooperate to Overcome CRISPR-Cas Immunity. Some phages encode anti-CRISPR (acr) genes, which antagonize bacterial CRISPR-Cas immune systems by binding components of its machinery, but it is less clear how deployment of these acr genes impacts phage replication and epidemiology. Here, we demonstrate that bacteria with CRISPR-Cas resistance are still partially immune to Acr-encoding phage. As a consequence, Acr-phages often need to cooperate in order to overcome CRISPR resistance, with a first phage blocking the host CRISPR-Cas immune system to allow a second Acr-phage to successfully replicate. This cooperation leads to epidemiological tipping points in which the initial density of Acr-phage tips the balance from phage extinction to a phage epidemic. Furthermore, both higher levels of CRISPR-Cas immunity and weaker Acr activities shift the tipping points toward higher initial phage densities. Collectively, these data help elucidate how interactions between phage-encoded immune suppressors and the CRISPR systems they target shape bacteria-phage population dynamics. | 2018 | 30033365 |