EXCEEDING - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
354700.9919Occurrence of 40 sanitary indicators in French digestates derived from different anaerobic digestion processes and raw organic wastes from agricultural and urban origin. This study investigated the sanitary quality of digestates resulting from the mesophilic anaerobic digestion (AD) of urban and agricultural organic wastes (OWs). 40 sanitary indicators, including pathogenic bacteria, antimicrobial resistance genes, virulence factor genes, and mobile genetic elements were evaluated using real-time PCR and/or droplet digital PCR. 13 polycyclic aromatic hydrocarbons (PAHs) and 13 pharmaceutical products (PHPs) were also measured. We assessed agricultural OWs from three treatment plants to study the effect of different AD processes (feeding mode, number of stages, pH), and used three laboratory-scale reactors to study the effect of different feed-supplies (inputs). The lab-scale reactors included: Lab1 fed with 97% activated sludge (urban waste) and 3% cow manure; Lab2 fed with 85% sludge-manure mixture supplemented with 15% wheat straw (WS); and Lab3 fed with 81% sludge-manure mixture, 15% WS, and 4% zeolite powder. Activated sludge favored the survival of the food-borne pathogens Clostridium perfringens and Bacillus cereus, carrying the toxin-encoding genes cpe and ces, respectively. Globally, the reactors fed with fecal matter supplemented with straw (Lab2) or with straw and zeolite (Lab3) had a higher hygienization efficiency than the reactor fed uniquely with fecal matter (Lab1). Three pathogenic bacteria (Enterococcus faecalis, Enterococcus faecium, and Mycobacterium tuberculosis complex), a beta-lactam resistance gene (bla (TEM)), and three mobile genetic elements (intI1, intI2, and IS26) were significantly decreased in Lab2 and Lab3. Moreover, the concentrations of 11 PAHs and 11 PHPs were significantly lower in Lab2 and Lab3 samples than in Lab1 samples. The high concentrations of micropollutants, such as triclosan, found in Lab1, could explain the lower hygienization efficiency of this reactor. Furthermore, the batch-fed reactor had a more efficient hygienization effect than the semi-continuous reactors, with complete removal of the ybtA gene, which is involved in the production of the siderophore yersiniabactin, and significant reduction of intI2 and tetO. These data suggest that it is essential to control the level of chemical pollutants in raw OWs to optimize the sanitary quality of digestates, and that adding co-substrate, such as WS, may overcome the harmful effect of pollutants.202439165575
354610.9917Mitigation of tetracycline resistance genes in silage through targeted lactic acid bacteria inoculation. The dissemination of antibiotic resistance genes (ARGs) in silage ecosystems poses a critical challenge to ecological stability and public health security. This investigation focuses on tetracycline resistance genes (TRGs), the most prevalent subtype of ARGs in silage, employing a targeted selection strategy for lactic acid bacteria (LAB) inoculants. From 226 isolated LAB strains, four candidates (LP1-3: Lactiplantibacillus plantarum; LC1: Lacticaseibacillus paracasei) demonstrating superior growth kinetics (OD(600) > 1.6 within 24 h) and rapid acidification capacity (pH < 3.9 within 24 h) were selected. Strains LP3 and LC1 exhibited minimal intrinsic TRGs content. These four strains reduced (p < 0.001) pH, ammonia-N concentration, and coliform bacterial counts of stylo silage. Metagenomic analysis revealed that strains LP1-3 promoted Lactiplantibacillus dominance (0.709-0.975 vs. 0.379-0.509 in the control), while LC1 enhanced Lacticaseibacillus abundance (0.449-0.612 vs. 0.002-0.013 in the control). Ensiling process downregulated 367 and upregulated 227 ARGs. Inoculation with the four LAB strains further enhanced the suppression of ARGs. Among the top 30 TRGs, 22 were reduced by strains LP1-3 and 20 by LC1. Quantitative PCR results showed that strains LP1-3 decreased (p < 0.05) the contents of tetA and tetG during 30 days fermentation. Among the TRGs increased, tetA(60), tetB(58), tet(T) were positively correlated with Lactiplantibacillus spp., tetA(58), tetB(60), tetA(46), tetB(46), tet(43) were significantly correlated with Lacticaseibacillus spp. (R > 0.4, p < 0.001). In conclusion, the fermentation process induced substantial ARGs profile modifications, LAB-mediated microbiome engineering enables TRGs suppression, providing a scientific foundation for precision silage management strategies targeting antimicrobial resistance mitigation.202541038354
524520.9911Antimicrobial Resistance in U.S. Retail Ground Beef with and without Label Claims Regarding Antibiotic Use. ABSTRACT: Antibiotics used during food animal production account for approximately 77% of U.S. antimicrobial consumption by mass. Ground beef products labeled as raised without antibiotics (RWA) are perceived to harbor lower levels of antimicrobial-resistant bacteria than conventional (CONV) products with no label claims regarding antimicrobial use. Retail ground beef samples were obtained from six U.S. cities. Samples with an RWA or U.S. Department of Agriculture Organic claim (n = 299) were assigned to the RWA production system. Samples lacking these claims (n = 300) were assigned to the CONV production system. Each sample was cultured for the detection of five antimicrobial-resistant bacteria. Genomic DNA was isolated from each sample, and a quantitative PCR assay was used to determine the abundance of 10 antimicrobial resistance (AMR) genes. Prevalence of tetracycline-resistant Escherichia coli (CONV, 46.3%; RWA, 34.4%; P < 0.01) and erythromycin-resistant Enterococcus (CONV, 48.0%; RWA, 37.5%; P = 0.01) was higher in CONV ground beef. Salmonella was detected in 1.2% of samples. The AMR gene blaCTX-M (CONV, 4.1 log-normalized abundance; RWA, 3.8 log-normalized abundance; P < 0.01) was more abundant in CONV ground beef. The AMR genes mecA (CONV, 4.4 log-normalized abundance; RWA, 4.9 log-normalized abundance; P = 0.05), tet(A) (CONV, 3.9 log-normalized abundance; RWA, 4.5 log-normalized abundance; P < 0.01), tet(B) (CONV, 3.9 log-normalized abundance; RWA, 4.5 log-normalized abundance; P < 0.01), and tet(M) (CONV, 5.4 log-normalized abundance; RWA, 5.8 log-normalized abundance; P < 0.01) were more abundant in RWA ground beef. Although these results suggest that antimicrobial use during U.S. cattle production does not increase human exposure to antimicrobial-resistant bacteria via ground beef, quantitative microbiological risk assessments are required for authoritative determination of the human health impacts of the use of antimicrobial agents during beef production.202133302298
786930.9907Nano-CeO(2) activates physical and chemical defenses of garlic (Allium sativum L.) for reducing antibiotic resistance genes in plant endosphere. The transmission of manure- and wastewater-borne antibiotic-resistant bacteria (ARB) to plants contributes to the proliferation of antimicrobial resistance in agriculture, necessitating effective strategies for preventing the spread of antibiotic resistance genes (ARGs) from ARB in the environment to humans. Nanomaterials are potential candidates for efficiently controlling the dissemination of ARGs. The present study investigated the abundance of ARGs in hydroponically grown garlic (Allium sativum L.) following nano-CeO(2) (nCeO(2)) application. Specifically, root exposure to nCeO(2) (1, 2.5, 5, 10 mg L(-1), 18 days) reduced ARG abundance in the endosphere of bulbs and leaves. The accumulation of ARGs (cat, tet, and aph(3')-Ia) in garlic bulbs decreased by 24.2-32.5 % after nCeO(2) exposure at 10 mg L(-1). Notably, the lignification extent of garlic stem-disc was enhanced by 10 mg L(-1) nCeO(2), thereby accelerating the formation of an apoplastic barrier to impede the upward transfer of ARG-harboring bacteria to garlic bulbs. Besides, nCeO(2) upregulated the gene expression related to alliin biosynthesis and increased allicin content by 15.9-16.2 %, promoting a potent antimicrobial defense for reducing ARG-harboring bacteria. The potential exposure risks associated with ARGs and Ce were evaluated according to the estimated daily intake (EDI). The EDI of ARGs exhibited a decrease exceeding 95 %, while the EDI of Ce remained below the estimated oral reference dose. Consequently, through stimulating physical and chemical defenses, nCeO(2) contributed to a reduced EDI of ARGs and Ce, highlighting its potential for controlling ARGs in plant endosphere within the framework of nano-enabled agrotechnology.202438570269
721340.9906Distribution characteristics of antibiotic resistant bacteria and genes in fresh and composted manures of livestock farms. Livestock manure is a major reservoir of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). This study investigated the distribution characteristics of ARB, ARGs in fresh and composted manures of traditional breading industry in rural areas in China. Samples collected were naturally piled without professional composting, and will be applied to farmland. The real-time quantitative polymerase chain reaction (qPCR) results showed the presence of ten target ARGs and two mobile genetic elements (MGEs) in the tested manure samples. The relative abundance of tetracycline and sulfonamide resistance genes (TRGs and SRGs) was generally higher than that of macrolide resistance genes (MRGs), followed by quinolone resistance genes (QRGs). There were significant positive correlations between the abundance of sul1, sul2, tetW and MGEs (intl1, intl2). In addition, the distribution of target ARGs was associated with the residual concentrations of doxycycline (DOX), sulfamethazine (SM2), enrofloxacin (ENR) and tylosin (TYL). Overall, a total of 24 bacterial genera were identified. The resistance rates of ARB were 17.79%-83.70% for SM2, followed 0.40%-63.77% for TYL, 0.36%-43.90% for DOX and 0.00%-13.36% for ENR, which showed a significant dose-effect. This study also demonstrated that the abundance of clinically relevant ARB and ARGs in chicken, swine and cow fresh manures significantly greater than that in composted manures, and chicken and swine manures had higher proportion of ARB and higher abundance of ARGs than that in cow manures.201931756854
354850.9906From flagellar assembly to DNA replication: CJSe's role in mitigating microbial antibiotic resistance genes. The emergence of Antibiotic Resistance Genes (ARGs) in Campylobacter jejuni (CJ) poses a severe threat to food safety and human health. However, the specific impact of CJ and its variants on ARGs and other related factors remains to be further elucidated. Herein, integrated metagenomic sequencing and co-occurrence network analysis approach were employed to investigate the impact of CJ and CJ incorporated with biogenic selenium (CJSe) on ARGs, flagellar assembly pathways, microbial communities, and DNA replication pathways in chicken manure. Compared to the Control (CON) and CJ groups, the CJSe group exhibited 2.4-fold increase selenium levels (P < 0.01) in chicken manure. Notable differences were also observed between the CJ and CJSe groups, with sequence results showing a CJ > CJSe > CON trend in total ARG copy numbers. Furthermore, the CJSe group showed 31.6 % fewer flagellar assembly genes compared to the CJ group. Additionally, compared to the CJ group, CJSe inhibited pathways such as basal body/hook (e.g., FliH, FliO, FliQ reduced by 25-52 %) and stator (MotB downregulated by 42.3 %), suppressing flagellar assembly. We also found that both CJ and CJSe influenced bacterial DNA replication pathways, with the former increasing ARG-carrying bacteria and the latter, under selenium-induced selective pressure, reducing ARG-carrying bacteria. Moreover, compared to the CJ group, the CJSe group showed a significantly lower 9.72 % copy number of total archaeal DNA replication genes. Furthermore, through intricate co-occurrence network analysis, we discovered the complex interplay between changes in ARGs and bacterial and archaeal DNA replication dynamics within the microbial community. These findings indicate that CJSe mitigates the threat posed by CJ and reduces ARG prevalence, while its dual functionality enables applications in biofortified crop production and soil remediation in selenium-deficient regions, thereby advancing circular economy systems. While the current study demonstrates CJSe's dual functionality under controlled conditions, future work will implement a dedicated ecological risk assessment framework encompassing Se speciation/leaching tests and non-target organism assays to confirm environmental safety under field-relevant scenarios. This approach aligns with sustainable strategies for food security and public health safeguarding.202541108960
799760.9905Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters. Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1-a Pseudomonas sp.) and thermophilic (Iso T10-a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457-0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130-0.486, P = 0.075-0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene transfer between raw sludge bacteria and the digester microbial community.201627014196
721270.9904Simulated Winter Incubation of Soil With Swine Manure Differentially Affects Multiple Antimicrobial Resistance Elements. Gastrointestinal bacteria that harbor antibiotic resistance genes (ARG) become enriched with antibiotic use. Livestock manure application to cropland for soil fertility presents a concern that ARG and bacteria may proliferate and be transported in the environment. In the United States, manure applications typically occur during autumn with slow mineralization until spring planting season. A laboratory soil incubation study was conducted mimicking autumn swine manure application to soils with concentrations of selected ARG monitored during simulated 120-day winter incubation with multiple freeze-thaw events. Additionally, the effects of two soil moistures [10 and 30% water holding capacity (WHC)] and two manure treatments [raw versus hydrated lime alkaline stabilization (HLAS)] were assessed. Fourteen tetracycline resistance genes were evaluated; tet(D), tet(G), and tet(L) were detected in background soil while swine manure contained tet(A), tet(B), tet(C), tet(G), tet(M), tet(O), tet(Q), and tet(X). By day 120, the manure-borne tet(M) and tet(O) were still detected while tet(C), tet(D), tet(L), and tet(X) genes were detected less frequently. Other tet resistance genes were detected rarely, if at all. The sum of unique tet resistance genes among all treatments decreased during the incubation from an average of 8.9 to 3.8 unique tet resistance genes. Four resistance elements, intI1, bla (ctx-m-32), sul(I), erm(B), and 16s rRNA genes were measured using quantitative PCR. ARG abundances relative to 16S abundance were initially greater in the raw manure compared to background soil (-1.53 to -3.92 log abundance in manure; -4.02 to <-6.7 log abundance in soil). In the mixed manure/soil, relative abundance of the four resistance elements decreased (0.87 to 1.94 log abundance) during the incubation largely because 16S rRNA genes increased by 1.21 log abundance. Throughout the incubation, the abundance of intI1, bla (ctx-m-32), sul(I), and erm(B) per gram in soil amended with HLAS-treated manure was lower than in soil amended with raw manure. Under low initial soil moisture conditions, HLAS treatment reduced the abundance of intI1 and resulted in loss of bla (ctx-m-32), sul(I), and erm(B)] compared to other treatment-moisture combinations. Although one might expect antibiotic resistance to be relatively unchanged after simulated winter manure application to soil, a variety of changes in diversity and relative abundance can be expected.202033391241
774780.9904Hydrothermal pre-treatment followed by anaerobic digestion for the removal of tylosin and antibiotic resistance agents from poultry litter. Hydrothermal pretreatment (HPT) followed by anaerobic digestion (AD) is an alternative for harvesting energy and removing organic contaminants from sewage sludge and animal manure. This study investigated the use, in an energetically sustainable way, of HPT and AD, alone or combined, to produce methane and remove tylosin and antimicrobial resistance genes (ARG) from poultry litter (PL). The results showed that HPT at 80 °C (HPT80), followed by single-stage AD (AD-1S), led to the production of 517.9 ± 4.7 NL CH(4) kg VS(-1), resulting in 0.11 kWh kg PL(-1) of electrical energy and 0.75 MJ kg PL(-1) of thermal energy, thus supplying 33.6% of the energy spent on burning firewood at a typical farm. In this best-case scenario, the use of HPT alone reduced tylosin concentration from PL by 23.6%, while the process involving HPT followed by AD-1S led to the removal of 91.6% of such antibiotic. The combined process (HPT80 + AD-1S), in addition to contributing to reduce the absolute and relative abundances of ARG ermB (2.13 logs), intI1 (0.39 logs), sul1 (0.63 logs), and tetA (0.74 logs), led to a significant removal in the relative abundance of tylosin-resistant bacteria present in the poultry litter.202336648713
776890.9904Drinking water biofiltration: Behaviour of antibiotic resistance genes and the association with bacterial community. Antibiotic resistance genes (ARGs) are being detected in drinking water frequently, constituting a major public health issue. As a typical drinking water treatment process, the biofilter may harbour various ARGs due to the filter biofilms established during the filtration process. The objective of this study was to investigate the behaviour of ARGs (bla(CTX-M), bla(OXA-1), bla(TEM), ermB, tetA, tetG, tetQ, tetW, tetX, sul 1, sul 2, dfrA1 and dfrA12) and their possible association with bacteria in a bench-scale biofiltration system. The impact of filter media on horizontal gene transfer (HGT) was also explored using a model conjugative plasmid, RP1. The biofiltration system comprised four types of biofilters, including sand, granular activated carbon (GAC), GAC sandwich, and anthracite-sand biofilters. Results showed that although the absolute abundance of ARGs decreased (0.97-log reduction on average), the ARGs' abundance normalised to bacterial numbers showed an increasing trend in the filtered water. Biofilms collected from the surface layer revealed the lowest relative abundance of ARGs (p < 0.01) compared to the deeper layer biofilms, indicating that the proportion of ARG-carrying bacteria was greater in the lower position. Most chosen ARG numbers correlated to Proteobacteria, Acidobacteria and Nitrospirae phyla, which accounted for 51.9%, 5.2% and 2.0% of the biofilm communities, respectively. GAC media revealed the highest transfer frequency (2.60 × 10(-5)), followed by anthracite (5.31 × 10(-6)) and sand (2.47 × 10(-6)). Backwashing can reduce the transferability of RP1 plasmid significantly in biofilms but introduces more transconjugants into the planktonic phase. Overall, the results of this study could enhance our understanding of the prevalence of ARGs in drinking water biofiltration treatment.202032650149
8033100.9903Fate of pirlimycin and antibiotic resistance genes in dairy manure slurries in response to temperature and pH adjustment. Quantifying the fate of antibiotics and antibiotic resistance genes (ARGs) in response to physicochemical factors during storage of manure slurries will aid in efforts to reduce the spread of resistance when manure is land-applied. The objectives of this study were to determine the effects of temperature (10, 35, and 55 °C) and initial pH (5, 7, 9, and 12) on the removal of pirlimycin and prevalence of ARGs during storage of dairy manure slurries. We collected and homogenized feces and urine from five lactating dairy cows treated with pirlimycin and prepared slurries by mixing manure and sterile water. Aliquots (200 mL) of slurry were transferred and incubated in 400 mL glass beakers under different temperatures (10, 35, and 55 °C) or initial pH (5, 7, 9, and 12). Pirlimycin concentration and abundances of 16S rRNA, mefA, tet(W), and cfxA as indicators of total bacteria and ARGs corresponding to macrolide, tetracycline, and β-lactam resistance, respectively, were analyzed during manure incubation. The thermophilic environment (55 °C) increased the deconjugation and removal of pirlimycin, while the acidic shock at pH 5 increased deconjugation but inhibited removal of pirlimycin, suggesting that the chemical stability of pirlimycin could be affected by temperature and pH. The thermophilic environment decreased mefA relative abundance on day 7 and 28 (P = 0.02 and 0.04), which indicates that the bacteria that encoded mefA gene were not thermotolerant. Although mefA relative abundance was greater at the pH 9 shock than the rest of pH treatments on day 7 (P = 0.04), no significant pH effect was observed on day 28. The tet(W) abundance under initial pH 12 shock was less than other pH shocks on day 28 (P = 0.01), while no temperature effect was observed on day 28. There was no significant temperature and initial pH effect on cfxA abundance at any time point during incubation, implying that the bacteria that carrying cfxA gene are relatively insensitive to these environmental factors. Overall, directly raising temperature and pH can facilitate pirlimycin removal and decrease mefA and tet(W) relative abundances during storage of manure slurries.202032050366
7147110.9903Comprehensive analysis and risk assessment of Antibiotic contaminants, antibiotic-resistant bacteria, and resistance genes: Patterns, drivers, and implications in the Songliao Basin. The pervasive use of antibiotics has raised substantial environmental concerns, especially regarding their temporal and spatial distribution across diverse water systems. This study addressed the gap in comprehensive research on antibiotic contamination during different hydrological periods, focusing on the Jilin section of the Songliao Basin in Northeast China, an area with severe winter ice cover. The study examined the occurrence, distribution, influencing factors, and potential ecological risks of prevalent antibiotic contaminants. Findings revealed antibiotic concentrations ranging from 239.64 to 965.81 ng/L, with antibiotic resistance genes (ARGs) at 5.22 × 10(-2) 16S rRNA(-1) and antibiotic-resistant bacteria (ARB) up to 5.76 log(10) CFU/mL. Ecological risk assessments identified significant risks to algae from oxytetracycline, erythromycin, and amoxicillin. Redundancy analysis and co-occurrence networks with ordinary least squares (OLS) demonstrated that the dispersion of ARGs and ARB is significantly influenced by environmental factors such as total organic carbon (TOC), total phosphorus (TP), total nitrogen (TN), fluoride (F⁻), and nitrate (NO₃⁻). These elements, along with mobile genetic elements (MGEs), play crucial roles in ARG patterns (R(2) = 0.94, p ≤ 0.01). This investigation offers foundational insights into antibiotic pollution dynamics in cold climates, supporting the development of targeted mitigation strategies for aquatic systems.202439216670
7214120.9903Long-term application of fresh and composted manure increase tetracycline resistance in the arable soil of eastern China. The aim of this study was to compare the occurrence, abundance, and diversity of tetracycline resistance genes (tet) in agricultural soils after 6 years' application of fresh or composted swine manure. Soil samples were collected from fresh or composted manure-treated farmland at three depths (0-5 cm, 5-10 cm, and 10-20 cm). Nine classes of tet genes [tetW, tetB(P), tetO, tetS, tetC, tetG, tetZ, tetL, and tetX] were detected; tetG, tetZ, tetL, and tetB(P) were predominant in the manure-treated soil. The abundances of tetB(P), tetW, tetC, and tetO were reduced, while tetG and tetL were increased by fertilizing with composted versus fresh manure; thus, the total abundance of tet genes was not significantly reduced by compost manuring. tetG was the most abundant gene in manure-treated soil; the predominant tetG genotypes shared high homology with pathogenic bacteria. The tetG isolates were more diverse in soils treated with fresh versus composted manure, although the residual tet genes in composted manure remain a pollutant and produce a different influence on the tet gene resistome in field soil.201525460961
7989130.9903Feasibility of sulfate-calcined eggshells for removing pathogenic bacteria and antibiotic resistance genes from landfill leachates. High abundance of human pathogen and antibiotic resistance genes (ARGs) in landfill leachate has become an emerging threat against human health. Therefore, sulfate- and calcination-modified eggshells as green agricultural bioresource were applied to test the feasibility of removing pathogenic bacteria and ARGs from leachate. The highest removal of Escherichia coli (E. coil) and gentamycin resistant gene (gmrA) from artificial contaminated landfill leachate was achieved by the application of eggshell with combined treatment of sulfate and calcination. The 16S and gmrA gene copies of E. coil declined significantly from 1.78E8±8.7E6 and 4.12E8±5.9E6 copies mL(-1) to 1.32E7±2.6E6 and 2.69E7±7.2E6 copies mL(-1), respectively, within 24h dynamic adsorption equilibrium process (p<0.05). Moreover, according to the Langmuir kinetic model, the greatest adsorption amount (1.56×10(9) CFU E. coil per gram of modified eggshells) could be obtained at neutral pH of 7.5. The optimal adsorption eggshells were then screened to the further application in three typical landfill leachates in Nanjing, eastern China. Significant decrease in species and abundance of pathogenic bacteria and ARGs (tet, sul, erm, qnr, and ampC) indicated its great efficiency to purify landfill leachates. This study demonstrated that sulfate-calcined eggshells can be an environmentally-friendly and highly efficient bioadsorbent to the management of reducing dissemination risk of pathogen and ARGs in landfill leachate.201728343745
3543140.9903Precipitation influences pathogenic bacteria and antibiotic resistance gene abundance in storm drain outfalls in coastal sub-tropical waters. Stormwater contamination can threaten the health of aquatic ecosystems and human exposed to runoff via nutrient and pathogen influxes. In this study, the concentrations of 11 bacterial pathogens and 47 antibiotic resistance genes (ARGs) were determined by using high-throughput microfluidic qPCR (MFQPCR) in several storm drain outfalls (SDOs) during dry and wet weather in Tampa Bay, Florida, USA. Data generated in this study were also compared with the levels of fecal indicator bacteria (FIB) and sewage-associated molecular markers (i.e., Bacteroides HF183 and crAssphage markers) in same SDOs collected in a recent study (Ahmed et al., 2018). Concentration of FIB, sewage-associated markers, bacterial pathogens and many ARGs in water samples were relatively high and SDOs may be potentially hotspots for microbial contamination in Tampa Bay. Mean concentrations of culturable E. coli and Enterococcus spp. were tenfold higher in wet compared to dry weather. The majority of microbiological contaminants followed this trend. E. coli eaeA, encoding the virulence factor intimin, was correlated with levels of 20 ARGs, and was more frequently detected in wet weather than dry weather samples. The bla(KPC) gene associated with carbapenem resistant Enterobacteriaceae and the beta-lactam resistant gene (bla(NPS)) were only detected in wet weather samples. Frequency of integron genes Intl2 and Intl3 detection increased by 42% in wet weather samples. Culturable E. coli and Enterococcus spp. significantly correlated with 19 of 47 (40%) ARG tested. Sewage-associated markers crAssphage and HF183 significantly correlated (p < 0.05) with the following ARGs: intl1, sul1, tet(M), ampC, mexB, and tet(W). The presence of sewage-associated marker genes along with ARGs associated with sewage suggested that aging sewage infrastructure contributed to contaminant loading in the Bay. Further research should focus on collecting spatial and temporal data on the microbiological contaminants especially viruses in SDOs.201829754026
7575150.9903Antibiotic-resistant bacteria and antibiotic resistance genes in uranium mine: Distribution and influencing factors. Both heavy metals and radiation could affect the proliferation and dissemination of emerging antibiotic resistance pollutants. As an environmental medium rich in radioactive metals, the profile of antibiotic resistance in uranium mine remains largely unknown. A uranium mine in Guangdong province, China was selected to investigate the distribution and influencing factors of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) including intracellular ARGs (iARGs), adsorbed-extracellular ARGs (aeARGs), and free extracellular ARGs (feARGs). The result indicated that sulfonamide and tetracycline ARB could be generally detected in mining area with the absolute concentrations of 7.70 × 10(2)-5.18 × 10(5) colony forming unit/g. The abundances of aeARGs in mine soil were significantly higher than those of iARGs (p < 0.05), highlighting the critical contribution of aeARGs to ARGs spread. The feARGs in mine drainage and its receiving river were abundant (3.38 × 10(4)-1.86 × 10(7) copies/mL). ARB, aeARGs, and iARGs may correlate with nitrogen species and heavy metals (e.g., U and Mn), and feARGs presented a significant correlation with chemical oxygen demand (p < 0.05). These findings demonstrate the occurrence of ARB and ARGs in uranium mine for the first time, thereby contributing to the assessment and control of the ecological risk of antibiotic resistance in radioactive environments.202235304179
7775160.9902Accumulation of pharmaceuticals, Enterococcus, and resistance genes in soils irrigated with wastewater for zero to 100 years in central Mexico. Irrigation with wastewater releases pharmaceuticals, pathogenic bacteria, and resistance genes, but little is known about the accumulation of these contaminants in the environment when wastewater is applied for decades. We sampled a chronosequence of soils that were variously irrigated with wastewater from zero up to 100 years in the Mezquital Valley, Mexico, and investigated the accumulation of ciprofloxacin, enrofloxacin, sulfamethoxazole, trimethoprim, clarithromycin, carbamazepine, bezafibrate, naproxen, diclofenac, as well as the occurrence of Enterococcus spp., and sul and qnr resistance genes. Total concentrations of ciprofloxacin, sulfamethoxazole, and carbamazepine increased with irrigation duration reaching 95% of their upper limit of 1.4 µg/kg (ciprofloxacin), 4.3 µg/kg (sulfamethoxazole), and 5.4 µg/kg (carbamazepine) in soils irrigated for 19-28 years. Accumulation was soil-type-specific, with largest accumulation rates in Leptosols and no time-trend in Vertisols. Acidic pharmaceuticals (diclofenac, naproxen, bezafibrate) were not retained and thus did not accumulate in soils. We did not detect qnrA genes, but qnrS and qnrB genes were found in two of the irrigated soils. Relative concentrations of sul1 genes in irrigated soils were two orders of magnitude larger (3.15 × 10(-3) ± 0.22 × 10(-3) copies/16S rDNA) than in non-irrigated soils (4.35 × 10(-5)± 1.00 × 10(-5) copies/16S rDNA), while those of sul2 exceeded the ones in non-irrigated soils still by a factor of 22 (6.61 × 10(-4) ± 0.59 × 10(-4) versus 2.99 × 10(-5) ± 0.26 × 10(-5) copies/16S rDNA). Absolute numbers of sul genes continued to increase with prolonging irrigation together with Enterococcus spp. 23S rDNA and total 16S rDNA contents. Increasing total concentrations of antibiotics in soil are not accompanied by increasing relative abundances of resistance genes. Nevertheless, wastewater irrigation enlarges the absolute concentration of resistance genes in soils due to a long-term increase in total microbial biomass.201223049795
7748170.9902Bacillus subtilis reduces antibiotic resistance genes of animal sludge in vermicomposting by improving heat stress tolerance of Eisenia foetida and bacterial community adjustment. Antibiotic resistance genes (ARGs) in livestock industry have been recognized as a kind of pollutant. The effect of Bacillus subtilis (B. subtilis) as an additive for the reduction of ARGs in animal sludge from livestock and poultry wastewater treatment plant during vermicomposting was investigated. We also evaluated the oxidative stress level and growth of earthworms, Eisenia foetida, bacterial community succession, and the quality of the end products. Two treatments were conducted using B. subtilis, one at 18 °C and another at 28 °C. Controls were setup without the bacteria. The results showed that inoculation of B. subtilis promoted the degradation of organics at 28 °C and increased the germination index to 236%. The increased activities of the superoxide dismutase (1.69 U/mg pr) and catalase (8.05 U/mg pr) and the decreased activity of malondialdehyde (0.02 nmol/mg pr) by B. subtilis at 28 °C showed that the earthworms were relieved of heat stress. The addition of B. subtilis reduced the abundance of 32 target ARGs, including integron (intI-1), transposase (IS613) and resistant genes, such as sulfonamide (sul2), quinolone (oprJ), macrolide-lincosamide-streptogramin group B (ermF, ermB), tetracycline (tetL-02, tetX), β-lactama (blaOXA10-01) and aminoglycoside [strB, aac(6')-Ib(aka aacA4)-01, aac(6')-Ib(aka aacA4)-02]. Organic matter degrading Membranicola, Paludisphaera, Sphingorhabdus and uncultured bacterium belonging to the order Chitinophagales, nitrifying and nitrogen-fixing Singulisphaera and Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, soil remediating Achromobacter, and plant growth promoting Kaistia, Galbibacter and Ilumatobacter were increased significantly (P < 0.05). However, the growth of harmful bacteria such as Burkholderiaceae was inhibited in the vermicompost. In earthworm guts, the probiotic Mesorhizobium was promoted, while the pathogenic uncultured bacterium belonging to the family Enterobacteriaceae was reduced. Besides, B. subtilis enhanced the host relationships between bacteria and ARGs. These findings might be helpful in the removal of ARGs in animal wastes and in understanding the synergy between earthworms and microorganisms.202336529325
8048180.9902Ecological risks of sulfonamides and quinolones degradation intermediates: Toxicity, microbial community, and antibiotic resistance genes. The ecological risks posed by incompletely degraded antibiotic intermediates in aquatic environments warrant significant attention. This study investigated the degradation mechanisms of sulfonamides (sulfadiazine, sulfamethoxazole) and quinolones (ciprofloxacin, norfloxacin) during thermally activated persulfate (TAP) treatment. The main degradation mechanisms for sulfonamides involved S-N bond cleavage and -NH(2) oxidation mediated by sulfate and hydroxyl radicals, whereas quinolone degradation occurred primarily through piperazine ring cleavage facilitated by a single linear oxygen. Toxic degradation intermediates were found to be enriched with bacteria in real water samples, including Aeromonas (SDZ-50, 9.61%), Acinetobacter (SMZ-50, 21.91%), unclassified Archaea (CIP-50, 19.32%), and Herbaspirillum (NOR-50, 17.36%). Meanwhile, the abundance of sulfonamide-associated antibiotic resistance genes (ARGs) (sul1 and sul2) and quinolone-associated ARGs (mfpA, emrA, and lfrA) significantly increased, with SMZ-50 and NOR-50 reaching 659.34 and 2009.98 RPKM, respectively. Correlation analysis revealed differences in host diversity and composition driven by the same classes of antibiotics and their intermediates.202539662843
7216190.9902Tracking antibiotic resistance through the environment near a biosolid spreading ground: Resistome changes, distribution, and metal(loid) co-selection. The application of urban wastewater treatment plants (WWTPs) products to agricultural lands has contributed to the rising level of antibiotic resistance and drawn a critical public health concern. It has not been thoroughly investigated at which spatial scales a biosolid applied area as a potentially predominant source affects surrounding soil resistomes. This study investigated distribution and impact of WWTP biosolids treated with anaerobic digestion on an agricultural area. Heterotrophic plate counts (HPCs) and quantitative polymerase chain reaction (qPCR) were performed for detection of selected antibiotic-resistant bacteria (ARB), selected antibiotic resistance genes (ARGs), intI1 genes, and 16S rRNA genes. Biosolid samples contained significantly higher levels of selected ARGs than the raw agricultural soils (p < 0.05). The average relative abundances of intI1, sul1, bla(SHV), and ermB genes were significantly higher in biosolid-amended soils than nearby agricultural soils (p < 0.05). Spatial interpolation analysis of relative gene abundances of intI1, sul1, sul2, and tetW across the studied area further indicated directional trends towards the northwest and southeast directions, highlighting possible airborne spread. Concentrations of Co, Cu, Ni, and Fe were found to be significantly and positively correlated with relative abundances of intI1, sul1, and tetW genes (p < 0.05). The resistance ratios of culturable antibiotic-resistant bacteria in agricultural soils with biosolid amendments were generally identical to those without biosolid amendments. This study will advance the understanding of the antibiotic resistome in agricultural soils impacted by long-term waste reuse and inform the evaluation strategies for future biosolids application and management.202235121038