EXAMINING - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
769100.9982Antimicrobial Chemicals Associate with Microbial Function and Antibiotic Resistance Indoors. Humans purposefully and inadvertently introduce antimicrobial chemicals into buildings, resulting in widespread compounds, including triclosan, triclocarban, and parabens, in indoor dust. Meanwhile, drug-resistant infections continue to increase, raising concerns that buildings function as reservoirs of, or even select for, resistant microorganisms. Support for these hypotheses is limited largely since data describing relationships between antimicrobials and indoor microbial communities are scant. We combined liquid chromatography-isotope dilution tandem mass spectrometry with metagenomic shotgun sequencing of dust collected from athletic facilities to characterize relationships between indoor antimicrobial chemicals and microbial communities. Elevated levels of triclosan and triclocarban, but not parabens, were associated with distinct indoor microbiomes. Dust of high triclosan content contained increased Gram-positive species with diverse drug resistance capabilities, whose pangenomes were enriched for genes encoding osmotic stress responses, efflux pump regulation, lipid metabolism, and material transport across cell membranes; such triclosan-associated functional shifts have been documented in laboratory cultures but not yet from buildings. Antibiotic-resistant bacterial isolates were cultured from all but one facility, and resistance often increased in buildings with very high triclosan levels, suggesting links between human encounters with viable drug-resistant bacteria and local biocide conditions. This characterization uncovers complex relationships between antimicrobials and indoor microbiomes: some chemicals elicit effects, whereas others may not, and no single functional or resistance factor explained chemical-microbe associations. These results suggest that anthropogenic chemicals impact microbial systems in or around buildings and their occupants, highlighting an emergent need to identify the most important indoor, outdoor, and host-associated sources of antimicrobial chemical-resistome interactions. IMPORTANCE The ubiquitous use of antimicrobial chemicals may have undesired consequences, particularly on microbes in buildings. This study shows that the taxonomy and function of microbes in indoor dust are strongly associated with antimicrobial chemicals-more so than any other feature of the buildings. Moreover, we identified links between antimicrobial chemical concentrations in dust and culturable bacteria that are cross-resistant to three clinically relevant antibiotics. These findings suggest that humans may be influencing the microbial species and genes that are found indoors through the addition and removal of particular antimicrobial chemicals.201830574558
746910.9980Environmentally Relevant Antibiotic Concentrations Exert Stronger Selection Pressure on River Biofilm Resistomes than AMR-Reservoir Effluents. Freshwater environments are primary receiving systems of wastewater and effluents, which carry low concentrations of antibiotics and antimicrobial-resistant (AMR) bacteria and genes. Aquatic microbial communities are thus exposed to environmentally relevant concentrations of antibiotics (ERCA) that presumably influence the acquisition and spread of environmental AMR. Here, we analyzed ERCA exposure with and without the additional presence of municipal wastewater treatment plant effluent (W) and swine manure run-off (M) on aquatic biofilm resistomes. Microscopic analyses revealed decreased taxonomic diversity and biofilm structural integrity, while metagenomic analysis revealed an increased abundance of resistance, virulence, and mobile element-related genes at the highest ERCA exposure levels, with less notable impacts observed when solely exposed to W or M effluents. Microbial function predictions indicated increased gene abundance associated with energy and cell membrane metabolism and heavy metal resistance under ERCA conditions. In silico predictions of increased resistance mechanisms did not correlate with observed phenotypic resistance patterns when whole communities were exposed to antimicrobial susceptibility testing. This reveals important insight into the complexity of whole-community coordination of physical and genetic responses to selective pressures. Lastly, the environmental AMR risk assessment of metagenomic data revealed a higher risk score for biofilms grown at sub-MIC antibiotic conditions.202438927205
770620.9980Antibiotics in feed induce prophages in swine fecal microbiomes. Antibiotics are a cost-effective tool for improving feed efficiency and preventing disease in agricultural animals, but the full scope of their collateral effects is not understood. Antibiotics have been shown to mediate gene transfer by inducing prophages in certain bacterial strains; therefore, one collateral effect could be prophage induction in the gut microbiome at large. Here we used metagenomics to evaluate the effect of two antibiotics in feed (carbadox and ASP250 [chlortetracycline, sulfamethazine, and penicillin]) on swine intestinal phage metagenomes (viromes). We also monitored the bacterial communities using 16S rRNA gene sequencing. ASP250, but not carbadox, caused significant population shifts in both the phage and bacterial communities. Antibiotic resistance genes, such as multidrug resistance efflux pumps, were identified in the viromes, but in-feed antibiotics caused no significant changes in their abundance. The abundance of phage integrase-encoding genes was significantly increased in the viromes of medicated swine over that in the viromes of nonmedicated swine, demonstrating the induction of prophages with antibiotic treatment. Phage-bacterium population dynamics were also examined. We observed a decrease in the relative abundance of Streptococcus bacteria (prey) when Streptococcus phages (predators) were abundant, supporting the "kill-the-winner" ecological model of population dynamics in the swine fecal microbiome. The data show that gut ecosystem dynamics are influenced by phages and that prophage induction is a collateral effect of in-feed antibiotics. IMPORTANCE: This study advances our knowledge of the collateral effects of in-feed antibiotics at a time in which the widespread use of "growth-promoting" antibiotics in agriculture is under scrutiny. Using comparative metagenomics, we show that prophages are induced by in-feed antibiotics in swine fecal microbiomes and that antibiotic resistance genes were detected in most viromes. This suggests that in-feed antibiotics are contributing to phage-mediated gene transfer, potentially of antibiotic resistance genes, in the swine gut. Additionally, the so-called "kill-the-winner" model of phage-bacterium population dynamics has been shown in aquatic ecosystems but met with conflicting evidence in gut ecosystems. The data support the idea that swine fecal Streptococcus bacteria and their phages follow the kill-the-winner model. Understanding the role of phages in gut microbial ecology is an essential component of the antibiotic resistance problem and of developing potential mitigation strategies.201122128350
383830.9980The In-Feed Antibiotic Carbadox Induces Phage Gene Transcription in the Swine Gut Microbiome. Carbadox is a quinoxaline-di-N-oxide antibiotic fed to over 40% of young pigs in the United States that has been shown to induce phage DNA transduction in vitro; however, the effects of carbadox on swine microbiome functions are poorly understood. We investigated the in vivo longitudinal effects of carbadox on swine gut microbial gene expression (fecal metatranscriptome) and phage population dynamics (fecal dsDNA viromes). Microbial metagenome, transcriptome, and virome sequences were annotated for taxonomic inference and gene function by using FIGfam (isofunctional homolog sequences) and SEED subsystems databases. When the beta diversities of microbial FIGfam annotations were compared, the control and carbadox communities were distinct 2 days after carbadox introduction. This effect was driven by carbadox-associated lower expression of FIGfams (n = 66) related to microbial respiration, carbohydrate utilization, and RNA metabolism (q < 0.1), suggesting bacteriostatic or bactericidal effects within certain populations. Interestingly, carbadox treatment caused greater expression of FIGfams related to all stages of the phage lytic cycle 2 days following the introduction of carbadox (q ≤0.07), suggesting the carbadox-mediated induction of prophages and phage DNA recombination. These effects were diminished by 7 days of continuous carbadox in the feed, suggesting an acute impact. Additionally, the viromes included a few genes that encoded resistance to tetracycline, aminoglycoside, and beta-lactam antibiotics but these did not change in frequency over time or with treatment. The results show decreased bacterial growth and metabolism, prophage induction, and potential transduction of bacterial fitness genes in swine gut bacterial communities as a result of carbadox administration.IMPORTANCE FDA regulations on agricultural antibiotic use have focused on antibiotics that are important for human medicine. Carbadox is an antibiotic not used in humans but frequently used on U.S. pig farms. It is important to study possible side effects of carbadox use because it has been shown to promote bacterial evolution, which could indirectly impact antibiotic resistance in bacteria of clinical importance. Interestingly, the present study shows greater prophage gene expression in feces from carbadox-fed animals than in feces from nonmedicated animals 2 days after the initiation of in-feed carbadox treatment. Importantly, the phage genetic material isolated in this study contained genes that could provide resistance to antibiotics that are important in human medicine, indicating that human-relevant antibiotic resistance genes are mobile between bacteria via phages. This study highlights the collateral effects of antibiotics and demonstrates the need to consider diverse antibiotic effects whenever antibiotics are being used or new regulations are considered.201728790203
747040.9980Oil-contaminated sites act as high-risk pathogen reservoirs previously overlooked in coastal zones. In addition to the organic pollutants and disturbance to the microbial, plant and animal systems, oil contamination can also enrich opportunistic pathogens. But little is known about whether and how the most common coastal oil-contaminated water bodies act as reservoirs for pathogens. Here, we delved into the characteristics of pathogenic bacteria in coastal zones by constructing seawater-based microcosms with diesel oil as a pollutant. 16S rRNA gene full-length sequencing and genomic exploration revealed that pathogenic bacteria with genes involved in alkane or aromatic degradation were significantly enriched under oil contamination, providing a genetic basis for them to thrive in oil-contaminated seawater. Moreover, high-throughput qPCR assays showed an increased abundance of the virulence gene and enrichment in antibiotics resistance genes (ARGs), especially those related to multidrug resistance efflux pumps, and their high relevance to Pseudomonas, enabling this genus to achieve high levels of pathogenicity and environmental adaptation. More importantly, infection experiments with a culturable P. aeruginosa strain isolated from an oil-contaminated microcosm provided clear evidence that the environmental strain was pathogenic to grass carp (Ctenopharyngodon idellus), and the highest lethality rate was found in the oil pollutant treatment, demonstrating the synergistic effect of toxic oil pollutants and pathogens on infected fish. A global genomic investigation then revealed that diverse environmental pathogenic bacteria with oil degradation potential are widely distributed in marine environments, especially in coastal zones, suggesting extensive pathogenic reservoir risks in oil-contaminated sites. Overall, the study uncovered a hidden microbial risk, showing that oil-contaminated seawater could be a high-risk pathogen reservoir, and provides new insights and potential targets for environmental risk assessment and control.202337329716
859650.9980Stringent response-mediated ferroptosis-like death resistance underlies Novosphingobium persistence during ciprofloxacin stress. Antibiotics, as emerging hazardous materials in the environment, pose significant risks to ecosystems and contribute to the spread of antibiotic-resistant bacteria. Although extensive knowledge has been accumulated on antibiotic-resistance mechanisms in individual bacteria, less is understood about how the bacterial communities respond to antibiotic exposure under natural environmental conditions, where nutrient supplies are often limited and fluctuating. Here, we report that Novosphingobium dominated in a wetland bacterial community under 1 µg/mL ciprofloxacin (CIP) exposure and persisted during DL-serine hydroxamate-induced starvation, where the stringent response alarmer (p)ppGpp was detected. Metagenome sequencing revealed that genes associated with siderophore transport, cytochrome c, and glutathione S-transferase were significantly enriched in Novosphingobium, linking its dominance under CIP stress to iron homeostasis and oxidative stress responses. Further study on the survival mechanism of Novosphingobium pentaromativorans US6-1 under 8 µg/mL CIP stress demonstrated that stringent response regulated the growth rate and maintained cell viability by suppressing the TCA cycle and oxidative phosphorylation, deterring the entry of CIP and siderophore into cells, reducing intracellular ferrous iron and malondialdehyde, and balancing cellular redox status, thereby protecting cells from ferroptosis-like death. This study is the first to report Novosphingobium's dominance and persistence in a bacterial community during CIP stress in natural environmental conditions and to propose the stringent response-mediated ferroptosis-like death resistance as one of its key survival mechanisms.IMPORTANCEAntibiotics in the environment are increasingly recognized as a new class of pollutants that accelerate the evolutionary selection of antibiotic-resistant bacteria. However, little is known about how this selection occurs under natural conditions, including how specific bacteria taxa and mechanisms respond to particular antibiotics. This study reveals for the first time the selection effect of CIP on Novosphingobium under nutrient-limited conditions, during which stringent response and iron homeostasis play important roles. An innovative linkage between stringent response and ferroptosis-like death resistance is proposed in N. pentaromativorans US6-1, which serves as the CIP resistance mechanism for Novosphingobium. These findings may help inform strategies to combat antimicrobial resistance in the natural environment.202540952106
745060.9980Impact of corrosion inhibitors on antibiotic resistance, metal resistance, and microbial communities in drinking water. Corrosion inhibitors, including zinc orthophosphate, sodium orthophosphate, and sodium silicate, are commonly used to prevent the corrosion of drinking water infrastructure. Metals such as zinc are known stressors for antibiotic resistance selection, and phosphates can increase microbial growth in drinking water distribution systems (DWDS). Yet, the influence of corrosion inhibitor type on antimicrobial resistance in DWDS is unknown. Here, we show that sodium silicates can decrease antibiotic resistant bacteria (ARB) and antibiotic-resistance genes (ARGs), while zinc orthophosphate increases ARB and ARGs in source water microbial communities. Based on controlled bench-scale studies, zinc orthophosphate addition significantly increased the abundance of ARB resistant to ciprofloxacin, sulfonamides, trimethoprim, and vancomycin, as well as the genes sul1, qacEΔ1, an indication of resistance to quaternary ammonium compounds, and the integron-integrase gene intI1. In contrast, sodium silicate dosage at 10 mg/L resulted in decreased bacterial growth and antibiotic resistance selection compared to the other corrosion inhibitor additions. Source water collected from the drinking water treatment plant intake pipe resulted in less significant changes in ARB and ARG abundance due to corrosion inhibitor addition compared to source water collected from the pier at the recreational beach. In tandem with the antibiotic resistance shifts, significant microbial community composition changes also occurred. Overall, the corrosion inhibitor sodium silicate resulted in the least selection for antibiotic resistance, which suggests it is the preferred corrosion inhibitor option for minimizing antibiotic resistance proliferation in DWDS. However, the selection of an appropriate corrosion inhibitor must also be appropriate for the water chemistry of the system (e.g., pH, alkalinity) to minimize metal leaching first and foremost and to adhere to the lead and copper rule. IMPORTANCE Antibiotic resistance is a growing public health concern across the globe and was recently labeled the silent pandemic. Scientists aim to identify the source of antibiotic resistance and control points to mitigate the spread of antibiotic resistance. Drinking water is a direct exposure route to humans and contains antibiotic-resistant bacteria and associated resistance genes. Corrosion inhibitors are added to prevent metallic pipes in distribution systems from corroding, and the type of corrosion inhibitor selected could also have implications on antibiotic resistance. Indeed, we found that sodium silicate can minimize selection of antibiotic resistance while phosphate-based corrosion inhibitors can promote antibiotic resistance. These findings indicate that sodium silicate is a preferred corrosion inhibitor choice for mitigation of antibiotic resistance.202337681947
673570.9979Increased expression of antibiotic-resistance genes in biofilm communities upon exposure to cetyltrimethylammonium bromide (CTAB) and other stress conditions. Quaternary ammonium compounds (QAC, e.g., cetyltrimethylammonium bromide, (CTAB)) are widely used as surfactants and disinfectants. QAC already are commonly found in wastewaters, and their concentration could increase, since QAC are recommended to inactivate the SARS-CoV-2 (COVID-19) virus. Exposure of bacteria to QAC can lead to proliferation of antibiotic resistance genes (ARG). In particular, O(2)-based membrane biofilm reactors (O(2)-MBfRs) achieved excellent CTAB biodegradation, but ARG increased in their biofilms. Here, we applied meta-transcriptomic analyses to assess the impacts of CTAB exposure and operating conditions on microbial community's composition and ARG expression in the O(2)-MBfRs. Two opportunistic pathogens, Pseudomonas aeruginosa and Stenotrophomonas maltophilia, dominated the microbial communities and were associated with the presence of ARG. Operating conditions that imposed stress on the biofilms, i.e., limited supplies of O(2) and nitrogen or a high loading of CTAB, led to large increases in ARG expression, particularly for genes conferring antibiotic-target protection. Important within the efflux pumps was the Resistance-Nodulation-Division (RND) family, which may have been active in exporting CTAB from cells. Oxidative stress appeared to be the key factor that triggered ARG proliferation by selecting intrinsically resistant species and accentuating the expression of ARG. Our findings suggest that means to mitigate the spread of ARG, such as shown here in a O(2)-based membrane biofilm reactor, need to consider the impacts of stressors, including QAC exposure and stressful operating conditions.202133418325
768080.9979Unveiling the Gut Microbiota and Resistome of Wild Cotton Mice, Peromyscus gossypinus, from Heavy Metal- and Radionuclide-Contaminated Sites in the Southeastern United States. The prevalence of antibiotic resistance genes (ARGs) can be driven by direct selection from antibiotic use and indirect selection from substances such as heavy metals (HMs). While significant progress has been made to characterize the influence of HMs on the enrichment and dissemination of ARGs in the environment, there is still much we do not know. To fill this knowledge gap, we present a comprehensive analysis of gut bacteria associated with wild cotton mice (Peromyscus gossypinus) trapped from several areas affected by legacies of HM and radionuclide contamination. We explore how these contaminants affect gut microbial community (GMC) composition and diversity and the enrichment of antibiotic, biocide, and metal resistance genes. Although we were able to identify that a myriad of co-occurring antimicrobial and HM resistance genes appear in mice from all areas, including those without a history of contamination, the proportions of co-occurring ARGs and metal resistance genes (MRGs) are higher in sites with radionuclide contamination. These results support those from several previous studies and enhance our understanding of the coselection process, while providing new insights into the ubiquity of antimicrobial resistance in the resistome of wild animals. IMPORTANCE Antimicrobial resistance is a serious global public health concern because of its prevalence and ubiquitous distribution. The rapid dissemination of antibiotic resistance genes is thought to be the result of the massive overuse of antibiotics in agriculture and therapeutics. However, previous studies have demonstrated that the spread of antibiotic resistance genes can also be influenced by heavy metal contamination. This coselection phenomenon, whereby different resistance determinants are genetically linked on the same genetic element (coresistance) or a single genetic element provides resistance to multiple antimicrobial agents (cross-resistance), has profound clinical and environmental implications. In contrast to antibiotics, heavy metals can persist in the environment as a selection pressure for long periods of time. Thus, it is important to understand how antibiotic resistance genes are distributed in the environment and to what extent heavy metal contaminants may be driving their selection, which we have done in one environmental setting.202134431703
646090.9979Biocides as drivers of antibiotic resistance: A critical review of environmental implications and public health risks. The widespread and indiscriminate use of biocides poses significant threats to global health, socioeconomic development, and environmental sustainability by accelerating antibiotic resistance. Bacterial resistance development is highly complex and influenced significantly by environmental factors. Increased biocide usage in households, agriculture, livestock farming, industrial settings, and hospitals produces persistent chemical residues that pollute soil and aquatic environments. Such contaminants contribute to the selection and proliferation of resistant bacteria and antimicrobial resistance genes (ARGs), facilitating their dissemination among humans, animals, and ecosystems. In this review, we conduct a critical assessment of four significant issues pertaining to this topic. Specifically, (i) the role of biocides in exerting selective pressure within the environmental resistome, thereby promoting the proliferation of resistant microbial populations and contributing to the global spread of antimicrobial resistance genes (ARGs); (ii) the role of biocides in triggering transient phenotypic adaptations in bacteria, including efflux pump overexpression, membrane alterations, and reduced porin expression, which often result in cross-resistance to multiple antibiotics; (iii) the capacity of biocides to disrupt bacteria and make the genetic content accessible, releasing DNA into the environment that remains intact under certain conditions, facilitating horizontal gene transfer and the spread of resistance determinants; (iv) the capacity of biocides to disrupt bacterial cells, releasing intact DNA into the environment and enhancing horizontal gene transfer of resistance determinants; and (iv) the selective interactions between biocides and bacterial biofilms in the environment, strengthening biofilm cohesion, inducing resistance mechanisms, and creating reservoirs for resistant microorganisms and ARG dissemination. Collectively, this review highlights the critical environmental and public health implications of biocide use, emphasizing an urgent need for strategic interventions to mitigate their role in antibiotic resistance proliferation.202540230384
7704100.9979Temporal development and potential interactions between the gut microbiome and resistome in early childhood. Antimicrobial resistance-associated infections have become a major threat to global health. The gut microbiome serves as a major reservoir of bacteria with antibiotic resistance genes; whereas, the temporal development of gut resistome during early childhood and the factors influencing it remain unclear. Moreover, the potential interactions between gut microbiome and resistome still need to be further explored. In this study, we found that antibiotic treatment led to destabilization of the gut microbiome and resistome structural communities, exhibiting a greater impact on the resistome than on the microbiome. The composition of the gut resistome at various developmental stages was influenced by the abundance and richness of different core microbes. First exposure to antibiotics led to a dramatic increase in the number of opportunistic pathogens carrying multidrug efflux pump encoding genes. Multiple factors could influence the gut microbiome and resistome formation. The data may provide new insights into early-life research.IMPORTANCEIn recent years, the irrational or inappropriate use of antibiotics, an important life-saving medical intervention, has led to the emergence and increase of drug-resistant and even multidrug-resistant bacteria. It remains unclear how antibiotic exposure affects various developmental stages of early childhood and how gut core microbes under antibiotic exposure affect the structural composition of the gut resistome. In this study, we focused on early antibiotic exposure and analyzed these questions in detail using samples from infants at various developmental stages. The significance of our research is to elucidate the impact of early antibiotic exposure on the dynamic patterns of the gut resistome in children and to provide new insights for early-life studies.202438193687
8659110.9979Phage phylogeny, molecular signaling, and auxiliary antimicrobial resistance in aerobic and anaerobic membrane bioreactors. Phage emit communication signals that inform their lytic and lysogenic life cycles. However, little is known regarding the abundance and diversity of the genes associated with phage communication systems in wastewater treatment microbial communities. This study focused on phage communities within two distinct biochemical wastewater environments, specifically aerobic membrane bioreactors (AeMBRs) and anaerobic membrane bioreactors (AnMBRs) exposed to varying antibiotic concentrations. Metagenomic data from the bench-scale systems were analyzed to explore phage phylogeny, life cycles, and genetic capacity for antimicrobial resistance and quorum sensing. Two dominant phage families, Schitoviridae and Peduoviridae, exhibited redox-dependent dynamics. Schitoviridae prevailed in anaerobic conditions, while Peduoviridae dominated in aerobic conditions. Notably, the abundance of lytic and lysogenic proteins varied across conditions, suggesting the coexistence of both life cycles. Furthermore, the presence of antibiotic resistance genes (ARGs) within viral contigs highlighted the potential for phage to transfer ARGs in AeMBRs. Finally, quorum sensing genes in the virome of AeMBRs indicated possible molecular signaling between phage and bacteria. Overall, this study provides insights into the dynamics of viral communities across varied redox conditions in MBRs. These findings shed light on phage life cycles, and auxiliary genetic capacity such as antibiotic resistance and bacterial quorum sensing within wastewater treatment microbial communities.202438677036
8658120.9979Microplastic exposure reshapes the virome and virus-bacteria networks with implications for immune regulation in Mytilus coruscus. Microplastic pollution has emerged as a critical environmental concern, yet its impacts on host-associated viral communities and immune balance in marine bivalves remain largely unexplored. In this study, Mytilus coruscus individuals were exposed to microplastics in situ for seven days. Virome sequencing and bioinformatic analyses revealed that microplastic exposure induced divergent responses in DNA and RNA viral communities. DNA viromes exhibited suppressed diversity and downregulation of core viral metabolic pathways, potentially reflecting reduced viral replication capacity under host immune stress. In contrast, RNA viromes displayed metabolic activation and functional shifts, including enriched glycan and nucleotide metabolism, possibly linked to enhanced viral activity or immune evasion. Phage-bacteria interaction networks were also restructured, showing increased associations with opportunistic pathogens such as Vibrio cholerae and Enterobacter, potentially affecting immune surveillance. Furthermore, the expression of antibiotic resistance genes (ARGs) in viral genomes was differentially regulated, suggesting pollutant-induced microbial selection that may challenge host immune resilience. These findings suggest that microplastics not only reshape virome composition and metabolic functions but also influence virus-mediated immune interactions, with important implications for disease susceptibility and immune homeostasis in filter-feeding shellfish.202541056669
6636130.9979The Contribution of Dairy Bedding and Silage to the Dissemination of Genes Coding for Antimicrobial Resistance: A Narrative Review. Antimicrobial resistance (AMR) is a concern in the dairy industry. Recent studies have indicated that bedding serves as a reservoir for antimicrobial-resistant bacteria and antimicrobial-resistance genes (ARGs), while silage has been proposed as another possible source. The impact of AMR in dairy farming can be significant, resulting in decreased productivity and economic losses for farmers. Several studies have highlighted the safety implications of AMR bacteria and genes in bedding and silage, emphasizing the need for further research on how housing, bedding, and silage management affect AMR in farm environments. Exposure to sub-lethal concentrations of antibiotics, such as those from contaminated bedding and silage, can prompt bacteria to develop resistance mechanisms. Thus, even if antimicrobial usage is diminished, ARGs may be maintained in the dairy farm environment. By implementing proactive measures to tackle AMR in dairy farming, we can take steps to preserve the health and productivity of dairy cattle while also protecting public health. This involves addressing the prudent use of antibiotics during production and promoting animal welfare, hygiene, and management practices in bedding and farm environments to minimize the risk of AMR development and spread. This narrative review compiles the growing research, positioning the contribution of bedding and silage to the prevalence and dissemination of AMR, which can elicit insights for researchers and policymakers.202439335078
7692140.997916S rRNA gene sequencing data of the human skin microbiome before and after swimming in the ocean. These data represent the abundance, diversity and predicted function gene profiles of the microbial communities present on human skin before and after swimming in the ocean. The skin microbiome has been shown to provide protection against infection from pathogenic bacteria. It is well-known that exposure to ocean water can cause skin infection, but little is known about how exposure can alter the bacterial communities on the skin. Skin microbiome samples were collected from human participants before and after swimming in the ocean. These data were used to analyze the changes in abundance and diversity of microbial communities on the skin and the changes in the functional profiles of the bacteria, specifically focusing on genes involved in antibiotic resistance and bacterial virulence.202134189199
6450150.9979Protist predation promotes antimicrobial resistance spread through antagonistic microbiome interactions. Antibiotic resistance has grown into a major public health threat. In this study, we reveal predation by protists as an overlooked driver of antibiotic resistance dissemination in the soil microbiome. While previous studies have primarily focused on the distribution of antibiotic resistance genes, our work sheds light on the pivotal role of soil protists in shaping antibiotic resistance dynamics. Using a combination of metagenomics and controlled experiments in this study, we demonstrate that protists cause an increase in antibiotic resistance. We mechanistically link this increase to a fostering of antimicrobial activity in the microbiome. Protist predation gives a competitive edge to bacteria capable of producing antagonistic secondary metabolites, which secondary metabolites promote in turn antibiotic-resistant bacteria. This study provides insights into the complex interplay between protists and soil microbiomes in regulating antibiotic resistance dynamics. This study highlights the importance of top-down control on the spread of antibiotic resistance and directly connects it to cross-kingdom interactions within the microbiome. Managing protist communities may become an important tool to control outbreaks of antibiotic resistance in the environment.202439259188
9640160.9979Effects of microplastic concentration, composition, and size on Escherichia coli biofilm-associated antimicrobial resistance. Microplastics (MPs) have emerged as a significant environmental pollutant with profound implications for public health, particularly as substrates to facilitate bacterial antimicrobial resistance (AMR). Recently, studies have shown that MPs may accommodate biofilm communities, chemical contaminants, and genetic material containing AMR genes. This study investigated the effects of MP concentration, composition, and size on the development of multidrug resistance in Escherichia coli. Specifically, we exposed E. coli to varying concentrations of different MP types, including polyethylene, polystyrene, and polypropylene, across a range of sizes (3-10, 10-50, and 500 µm). Results indicated that the biofilm cells attached to MPs had elevated multidrug resistance (in E. coli. Notably, MPs exhibited a higher propensity for facilitating biofilm and resistance than control substrates such as glass, likely due to their hydrophobicity, greater adsorption capacities, and surface chemistries. Notably, we found that the bacteria passaged with MPs formed stronger biofilms once the MPs were removed, which was associated with changes in motility. Thus, MPs select cells that are better at forming biofilms, which can lead to biofilm-associated AMR and recalcitrant infections in the environment and healthcare setting. Our study highlights the importance of developing effective strategies to address the challenges posed by MPs. IMPORTANCE: Antimicrobial resistance (AMR) is one of the world's most pressing global health crises. With the pipeline of antibiotics running dry, it is imperative that mitigation strategies understand the mechanisms that drive the genesis of AMR. One emerging dimension of AMR is the environment. This study highlights the relationship between a widespread environmental pollutant, microplastics (MPs), and the rise of drug-resistant bacteria. While it is known that MPs facilitate resistance through several modes (biofilm formation, plastic adsorption rates, etc.), this study fills the knowledge gap on how different types of MPs are contributing to AMR.202540067049
6664170.9979Addressing the global challenge of bacterial drug resistance: insights, strategies, and future directions. The COVID-19 pandemic underscored bacterial resistance as a critical global health issue, exacerbated by the increased use of antibiotics during the crisis. Notwithstanding the pandemic's prevalence, initiatives to address bacterial medication resistance have been inadequate. Although an overall drop in worldwide antibiotic consumption, total usage remains substantial, requiring rigorous regulatory measures and preventive activities to mitigate the emergence of resistance. Although National Action Plans (NAPs) have been implemented worldwide, significant disparities persist, particularly in low- and middle-income countries (LMICs). Settings such as farms, hospitals, wastewater treatment facilities, and agricultural environments include a significant presence of Antibiotic Resistant Bacteria (ARB) and antibiotic-resistance genes (ARG), promoting the propagation of resistance. Dietary modifications and probiotic supplementation have shown potential in reshaping gut microbiota and reducing antibiotic resistance gene prevalence. Combining antibiotics with adjuvants or bacteriophages may enhance treatment efficacy and mitigate resistance development. Novel therapeutic approaches, such as tailored antibiotics, monoclonal antibodies, vaccines, and nanoparticles, offer alternate ways of addressing resistance. In spite of advancements in next-generation sequencing and analytics, gaps persist in comprehending the role of gut microbiota in regulating antibiotic resistance. Effectively tackling antibiotic resistance requires robust policy interventions and regulatory measures targeting root causes while minimizing public health risks. This review provides information for developing strategies and protocols to prevent bacterial colonization, enhance gut microbiome resilience, and mitigate the spread of antibiotic resistance.202540066274
4287180.9979Widely Used Benzalkonium Chloride Disinfectants Can Promote Antibiotic Resistance. While the misuse of antibiotics has clearly contributed to the emergence and proliferation of resistant bacterial pathogens, with major health consequences, it remains less clear if the widespread use of disinfectants, such as benzalkonium chlorides (BAC), a different class of biocides than antibiotics, has contributed to this problem. Here, we provide evidence that exposure to BAC coselects for antibiotic-resistant bacteria and describe the underlying genetic mechanisms. After inoculation with river sediment, BAC-fed bioreactors selected for several bacterial taxa, including the opportunistic pathogen Pseudomonas aeruginosa, that were more resistant to several antibiotics than their counterparts in a control (no BAC) bioreactor. A metagenomic analysis of the bioreactor microbial communities, confirmed by gene cloning experiments with the derived isolates, suggested that integrative and conjugative elements encoding a BAC efflux pump together with antibiotic resistance genes were responsible for these results. Furthermore, the exposure of the P. aeruginosa isolates to increasing concentrations of BAC selected for mutations in pmrB (polymyxin resistance) and physiological adaptations that contributed to a higher tolerance to polymyxin B and other antibiotics. The physiological adaptations included the overexpression of mexCD-oprJ multidrug efflux pump genes when BAC was added in the growth medium at subinhibitory concentrations. Collectively, our results demonstrated that disinfectants promote antibiotic resistance via several mechanisms and highlight the need to remediate (degrade) disinfectants in nontarget environments to further restrain the spread of antibiotic-resistant bacteria.IMPORTANCE Benzalkonium chlorides (BAC) are biocides broadly used in disinfectant solutions. Disinfectants are widely used in food processing lines, domestic households, and pharmaceutical products and are typically designed to have a different mode of action than antibiotics to avoid interfering with the use of the latter. Whether exposure to BAC makes bacteria more resistant to antibiotics remains an unresolved issue of obvious practical consequences for public health. Using an integrated approach that combines metagenomics of natural microbial communities with gene cloning experiments with isolates and experimental evolution assays, we show that the widely used benzalkonium chloride disinfectants promote clinically relevant antibiotic resistance. Therefore, more attention should be given to the usage of these disinfectants, and their fate in nontarget environments should be monitored more tightly.201829959242
6474190.9979Impact of treated wastewater irrigation on antibiotic resistance in the soil microbiome. The reuse of treated wastewater (TWW) for irrigation is a practical solution for overcoming water scarcity, especially in arid and semiarid regions of the world. However, there are several potential environmental and health-related risks associated with this practice. One such risk stems from the fact that TWW irrigation may increase antibiotic resistance (AR) levels in soil bacteria, potentially contributing to the global propagation of clinical AR. Wastewater treatment plant (WWTP) effluents have been recognized as significant environmental AR reservoirs due to selective pressure generated by antibiotics and other compounds that are frequently detected in effluents. This review summarizes a myriad of recent studies that have assessed the impact of anthropogenic practices on AR in environmental bacterial communities, with specific emphasis on elucidating the potential effects of TWW irrigation on AR in the soil microbiome. Based on the current state of the art, we conclude that contradictory to freshwater environments where WWTP effluent influx tends to expand antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes levels, TWW irrigation does not seem to impact AR levels in the soil microbiome. Although this conclusion is a cause for cautious optimism regarding the future implementation of TWW irrigation, we conclude that further studies aimed at assessing the scope of horizontal gene transfer between effluent-associated ARB and soil bacteria need to be further conducted before ruling out the possible contribution of TWW irrigation to antibiotic-resistant reservoirs in irrigated soils.201323378260