# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1170 | 0 | 0.9984 | Mechanisms of antibiotic resistance in Escherichia coli isolates obtained from healthy children in Spain. Antibiotic resistance and mechanisms involved were studied in Escherichia coli isolates from fecal samples of healthy children. Fifty fecal samples were analyzed, and one colony per sample was recovered and identified by biochemical and molecular tests. Forty-one E. coli isolates were obtained (82%). MIC testing was performed by agar dilution with 18 antibiotics, and the mechanisms of resistance were analyzed. Ampicillin resistance was detected in 24 isolates (58.5%), and blaTEM, blaSHV, and blaOXA type genes were studied by PCR and sequencing. The following beta-lactamases were detected (number of isolates): TEM (20), SHV-1 (1), and OXA-30 (1). The number of aminoglycoside-resistant isolates detected was as follows: streptomycin (15), tobramycin (1), gentamicin (1), and kanamycin (4). The aac(3)-IV gene was detected in the only gentamicin-resistant isolate. Nine (22%) and 2 (5%) isolates showed nalidixic acid (NALR) and ciprofloxacin resistance (CIPR), respectively. Mutations in GyrA and ParC proteins were shown in both NAL(R)-CIP(R) isolates and were the following: (1) GyrA (S83L + D87N), ParC (S801); and (2) GyrA (S83L + A84P), ParC (S80I + A108V). A single mutation in the S83 codon of the gyrA gene was found in the remaining seven NAL(R)-CIP(S) isolates. Tetracycline resistance was identified in 21 isolates (51%) and the following resistance genes were found (number of isolates): tetA (12), tetB (5), and tetD (1). Chloramphenicol resistance was detected in five isolates (12%). These results show that the intestinal tract of healthy children constitutes a reservoir of resistant bacteria and resistance genes. | 2002 | 12523629 |
| 1364 | 1 | 0.9984 | Antimicrobial resistance patterns of Shiga toxin-producing Escherichia coli O157:H7 and O157:H7- from different origins. Shiga toxin-producing Escherichia coli (STEC) serotypes including O157:H7 (n = 129) from dairy cows, cull dairy cow feces, cider, salami, human feces, ground beef, bulk tank milk, bovine feces, and lettuce; and O157:H7- (n = 24) isolated from bovine dairy and bovine feedlot cows were evaluated for antimicrobial resistance against 26 antimicrobials and the presence of antimicrobial resistance genes (tetA, tetB, tetC, tetD, tetE, tetG, floR, cmlA, strA, strB, sulI, sulII, and ampC). All E. coli exhibited resistance to five or more antimicrobial agents, and the majority of isolates carried one or more target antimicrobial resistance gene(s) in different combinations. The majority of E. coli showed resistance to ampicillin, aztreonam, cefaclor, cephalothin, cinoxacin, and nalidixic acid, and all isolates were susceptible to chloramphenicol and florfenicol. Many STEC O157:H7 and O157:H7-isolates were susceptible to amikacin, carbenicillin, ceftriaxone, cefuroxime, ciprofloxacin, fosfomycin, moxalactam, norfloxacin, streptomycin, tobramycin, trimethoprim, and tetracycline. The majority of STEC O157:H7 (79.8%) and O157:H7- (91.7%) carried one or more antimicrobial resistance gene(s) regardless of whether phenotypically resistant or susceptible. Four tetracycline resistant STEC O157:H7 isolates carried both tetA and tetC. Other tetracycline resistance genes (tetB, tetD, tetE, and tetG) were not detected in any of the isolates. Among nine streptomycin resistant STEC O157:H7 isolates, eight carried strA-strB along with aadA, whereas the other isolate carried aadA alone. However, the majority of tetracycline and streptomycin susceptible STEC isolates also carried tetA and aadA genes, respectively. Most ampicillin resistant E. coli of both serotypes carried ampC genes. Among sulfonamide resistance genes, sulII was detected only in STEC O157:H7 (4 of 80 sulfonamide-resistant isolates) and sulI was detected in O157:H7- (1 of 16 sulfonamide resistant isolates). The emergence and dissemination of multidrug resistance in STEC can serve as a reservoir for different antimicrobial resistance genes. Dissemination of antimicrobial resistance genes to commensal and pathogenic bacteria could occur through any one of the horizontal gene transfer mechanisms adopted by the bacteria. | 2007 | 17536933 |
| 1324 | 2 | 0.9984 | Molecular characterization of antimicrobial resistance in enterococci and Escherichia coli isolates from European wild rabbit (Oryctolagus cuniculus). A total of 44 Escherichia coli and 64 enterococci recovered from 77 intestinal samples of wild European rabbits in Portugal were analyzed for resistance to antimicrobial agents. Resistance in E. coli isolates was observed for ampicillin, tetracycline, sulfamethoxazole/trimethoprim, streptomycin, gentamicin, tobramycin, nalidixic acid, ciprofloxacin and chloramphenicol. None of the E. coli isolates produced extended-spectrum beta-lactamases (ESBLs). The bla(TEM), aadA, aac(3)-II, tet(A) and/or tet(B), and the catA genes were demonstrated in all ampicillin, streptomycin, gentamicin, tetracycline, and chloramphenicol-resistant isolates respectively, and the sul1 and/or sul2 and/or sul3 genes in 4 of 5 sulfamethoxazole/trimethoprim resistant isolates. Of the enterococcal isolates, Enterococcus faecalis was the most prevalent detected species (39 isolates), followed by E. faecium (21 isolates) and E. hirae (4 isolates). More than one-fourth (29.7%) of the isolates were resistant to tetracycline; 20.3% were resistant to erythromycin, 14.1% were resistant to ciprofloxacin and 10.9% were resistant to high-level-kanamycin. Lower level of resistance (<10%) was detected for ampicillin, quinupristin/dalfopristin and high-level-gentamicin, -streptomycin. No vancomycin-resistance was detected in the enterococci isolates. Resistance genes detected included aac(6')-aph(2''), ant(6)-Ia, tet(M) and/or tet(L) in all gentamicin, streptomycin and tetracycline-resistant isolates respectively. The aph(3')-IIIa gene was detected in 6 of 7 kanamycin-resistant isolates, the erm(B) gene in 11 of 13 erythromycin-resistant isolates and the vat(D) gene in the quinupristin/dalfopristin-resistant E. faecium isolate. This survey showed that faecal bacteria such as E. coli and enterococci of wild rabbits could be a reservoir of antimicrobial resistance genes. | 2010 | 20624632 |
| 5448 | 3 | 0.9984 | Virulence gene profiles, biofilm formation, and antimicrobial resistance of Vibrio cholerae non-O1/non-O139 bacteria isolated from West Bengal, India. Vibrio cholerae is the causative agent of acute dehydrating diarrhoeal disease cholera. Among 71 V. cholerae non-O1/non-O139 isolates, all yielded negative results for ctxA, ctxB and tcpA genes in PCR assay. Few strains were positive for stn (28.38%), and ompU (31.08%) genes. While all isolates were negative for ace gene, only two were positive for zot gene. All strains expressed toxR and toxT genes. It was also found that all isolates were slime-producer and these were capable of forming moderate to high biofilm. Biofilm formation was controlled positively by the transcriptional regulators VpsR and VpsT and was regulated negatively by HapR, as well as CRP regulatory complex. These isolates were resistant to ampicillin, furazolidone, doxycycline, vancomycin, erythromycin, while these were susceptible to ciprofloxacin, gentamycin, kanamycin, polymixin B, norfloxacin, chloramphenicol, sulphamethoxazole-trimethoprim, tetracycline, nalidixic acid, and streptomycin. Indeed, 69.01% isolates were resistant to multiple antibiotics (MAR: resistance to 3 or more antibiotics). Treatment protocols for cholera patients should be based on local antibiogram data. | 2018 | 30582054 |
| 1337 | 4 | 0.9984 | Biofilm formation, antimicrobial assay, and toxin-genotypes of Clostridium perfringens type C isolates cultured from a neonatal Yangtze finless porpoise. This is a culture-dependent study with the objective of pure culturing and characterizing pathogenic bacteria from the blowhole, lung, stomach and fecal samples of a neonatal crucially endangered Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) that died 27 days after birth. Bacteria were inoculated using a swab onto blood and MacConkey agar plates and representative isolates were identified through 16S rRNA gene sequence analysis. A total of three Clostridium perfringens type C strains from the fecal samples were isolated. Toxin genes, including cpa, cpb and cpb2, were detected by PCR amplification, whereas the etx, iap and cpe genes were not detected. Biofilm formation of the three strains was then examined. Only one strain was capable of biofilm formation. In addition, isolates showed strong resistance against the antibiotics amikacin (3/3), erythromycin (1/3), gentamicin (3/3), streptomycin (3/3), and trimethoprim (3/3), while sensitivity to ampicillin (3/3), bacitracin (3/3), erythromycin (2/3), penicillin G (3/3), and tetracycline (3/3). The results suggested C. perfringens type C could have contributed to the death of this neonatal porpoise. | 2022 | 35662380 |
| 1365 | 5 | 0.9984 | The frequency of tetracycline resistance genes in Escherichia coli strains isolated from healthy and diarrheic pet birds. BACKGROUND: Pet birds have close contact to human and resistant bacteria can transfer from birds to intestinal flora of human. AIMS: This study was carried out to determine the tetracycline resistance genes in Escherichia coli strains associated with enteric problem in pet birds. METHODS: Totally, 295 cloacal swabs were collected from 195 healthy and 100 diarrheic pet birds in Isfahan province, Iran. The presence of E. coli was identified by conventional bacteriological, biochemical, and molecular examinations. The presence of tetracycline resistance genes (tetA, tetB, tetC, tetD, tetE, tetG, tetK, tetL, tetM, tetO, and tetS genes) were examined using three multiplex PCR. RESULTS: The results showed that 18.9% and 43% of cloacal samples of healthy and diarrheic pet birds contained E. coli, respectively. The mean percentage of E. coli isolated from cloacal samples of diarrheic birds was significantly higher than the healthy birds (46.6 vs 23.1%). In healthy birds, out of 37 E. coli isolates, 10 isolates were resistant to tetracycline, harboring tetA and tetB genes (3 tetA vs 7 tetB), but in the diarrheic birds, of 26 resistance E. coli, 11, 12, and 3 strains contained tetA (42.3%), tetB (46.15), and tetA+tetB (11.53%) genes. The percentage of tet genes were significantly higher in diarrheic birds than healthy birds (58.9 vs 24.0%). CONCLUSION: Both resistant genes of tetA and tetB were detected in E. coli isolates that are related with efflux pump activity. These genes can be transferred between Gram-negative bacteria and they have the potential ability to be transferred to the environment and human flora. | 2021 | 35126542 |
| 2917 | 6 | 0.9984 | Similarity of tetracycline resistance genes isolated from fish farm bacteria to those from clinical isolates. Tetracycline-resistant (Tet(r)) bacteria were isolated from fishes collected at three different fish farms in the southern part of Japan in August and September 2000. Of the 66 Tet(r) gram-negative strains, 29 were identified as carrying tetB only. Four carried tetY, and another four carried tetD. Three strains carried tetC, two strains carried tetB and tetY, and one strain carried tetC and tetG. Sequence analyses indicated the identity in Tet(r) genes between the fish farm bacteria and clinical bacteria: 99.3 to 99.9% for tetB, 98.2 to 100% for tetC, 99.7 to 100% for tetD, 92.0 to 96.2% for tetG, and 97.1 to 100% for tetY. Eleven of the Tet(r) strains transferred Tet(r) genes by conjugation to Escherichia coli HB-101. All transconjugants were resistant to tetracycline, oxycycline, doxycycline, and minocycline. The donors included strains of Photobacterium, Vibrio, Pseudomonas, Alteromonas, Citrobacter, and Salmonella spp., and they transferred tetB, tetY, or tetD to the recipients. Because NaCl enhanced their growth, these Tet(r) strains, except for the Pseudomonas, Citrobacter, and Salmonella strains, were recognized as marine bacteria. Our results suggest that tet genes from fish farm bacteria have the same origins as those from clinical strains. | 2003 | 12957921 |
| 1323 | 7 | 0.9984 | Detection of antibiotic resistant enterococci and Escherichia coli in free range Iberian Lynx (Lynx pardinus). Thirty fecal samples from wild specimens of Iberian lynx were collected and analyzed for Enterococcus spp. (27 isolates) and Escherichia coli (18 isolates) recovery. The 45 isolates obtained were tested for antimicrobial resistance, molecular mechanisms of resistance, and presence of virulence genes. Among the enterococci, Enterococcus faecium and Enterococcus hirae were the most prevalent species (11 isolates each), followed by Enterococcus faecalis (5 isolates). High percentages of resistance to tetracycline and erythromycin (33% and 30%, respectively) were detected among enterococcal isolates. The tet(M) and/or tet(L), erm(B), aac(6')-Ie-aph(2″)-Ia, ant(6)-Ia, or aph(3')-IIIa genes were detected among resistant enterococci. Virulence genes were detected in one E. faecalis isolate (cpd, cylB, and cylL) and one E. hirae isolate (cylL). High percentages of resistance were detected in E. coli isolates to tetracycline (33%), streptomycin (28%), nalidixic acid (28%), and sulfamethoxazole-trimethoprim (SXT, 22%). Additionally, the blaTEM, tet(A), aadA, cmlA, and different combinations of sul genes were detected among most ampicillin, tetracycline, streptomycin, chloramphenicol and SXT-resistant isolates, respectively. Two isolates contained a class 1 integron with the gene cassette arrays dfrA1 + aadA1 and dfrA12 + aadA2. The E. coli isolates were ascribed to phylo-groups A (n=5); B1 (n=4); B2 (n=6), and D (n=3), with the virulence gene fimA present in all E. coli isolates. This study found resistance genes in wild specimens of Iberian lynx. Thus, it is important to notice that multiresistant bacteria have reached species as rare and completely non-synanthropic as the Iberian lynx. Furthermore, the susceptibility of this endangered species to bacterial infection may be affected by the presence of these virulence and resistance genes. | 2013 | 23588135 |
| 2799 | 8 | 0.9984 | Genetic and physiological characterization of oxytetracycline-resistant bacteria from giant prawn farms. Four hundred and thirteen oxytetracycline-resistant bacteria were recovered from six freshwater giant prawn farms with a history of oxytetracycline use. Most oxytetracyclineresistant isolates were Gram-negative bacteria. Six groups of oxytetracycline-resistant bacteria were classified using cluster analysis based on a comparison of levels of oxytetracycline resistance. Complex fingerprint patterns were obtained for 71 isolates studied. In general, the band patterns of isolates from different ponds were very similar, and the data indicated that the isolates were closely related. The exploration for crossresistance found that most of the 71 oxytetracycline-resistant isolates were also resistant to tetracycline and chlortetracycline, but had a relatively low resistance to doxycycline. Many isolates showed higher chlortetracycline resistance than oxytetracycline resistance. Additionally, the oxytetracyclineresistant isolates were examined for the presence of tetracycline resistance (tet) genes. Fifty percent of the isolates carried one of the 14 known tet genes examined. The most common determinants were TetA and TetD. However, TetB, TetC, TetE, TetK, TetL, and TetM were also found with various frequencies. | 2008 | 18309262 |
| 1366 | 9 | 0.9983 | Day-old chicks are a source of antimicrobial resistant bacteria for laying hen farms. Antimicrobial resistant bacteria are rarely detected in laying hens and the objective of this longitudinal study was to test day-old chick as a source. Four different commercial batches raised on the same farm were monitored from day-old chick to laying hens using Escherichia coli as a model. Ten colonies from each of the eight samplings per batch were tested for antimicrobial susceptibility using 14 antimicrobials. Overall (313 isolates), higher resistance percentages were detected for tetracycline (26.8%), followed by sulphonamides (16.3%), ampicillin (16.0%) and quinolones (10.9% and 9.3% for ciprofloxacin and nalidixic acid, respectively). Resistance percentages of bacteria from day-old chicks were higher than those of pullets and hens (p < 0.05) for tetracycline, sulphonamides, trimethoprim and chloramphenicol. Forty different phenotypic resistance profiles were detected, led by fully susceptible (182 isolates; 58.1%), and followed by single tetracycline (28 isolates; 8.9%) and ciprofloxacin/ nalidixic acid (11 isolates; 3.5%) profiles. By whole-genome sequencing, 17 genes and mutations of five chromosomal genes related to resistance were detected, the most frequent being tetA, bla(TEM-1B) and sul1. Using multilocus sequencing analysis, 58 different MLST types were detected, most of them only in a particular sample. The ST155 (27/142) was the most frequently detected, followed by ST10 (19/142) and ST48 (9/142). The fate on the farm of the detected E. coli populations in old-day chicks was not clear, but our data suggest that they did not remain in the predominant faecal population of pullets and laying hens. | 2019 | 30827391 |
| 2411 | 10 | 0.9983 | Genomic characterisation, detection of genes encoding virulence factors and evaluation of antibiotic resistance of Trueperella pyogenes isolated from cattle with clinical metritis. Trueperella pyogenes is one of the most important microorganisms causing metritis in post-partum cattle. Co-infection with other bacterial species such as Escherichia coli or Fusobacterium necrofurom increases the severity of the disease and the persistence of bacteria in utero. The aim of this study was to investigate the frequency of T. pyogenes strains, and their virulence and antimicrobial resistant profiles in metritis cases. The study was carried out on 200 samples obtained from metritis discharges of postpartum cattle on 18 farms around Tehran, Iran. Sixty-five T. pyogenes isolates (32.5%) were identified, of which 16 isolates were detected as pure cultures and the other 49 isolates from cultures most commonly mixed with E. coli or F. necrofurom. In terms of diversity in biochemical characteristic of T. pyogenes strains, 8 different biotypes were identified among the isolates. Single or multi antimicrobial resistance was observed in 48 isolates (73.9%), which was mostly against trimethoprim sulfamethoxazole, azithromycin, erythromycin and streptomycin. The tetracycline resistance gene tetW and macrolide resistance genes ermB and ermX were detected in 30, 18 and 25 isolates, respectively. In the screening of genes encoding virulence factors, fimA and plo genes were identified in all tested isolates. Genes encoding nanP, nanH, fimC, fimG, fimE and cbpA were detected in 50, 54, 45, 40, 50 and 37 of isolates, respectively. Thirteen different genotypes were observed in these T. pyogenes isolates. A significant association between clonal types and virulence factor genes, biochemical profile, CAMP test result, severity of the disease and sampling time was detected. | 2018 | 30066209 |
| 2907 | 11 | 0.9983 | Prevalence of tetracycline resistance genes and identification of tet(M) in clinical isolates of Escherichia coli from sick ducks in China. Tetracycline resistance is one of the most frequently encountered resistance properties in bacteria of animal origin. The aim of the present study was to investigate the prevalence and diversity of tetracycline resistance (tet) genes among Escherichia coli clinical isolates from diseased ducks in China and to report the identification and sequencing of the tet(M) gene. The susceptibility of 85 Escherichia coli strains to tetracyclines was determined by broth microdilution, and the presence of tet genes was investigated by multiplex PCR. All of the 85 isolates were fully resistant to both oxytetracycline and tetracycline, and 76.5 % were resistant to doxycycline. Seventy-seven of the isolates (90.6 %) encoded multiple tet genes, with 17.6, 38.8 and 34.1 % encoding two, three and four tet genes, respectively, and only 7.1 % encoded a single tet(A) gene. The MICs of oxytetracycline and tetracycline for all isolates ranged from 16 to ≥128 µg ml(-1) with a MIC90 of >128 µg ml(-1), regardless of the type or number of tet genes encoded. Isolates containing tet(M) commonly had more than one tet gene per strain. The doxycycline resistance rate in the tet(M)-positive isolates was significantly higher than in the tet(M)-negative isolates (P<0.05). A full-length tet(M) gene, including the promoter region, was obtained by PCR in seven of the 41 tet(M)-positive isolates and was sequenced and cloned. The cloned tet(M) gene conferred resistance to tetracyclines in the recombinant Escherichia coli host strain. These results revealed that, in these isolates, the prevalence of multiple tet genes was strikingly high and that tet(M) played a role in doxycycline resistance. | 2013 | 23475906 |
| 1274 | 12 | 0.9983 | Characterization of antimicrobial resistance among Escherichia coli isolates from chickens in China between 2001 and 2006. Escherichia coli is a common commensal bacterium and is regarded as a good indicator organism for antimicrobial resistance for a wide range of bacteria in the community and on farms. Antimicrobial resistance of E. coli isolated from chickens from 49 farms in China between 2001 and 2006 was studied. A total of 536 E. coli isolates were collected, and minimal inhibitory concentrations (MICs) of eight antimicrobials were determined by the broth microdilution method. Isolates exhibited high levels of resistance to ampicillin (80.2%), doxycycline (75.0%) and enrofloxacin (67.5%). Relatively lower resistance rates to cephalothin (32.8%), cefazolin (17.0%) and amikacin (6.5%) were observed. Strains were comparatively susceptible to colistin (MIC(50) = 1 microg mL(-1)). A marked increase in isolates with elevated MICs for florfenicol was observed over the study period. Therefore, five resistance genes leading to the dissemination of phenicol resistance in the isolates (n = 113) with florfenicol MICs > or = 32 microg mL(-1) were analyzed. The gene floR was the most prevalent resistance gene and was detected in 92% of the 113 isolates, followed by the cmlA (53%), catA1 (23%) and catA2 (10%) genes. catA3 was not detected in these isolates. Eight isolates with florfenicol MICs = 32 microg mL(-1) and one with MIC = 64 microg mL(-1) were negative for the floR gene. | 2008 | 18680521 |
| 1326 | 13 | 0.9983 | Antimicrobial resistance and genetic diversity of Enterococcus faecalis from yolk sac infections in broiler chicks. Despite restrictions on the use of antibiotics in poultry, the percentage of multidrug resistant bacteria, isolated from both adult birds and chicks, remains high. These bacteria can spread between countries via hatching eggs or chicks. Antibiotic resistant bacteria can also pose a threat to hatchery and farm workers or to consumers of poultry. The aim of the study was to perform a phenotypic and genotypic analysis of the drug resistance of E. faecalis isolates from yolk sac infections in broiler chicks from Poland and the Netherlands and to determine their genetic diversity. The tests revealed resistance to antibiotics from category D, that is, tetracycline (69.7%); category C - lincomycin (98.7%), erythromycin (51.3%), aminoglycosides (high-level streptomycin and kanamycin resistance - 10.5% and 3.95%, respectively), and chloramphenicol (7.9%); and category B - ciprofloxacin (25% with resistance or intermediate resistance). No resistance to penicillin, ampicillin, high-level gentamicin, tigecycline, or linezolid was noted. Various combinations of the erm(B), tet(M), tet(L), tet(O), ant(6)-Ia, aph(3')-IIIa, ant(4')-Ia, cat, and msr(A/B) genes were detected in all isolates (irrespective of the drug-resistance phenotype). Among isolates that carried the tet(M) and/or the tet(L) gene, 28% also had the Int-Tn gene, in contrast with isolates possessing tet(O). There were 28 sequence types and 43 PFGE restriction patterns. About 60% of isolates were of sequences types ST59, ST16, ST116, ST282, ST36, and ST82. Nine new sequence types were shown (ST836-ST844). In conclusion, broiler chicks can be a source of drug-resistant sequence types of E. faecalis that are potentially hazardous for people and animals. Restrictive programs for antibiotic use in broiler breeding flocks should be developed to decrease drug resistance in day-old chicks and reduce economic losses during rearing. | 2021 | 34695638 |
| 1367 | 14 | 0.9983 | Azorean wild rabbits as reservoirs of antimicrobial resistant Escherichia coli. Antibiotic resistance in bacteria is an increasing problem that is not only constrained to the clinical setting but also to other environments that can lodge antibiotic resistant bacteria and therefore they may serve as reservoirs of genetic determinants of antibiotic resistance. One hundred and thirty-six faecal samples from European wild rabbits (Oryctolagus cuniculus algirus) were collected on São Jorge Island in Azores Archipelago, and analysed for Escherichia coli isolates. Seventy-seven isolates (56.6%) were recovered and studied for antimicrobial resistance, one isolate per positive sample. Thirteen (16.9%), 19 (24.7%), 25 (32.4%) and 20 (26%) isolates were ascribed to A, B1, B2 and D phylogenetic groups, respectively, by specific primer polymerase chain reaction. Different E. coli isolates were found to be resistant to ampicillin (16.9%), tetracycline (1.3%), streptomycin (42.9%), sulfamethoxazole-trimethoprim (1.3%), amikacin (1.3%), tobramycin (2.6%) and nalidixic acid (1.3%). Additionally, the blaTEM, tetA, strA/strB, aadA, sul1, intI, intI2 and qacEΔ+sul1 genes were found in most resistant isolates. This study showed that E. coli from the intestinal tract of wild rabbits from Azores Archipelago are resistant to widely prescribed antibiotics in medicine and they constitute a reservoir of antimicrobial resistant genes, which may play a significant role in the spread of antimicrobial resistance. Therefore, antibiotic resistant E. coli from Azorean wild rabbits may represent an ecological and public health problem. | 2014 | 25246166 |
| 1322 | 15 | 0.9983 | Phenotypic and genotypic characterization of antimicrobial resistance in faecal enterococci from wild boars (Sus scrofa). The objective was to study the prevalence of antimicrobial resistance and the mechanisms implicated in faecal enterococci of wild boars in Portugal. One hundred and thirty-four enterococci (67 E. faecium, 54 E. hirae, 2 E. faecalis, 2 E. durans and 9 Enterococcus spp.) were recovered from 67 wild boars (two isolates/sample), and were further analysed. High percentages of resistance were detected for erythromycin, tetracycline, and ciprofloxacin (48.5%, 44.8%, and 17.9%, respectively), and lower values were observed for high-level-kanamycin, -streptomycin, chloramphenicol, and ampicillin resistance (9%, 6.7%, 4.5%, and 3.7%, respectively). No isolates showed vancomycin or high-level-gentamicin resistance. The erm(B), tet(M), aph(3')-IIIa, and ant(6)-I genes were demonstrated in all erythromycin-, tetracycline-, kanamycin-, and streptomycin-resistant isolates, respectively. Specific genes of Tn916/Tn1545 and Tn5397 transposons were detected in 78% and 47% of our tet(M)-positive enterococci, respectively. The tet(S) and tet(K) genes were detected in one isolate of E. faecium and E. hirae, respectively. Three E. faecium isolates showed quinupristin-dalfopristin resistance and the vat(E) gene was found in all of them showing the erm(B)-vat(E) linkage. Four E. faecium isolates showed ampicillin-resistance and all of them presented seven amino acid substitutions in PBP5 protein (461Q-->K, 470H-->Q, 485M-->A, 496N-->K, 499A-->T, 525E-->D, and 629E-->V), in relation with the reference one; a serine insertion at 466' position was found in three of the isolates. Faecal enterococci from wild boars harbour a variety of antimicrobial resistance mechanisms and could be a reservoir of antimicrobial resistance genes and resistant bacteria that could eventually be transmitted to other animals or even to humans. | 2007 | 17658226 |
| 5399 | 16 | 0.9983 | Characterisation and transferability of antibiotic resistance genes from lactic acid bacteria isolated from Irish pork and beef abattoirs. Lactic acid bacteria isolated from Irish pork and beef abattoirs were analysed for their susceptibility to antimicrobials. Thirty-seven isolates (12 enterococci, 10 lactobacilli, 8 streptococci, 3 lactococci, 2 Leuconostoc, and 2 pediococci) were examined for phenotypic resistance using the E-test and their minimum inhibitory concentration to a panel of six antibiotics (ampicillin, chloramphenicol, erythromycin, streptomycin, tetracycline, and vancomycin) was recorded. The corresponding genetic determinants responsible were characterised by PCR. Also, the transferability of these resistance markers was assessed in filter mating assays. Of the 37 isolates, 33 were found to be resistant to one or more antibiotics. All strains were susceptible to ampicillin and chloramphenicol. The erm(B) and msrA/B genes were detected among the 11 erythromycin-resistant strains of enterococci, lactobacilli, and streptococci. Two tetracycline-resistant strains, Lactobacillus plantarum and Leuconostoc mesenteroides spp., contained tet(M) and tet(S) genes respectively. Intrinsic streptomycin resistance was observed in lactobacilli, streptococci, lactococci and Leuconostoc species; none of the common genetic determinants (strA, strB, aadA, aadE) were identified. Four of 10 strains of Enterococcus faecium were resistant to vancomycin; however, no corresponding genetic determinants for this phenotype were identified. Enterococcus faecalis strains were susceptible to vancomycin. L. plantarum, L. mesenteroides and Pediococcus pentosaceus were intrinsically resistant to vancomycin. Transfer of antibiotic resistance determinants was demonstrated in one strain, wherein the tet(M) gene of L. plantarum (23) isolated from a pork abattoir was transferred to Lactococcus lactis BU-2-60 and to E. faecalis JH2-2. This study identified the presence of antibiotic resistance markers in Irish meat isolates and, in one example, resistance was conjugally transferred to other LAB strains. | 2010 | 20074643 |
| 1316 | 17 | 0.9983 | Virulence factors and antimicrobial resistance in Escherichia coli strains isolated from hen egg shells. Eggs may contain extraintestinal pathogenic (ExPEC) and diarrheogenic (DEC) Escherichia coli which in addition may carry antibiotic resistance. The wide use of biocides and disinfectants in the food industry may induce biocide tolerance in bacteria. The aim of the present study was to evaluate biocide tolerance and antibiotic resistance in E. coli from hen egg shells. A total of 27 isolates obtained from a screening of 180 eggs were studied. Seven isolates carried both eae and bfpA genes of typical enteropathogenic E. coli (EPEC) strains, while 14 isolates only carried eae associated with atypical EPEC strains. Shiga toxin genes stx and stx2 were detected in four isolates. Heat-stable and heat-labile enterotoxin genes as well as aggR were also detected. Several isolates had minimum inhibitory concentrations (MICs) that were higher than the wild-type for the biocide hexadecylpyridinium chloride (HDP, 18.52%) or the commercial disinfectant P3 oxonia (OX, 14.81%). Antibiotic resistance was detected for ampicillin (37.03%), streptomycin (37.03%), tetracycline (37.03%), chloramphenicol (11.11%), nalidixic acid (18.51%) and trimethoprim-sulfamethoxazole (14.81%). Eight isolates (29.63%) were biocide tolerant and antibiotic resistant. Efflux pump genes detected included acrB (96.29%), mdfA (85.18%) and oxqA (37.03%), in addition to quaternary ammonium compound (QAC) resistance genes qacA/B (11.11%) and qacE (7.40%). Antibiotic resistance genes detected included bla(CTX-M-2) (22.22%), bla(TEM) (3.70%), bla(PSE) (3.70%), tet(A) (29.63%), tet(B) (29.63%), tet(C) (7.40%), tet(E) (11.11%), aac(6')-Ib (3.70%), sul1 (14.81%), dfrA12 (3.70%) and dfrA15 (3.70%). Most isolates (96.30%) carried more than one genetic determinant of resistance. The most frequent combinations were efflux pump components acrB and mdfA with tetracycline resistance genes (33.33% of isolates). Isolates carrying QAC resistance genes also carried between 4 and 8 of the additional antimicrobial resistance genes investigated. Regardless of biocide tolerance and antibiotic resistance, all isolates were sensitive to carvacrol (0.25%), thymol (0.125%) and trisodium phosphate (1 to 1.5%), but they exhibited a heterogeneous response to sodium lactate and lysozyme-EDTA combinations that apparently were not related with antibiotic resistance. Results from the study reveal not only a low incidence of biocide tolerance but also the presence of multiple resistance strains carrying multiple genetic determinants of resistance. | 2016 | 27607065 |
| 1381 | 18 | 0.9983 | Differences in antimicrobial resistance-related genes of Trueperella pyogenes between isolates detected from cattle and pigs. We investigated antimicrobial resistance-related genes in 109 isolates of Trueperella pyogenes that were isolated in cattle and pigs. All 89 tetracycline-resistant T. pyogenes isolates carried the resistance gene harbored either tetW, tetM, tetA(33), tetK, or tetL. The ermX or ermB were detected in 18 of 23 erythromycin-resistant isolates. Streptomycin-resistant aadA1, aadA9, aadA11, aadA24, strA, or strB were detected in 25 of 83 isolates. There were significant differences in the percentages of tetA(33), ermB, aadA1, aadA9, aadA11, or aadA24 carriage between cattle and pig isolates. In addition, the Class 1 gene cassette was detected only in 17 cattle isolates. This suggests that T. pyogenes isolates acquire resistance gene in each environment of cattle and pigs, and that the transmission of the bacteria between cattle and pigs is limited. | 2024 | 39293943 |
| 2391 | 19 | 0.9983 | Antimicrobial resistance and presence of virulence factor genes in Arcanobacterium pyogenes isolated from the uterus of postpartum dairy cows. Arcanobacterium pyogenes is considered the most significant bacterium involved in the pathogenesis of metritis in cattle. Infections caused by antimicrobial-resistant bacteria are a great challenge in both human and veterinary medicine. The purpose of this study was to present an overview of antimicrobial resistance in A. pyogenes isolated from the uteruses of postpartum Holstein dairy cows and to identify virulence factors. Seventy-two A. pyogenes isolates were phenotypically characterized for antimicrobial resistance to amoxicillin, ampicillin, ceftiofur, chloramphenicol, florfenicol, oxytetracycline, penicillin, spectinomycin, streptomycin and tetracycline by the broth microdilution method. Presence of virulence factor genes of A. pyogenes was investigated. Isolates exhibited resistance to all antimicrobial agents tested; high levels of resistance were found to amoxicillin (56.9%); ampicillin (86.1%), chloramphenicol (100%), florfenicol (59.7%), oxytetracycline (54.2%), penicillin (86.1%) and tetracycline (50%). Of all isolates, 69 (95.8%) were resistant to at least 2 of the antimicrobial agents tested and multidrug resistance (resistant to at least 3 antimicrobials) was observed in 64 (88.9%) of the A. pyogenes isolates. The major multidrug resistance profile was found for chloramphenicol-ampicillin-penicillin-florfenicol-amoxicillin-tetracycline, which was observed in 21 (29.2%) multidrug resistant isolates. No isolate was resistant to all nine antimicrobial agents tested but four isolates (5.6%) were resistant to eight antimicrobials. The information highlights the need for prudent use of specific antimicrobial agents. All four virulence factor genes occurred in isolates from normal puerperium and clinical metritis; however, the fimA gene was present in significantly higher frequency in isolates from metritis cows. | 2010 | 20346602 |