# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6026 | 0 | 0.9892 | Probiotic Characteristics and Whole Genome Analysis of Lactiplantibacillus plantarum PM8 from Giant Panda (Ailuropoda melanoleuca) Milk. Milk is a rich source of probiotics, particularly lactic acid bacteria (LAB), which have been shown to promote gut health, support the immune system, enhance digestion, and prevent pathogen colonization. This study aimed to isolate and identify LAB strains from giant panda (Ailuropoda melanoleuca) milk, evaluate their probiotic properties, and analyze the genomic characteristics of a promising strain. Thirteen LAB strains were isolated from 12 samples of giant panda milk. Among all LAB strains, Lactiplantibacillus plantarum PM8 (PM8) demonstrated probiotic properties and safety features. It exhibited strong growth performance, high antipathogenic activity against four pathogens, and strong survival rates under simulated gastrointestinal conditions. PM8 also showed excellent adhesion capabilities to Caco-2 cells. Additionally, safety assessment revealed no hemolysin production and minimal antibiotic resistance, making it a promising candidate for probiotic applications. The genome of PM8 consists of 3,227,035 bp with a GC content of 44.60% and contains 3171 coding sequences, including 113 carbohydrate-active enzyme genes and genes related to exopolysaccharides synthesis, vitamin B biosynthesis, adhesion, antioxidant activity, and bile salt hydrolysis. Notably, it contains genes involved in nonribosomally synthesized secondary metabolite and bacteriocin production. The genomic safety analysis confirmed that PM8 lacks the capacity to transmit bacterial antimicrobial resistance and is non-pathogenic to both humans and animals. These findings suggest that PM8 holds considerable potential for enhancing gut health and supporting the development of safe probiotic products. | 2025 | 39900880 |
| 6027 | 1 | 0.9889 | Comprehensive Genomic Profiling and In Vitro Probiotic and Safety Assessments of Enterococcus faecium UFAS147 Isolated from Moroccan Goat Feces. Enterococci are beneficial commensal bacteria recognized for their probiotic effects and are commonly utilized as adjunct cultures in dairy product fermentation. However, their ability to acquire antibiotic resistance and contribute to infections raises significant safety concerns. In this study, both in vitro assays and genome sequencing were conducted to evaluate the safety, functionality, and probiotic potential of Enterococcus faecium UFAS147, isolated from Moroccan goat feces. The strain tolerated acidic conditions (96.79% survival at pH 1.5) and bile salt (1-4%), with notable autoaggregation (33.66%), coaggregation with Salmonella typhymurium ATCC14028 (72.78%), and Staphylococcus aureus B1 (65.55%). Safety assays confirmed the absence of hemolytic activity, mucin degradation, and biogenic amine production. Antibiotic susceptibility testing showed sensitivity to six antibiotics. PCR analysis further confirmed the absence of vanA and vanB genes associated with vancomycin resistance. Genome analysis revealed a length of 2,606,111 bp with a GC content of 38.11% and the absence of genes linked to acquired antimicrobial resistance, cytolysins, and biogenic amine production. Genes supporting probiotic traits, such as Enterocin A, Enterocin P, and Enterolysin A, acid and bile resistance, adhesion, and colonization were identified. These findings highlight E. faecium UFAS147 as a promising candidate for probiotic applications. | 2025 | 40608139 |
| 8723 | 2 | 0.9889 | Unraveling the Basis of Neonicotinoid Resistance in Whitefly Species Complex: Role of Endosymbiotic Bacteria and Insecticide Resistance Genes. Bemisia tabaci (whitefly) is one of the most detrimental agricultural insect pests and vectors of many plant viruses distributed worldwide. Knowledge of the distribution patterns and insecticide resistance of this cryptic species is crucial for its management. In this study, genetic variation of mitochondrial cytochrome oxidase subunit 1 (MtCoI) gene of B. tabaci was analyzed followed by a study of the infection profile of various endosymbionts in 26 whitefly populations collected from West Bengal, India. Phylogenetic analysis revealed Asia I as the major cryptic species (65.38%), followed by Asia II 5, China 3, and Asia II 7, which were diversified into 20 different haplotypes. In addition to the primary endosymbiont (C. poriera), each of the four whitefly species showed a variable population of three secondary endosymbionts, majorly Arsenophonus with the highest infection rate (73.07%), followed by Wolbachia and Rickettsia. Further phylogenetic analyses revealed the presence of two subgroups of Arsenophonus, viz., A1 and A2, and one each in Wolbachia (W1) and Rickettsia (R3). Resistance to thiamethoxam, imidacloprid, and acetamiprid insecticides was analyzed for a clear picture of pesticide resistance status. The highest susceptibility was noted toward thiamethoxam (LC(50) = 5.36 mg/L), followed by imidacloprid and acetamiprid. The whitefly population from Purulia and Hooghly districts bearing Asia II 7 and Asia II 5 cryptic species, respectively, shows maximum resistance. The differences in mean relative titer of four symbiotic bacteria among field populations varied considerably; however, a significant positive linear correlation was observed between the resistance level and relative titer of Arsenophonus and Wolbachia in the case of imidacloprid and thiamethoxam, while only Wolbachia was found in case of acetamiprid. Expression analysis demonstrated differential upregulation of insecticide resistance genes with Purulia and Hooghly populations showing maximally upregulated P450 genes. Moreover, thiamethoxam and imidacloprid resistance ratio (RR) showed a significant correlation with CYP6CM1, CYP6DZ7, and CYP4C64 genes, while acetamiprid RR correlated with CYP6CX1, CYP6DW2, CYP6DZ7, and CYP4C64 genes. Taken together, these findings suggested that P450 mono-oxygenase and symbiotic bacteria together affected whitefly resistance to neonicotinoids. Hence, a symbiont-oriented management programme could be a better alternative to control or delay resistance development in whitefly and can be used for pesticide clean-up in an agricultural field. | 2022 | 35814684 |
| 6081 | 3 | 0.9888 | In vitro probiotic characteristics and whole-genome sequence analysis of lactic acid bacteria isolated from monkey faeces. This study aimed to isolate lactic acid bacteria from monkey faeces and evaluate their safety and probiotic properties through a combination of in vitro assays and complete genomic sequencing. The results revealed that two Limosilactobacillus reuteri strains (LDHa and LSHe) exhibited promising probiotic attributes: no hemolytic activity, remarkable antibacterial activity against intestinal pathogens, high bile salt tolerance (77.46% survival rate for LDHa at 0.3% bile salt concentration), excellent gastrointestinal resistance (survival rate > 40%), and favorable surface characteristics (63.92-66.00% auto-aggregation; 91.33-93.80% hydrophobicity). The whole genome sequencing results revealed that strain LDHa has a total length of 2,031,794 bp with a GC content of 39.02% and contains (Strompfová et al. 2014) coding genes. The LSHe strain has a total length of 2,031,507 bp with a GC content of 39.02% and contains 1954 coding genes. Genomic analysis revealed that both strains possess four CRISPR sequences and one secondary metabolic gene cluster, with functional annotations from the EGGNOG, KEGG, and CAZy databases demonstrating genome stability; the absence of horizontally transferable antibiotic resistance genes; the enrichment of metabolic pathway-related genes, and probiotic-associated functional potential including antimicrobial, anti-inflammatory, immunomodulatory, and antitumor activities. This study demonstrated that L. reuteri LDHa and LSHe exhibit favorable safety profiles and probiotic potential at both physiological and genomic levels, positioning them as promising candidates for probiotic formulations in captive primate populations. | 2025 | 40852645 |
| 6076 | 4 | 0.9887 | Isolation and identification of mucin-degrading bacteria originated from human faeces and their potential probiotic efficacy according to host-microbiome enterotype. AIM: Mucin-degrading bacteria are known to be beneficial for gut health. We aimed to isolate human-derived mucin-degrading bacteria and identify potential probiotic characteristics and their effects on the bacterial community and short-chain fatty acid (SCFA) production according to three different enterotypes of the host. METHODS AND RESULTS: Bacteria with mucin decomposition ability from human faeces were isolated and identified by 16S rRNA sequencing and MALDI-TOF. Heat resistance, acid resistance, antibiotic resistance, and antibacterial activity were analysed in the selected bacteria. Their adhesion capability to the Caco-2 cell was determined by scanning electron microscopy. Their ability to alter the bacterial community and SCFA production of the isolated bacteria was investigated in three enterotypes. The three isolated strains were Bifidobacterium(Bif.) animalis SPM01 (CP001606.1, 99%), Bif. longum SPM02 (NR_043437.1, 99%), and Limosilactobacillus(L.) reuteri SPM03 (CP000705.1, 99%) deposited in Korean Collection for Type Culture (KCTC-18958P). Among them, Bif. animalis exhibited the highest mucin degrading ability. They exhibited strong resistance to acidic conditions, moderate resistance to heat, and the ability to adhere tightly to Caco-2 cells. Three isolated mucin-degrading bacteria incubation increased Lactobacillus in the faecal bacteria from Bacteroides and Prevotella enterotypes. However, only L. reuteri elevated Lactobacillus in the faecal bacteria from the Ruminococcus enterotype. B. longum and B. animalis increased the α-diversity in the Ruminococcus enterotype, while their incubation with other intestinal types decreased the α-diversity. Bifidobacterium animalis and L. reuteri increased the butyric acid level in faecal bacteria from the Prevotella enterotype, and L. reuteri elevated the acetic acid level in those from the Ruminococcus enterotype. However, the overall SCFA changes were minimal. CONCLUSIONS: The isolated mucin-degrading bacteria act as probiotics and modulate gut microbiota and SCFA production differently according to the host's enterotypes. SIGNIFICANCE AND IMPACT OF STUDY: Probiotics need to be personalized according to the enterotypes in clinical application. | 2022 | 35365862 |
| 6028 | 5 | 0.9885 | Isolation, Characterization, and Comparative Genomics of the Novel Potential Probiotics from Canine Feces. Lactic acid bacteria (LAB) are commonly used as probiotics; however, not all LAB strains have the same beneficial effects. To successfully use LAB as probiotics in canines, LAB species should originate from the canine intestinal tract as they display host specificity. The objective of this study was to investigate the phenotypic and genomic traits of potential probiotic LAB isolated from canine fecal samples. Twenty LAB samples were evaluated for their potential probiotic characteristics including resistance to low pH, bile salts, hydrophobicity, auto-aggregation, co-aggregation, adhesion to epithelia or mucosa, and production of inhibitory compounds. Additionally, we evaluated their safety and other beneficial effects on canine health, such as DPPH free radical scavenging, and β-galactosidase. Four strains demonstrated potential probiotic characteristics and were selected: Enterococcus hirae Pom4, Limosilactobacillus fermentum Pom5, Pediococcus pentosaceus Chi8, and Ligilactobacillus animalis FB2. Safety evaluations showed that all strains lacked hemolytic activity, could not produce biogenic amines, and did not carry any pathogenic genes. In addition, L. fermentum Pom5 and P. pentosaceus Chi8 displayed susceptibility to all antibiotics and concordant with the absence of antibiotic resistance genes. Based on their phenotypic and genomic characteristics, L. fermentum Pom5 and P. pentosaceus Chi8 were identified as potential probiotic candidates for canines. | 2023 | 37484003 |
| 6053 | 6 | 0.9882 | Probiotic properties of lactic acid bacteria isolated from water-buffalo mozzarella cheese. This study evaluated the probiotic properties (stability at different pH values and bile salt concentration, auto-aggregation and co-aggregation, survival in the presence of antibiotics and commercial drugs, study of β-galactosidase production, evaluation of the presence of genes encoding MapA and Mub adhesion proteins and EF-Tu elongation factor, and the presence of genes encoding virulence factor) of four LAB strains (Lactobacillus casei SJRP35, Leuconostoc citreum SJRP44, Lactobacillus delbrueckii subsp. bulgaricus SJRP57 and Leuconostoc mesenteroides subsp. mesenteroides SJRP58) which produced antimicrobial substances (antimicrobial peptides). The strains survived the simulated GIT modeled in MRS broth, whole and skim milk. In addition, auto-aggregation and the cell surface hydrophobicity of all strains were high, and various degrees of co-aggregation were observed with indicator strains. All strains presented low resistance to several antibiotics and survived in the presence of commercial drugs. Only the strain SJRP44 did not produce the β-galactosidase enzyme. Moreover, the strain SJRP57 did not show the presence of any genes encoding virulence factors; however, the strain SJRP35 presented vancomycin resistance and adhesion of collagen genes, the strain SJRP44 harbored the ornithine decarboxylase gene and the strain SJRP58 generated positive results for aggregation substance and histidine decarboxylase genes. In conclusion, the strain SJRP57 was considered the best candidate as probiotic cultures for further in vivo studies and functional food products development. | 2014 | 25117002 |
| 6025 | 7 | 0.9880 | Phenotypic and Genomic Insights into Schleiferilactobacillus harbinensis WU01, a Candidate Probiotic with Broad-Spectrum Antimicrobial Activity Against ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter) Pathogens. The increasing prevalence of multidrug-resistant (MDR) pathogens, particularly ESKAPE bacteria, necessitates alternative antimicrobial strategies. Probiotics, particularly lactic acid bacteria, protect against pathogenic infections. This study aimed to characterize Schleiferilactobacillus harbinensis WU01, isolated from fermented palm sap, and evaluate its probiotic potential and antimicrobial activity. Its probiotic characteristics were assessed based on low-pH and bile tolerance, auto-aggregation, hydrophobicity, and adhesion to Caco-2 cells. Antimicrobial activity against ESKAPE pathogens was evaluated using the agar well diffusion assay. Whole-genome sequencing (WGS) and in silico analysis were performed to identify bacteriocin-related genes, virulence factors, and antibiotic-resistance genes. WU01 exhibited a strong tolerance to gastrointestinal conditions, with high survival rates under acidic and bile-salt environments. S. harbinensis WU01 demonstrated significant auto-aggregation, high hydrophobicity, and strong adhesion to Caco-2 cells. Antimicrobial assays revealed inhibitory activity against MDR ESKAPE pathogens, which correlated with the presence of bacteriocin-related genes, including those homologous to Carnocin_CP52. Molecular dynamics (MDs) simulations confirmed the interaction of Carnocin_CP52 with bacterial membranes, suggesting a mechanism for pathogen disruption. WGS confirmed the absence of virulence and antimicrobial-resistance genes, confirming its safety for probiotic applications. These findings suggest that S. harbinensis WU01 possesses probiotic properties and antimicrobial activity against ESKAPE pathogens. The combined results highlight its potential application in functional foods and therapeutic interventions. | 2025 | 40238333 |
| 6046 | 8 | 0.9880 | Safety Evaluations of Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI. Over the past decade, a variety of lactic acid bacteria have been commercially available to and steadily used by consumers. However, recent studies have shown that some lactic acid bacteria produce toxic substances and display properties of virulence. To establish safety guidelines for lactic acid bacteria, the Food and Agriculture Organization of the United Nations (FAO)/World Health Organization (WHO) has suggested that lactic acid bacteria be characterized and proven safe for consumers’ health via multiple experiments (e.g., antibiotic resistance, metabolic activity, toxin production, hemolytic activity, infectivity in immune-compromised animal species, human side effects, and adverse-outcome analyses). Among the lactic acid bacteria, Bifidobacterium and Lactobacillus species are probiotic strains that are most commonly commercially produced and actively studied. Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI have been used in global functional food markets (e.g., China, Germany, Jordan, Korea, Lithuania, New Zealand, Poland, Singapore, Thailand, Turkey, and Vietnam) as nutraceutical ingredients for decades, without any adverse events. However, given that the safety of some newly screened probiotic species has recently been debated, it is crucial that the consumer safety of each commercially utilized strain be confirmed. Accordingly, this paper details a safety assessment of B. bifidum BGN4 and B. longum BORI via the assessment of ammonia production, hemolysis of blood cells, biogenic amine production, antimicrobial susceptibility pattern, antibiotic resistance gene transferability, PCR data on antibiotic resistance genes, mucin degradation, genome stability, and possession of virulence factors. These probiotic strains showed neither hemolytic activity nor mucin degradation activity, and they did not produce ammonia or biogenic amines (i.e., cadaverine, histamine or tyramine). B. bifidum BGN4 and B. longum BORI produced a small amount of putrescine, commonly found in living cells, at levels similar to or lower than that found in other foods (e.g., spinach, ketchup, green pea, sauerkraut, and sausage). B. bifidum BGN4 showed higher resistance to gentamicin than the European Food Safety Authority (EFSA) cut-off. However, this paper shows the gentamicin resistance of B. bifidum BGN4 was not transferred via conjugation with L. acidophilus ATCC 4356, the latter of which is highly susceptible to gentamicin. The entire genomic sequence of B. bifidum BGN4 has been published in GenBank (accession no.: CP001361.1), documenting the lack of retention of plasmids capable of transferring an antibiotic-resistant gene. Moreover, there was little genetic mutation between the first and 25th generations of B. bifidum BGN4. Tetracycline-resistant genes are prevalent among B. longum strains; B. longum BORI has a tet(W) gene on its chromosome DNA and has also shown resistance to tetracycline. However, this research shows that its tetracycline resistance was not transferred via conjugation with L. fermentum AGBG1, the latter of which is highly sensitive to tetracycline. These findings support the continuous use of B. bifidum BGN4 and B. longum BORI as probiotics, both of which have been reported as safe by several clinical studies, and have been used in food supplements for many years. | 2018 | 29747442 |
| 6030 | 9 | 0.9879 | Molecular identification and probiotic potential characterization of lactic acid bacteria isolated from the pigs with superior immune responses. Lactic acid bacteria (LAB) belong to a significant group of probiotic bacteria that provide hosts with considerable health benefits. Our previous study showed that pigs with abundant LAB had more robust immune responses in a vaccination experiment. In this study, 52 isolate strains were isolated from the pigs with superior immune responses. Out of these, 14 strains with higher antibacterial efficacy were chosen. We then assessed the probiotic features of the 14 LAB strains, including such as autoaggregation, coaggregation, acid resistance, bile salt resistance, and adhesion capability, as well as safety aspects such as antibiotic resistance, hemolytic activity, and the presence or absence of virulence factors. We also compared these properties with those of an opportunistic pathogen EB1 and two commercial probiotics (cLA and cLP). The results showed that most LAB isolates exhibited higher abilities of aggregation, acid and bile salt resistance, adhesion, and antibacterial activity than the two commercial probiotics. Out of the 14 strains, only LS1 and LS9 carried virulence genes and none had hemolytic activity. We selected three LAB strains (LA6, LR6 and LJ1) with superior probiotic properties and LS9 with a virulence gene for testing their safety in vivo. Strains EB1, cLA and cLP were also included as control bacteria. The results demonstrated that mice treated LAB did not exhibit any adverse effects on weight gain, organ index, blood immune cells, and ileum morphology, except for those treated with LS9 and EB1. Moreover, the antimicrobial effect of LR6 and LA6 strains was examined in vivo. The results indicated that these strains could mitigate the inflammatory response, reduce bacterial translocation, and alleviate liver, spleen, and ileum injury caused by Salmonella typhimurium infection. In addition, the LR6 treatment group showed better outcomes than the LA6 treatment group; treatment with LR6 substantially reduced the mortality rate in mice. The study results provide evidence of the probiotic properties of the LAB isolates, in particular LR6, and suggest that oral administration of LR6 could have valuable health-promoting benefits. | 2024 | 38585699 |
| 8641 | 10 | 0.9879 | Uncovering acid resistance genes in lactic acid bacteria and impact of non-viable bacteria on bacterial community during Chinese strong-flavor baijiu fermentation. Chinese strong-flavor baijiu (CSFB) brewing is a spontaneously solid-state fermentation process for approximately 60 days. Numerous microorganisms grow, die, and spark a series of metabolic reactions during fermentation. In this study, the microbial community and structure between total and viable bacteria in zaopei from the 5- and 20-year pits of CSFB are revealed by amplicon sequencing. Metagenome sequencing was applied to investigate acid resistance genes in Lactobacillus and predict carbohydrate active enzyme in zaopei. Besides, SourceTracker was conducted to expose bacterial sources. Results revealed that there was no significant difference in the bacterial community and structure between the total and viable bacteria; Lactobacillus was the most dominant bacterium in zaopei of two types of pits. Meanwhile, acid resistance genes argR, aspA, ilvE, gshA, DnaK, and cfa were genes that sustained Lactobacillus survival in the late stages of fermentation with high contents of acid and ethanol, and glycosyltransferases were identified as the predominated enzymes during the CSFB fermentation which catalyzed the process of lactic acid generation via Embden-Meyerhof-Parnas pathway and Hexose Monophosphate Pathway. Moreover, the environment contributed most bacteria to zaopei of the 5- and 20-year pits. These findings will provide a deeper understanding of the microbial community structure of viable and total bacteria and the reason for the dominance of Lactobacillus in the later stages of CSFB fermentation. | 2023 | 37087286 |
| 6060 | 11 | 0.9879 | Safety Evaluation and Colonisation Abilities of Four Lactic Acid Bacteria as Future Probiotics. The study evaluated the safety and colonisation properties of four lactic acid bacteria (LAB), by determining their cell hydrophobicity and aggregation abilities. In addition, the presence of virulence and resistance genes was assayed in these probiotic candidates. Lactobacillus reuteri ZJ625, Lactobacillus reuteri VB4, Lactobacillus salivarius ZJ614 and Streptococcus salivarius NBRC13956 were tested for cell surface hydrophobicity abilities against xylene, chloroform and ethyl acetate. The isolates were also tested for auto-aggregation and co-aggregation abilities; the optical densities of cell growth were measured after 1, 2, 3 and 4 h of experimental set-up. DNA was extracted from all the four isolates and amplified using PCR with specific primers to detect virulence genes of adhesion collagen protein (ace) and aggregation substances (agg and asa); also, resistance genes of Vancomycin vanA, Vancomycin vanC1 and Vancomycin vanC2/3 were assayed in the four isolates. The isolates showed high hydrophobicity to all solvents: xylene (78-84%), chloroform (68-75%) and ethyl acetate (52-60%). High auto- and co-aggregations ranging from 60 to 70% and from 45 to 56% respectively were observed in the isolates after 4 h of incubation at 37 °C. Some of the tested isolates showed the presence of virulence and resistance genes; however, this does not indicate that these genes are unsafe because their transmission and expression abilities are unknown. Therefore, in this study, the isolates studied are considered safe for use as future probiotics, as revealed from results presented, which generally represents the scanned safety evaluations of the isolates as promising probiotics. | 2019 | 29881953 |
| 6075 | 12 | 0.9878 | Molecular screening of beneficial and safety determinants from bacteriocinogenic lactic acid bacteria isolated from Brazilian artisanal calabresa. Despite of the beneficial relevance of several lactic acid bacteria (LAB) in the food industry, micro-organisms belonging to this group can determine spoilage in food products and carry a number of virulence and antibiotic resistance-related genes. This study aimed on the characterization of beneficial and safety aspects of five bacteriocinogenic LAB strains (Lactobacillus curvatus 12-named L. curvatus UFV-NPAC1), L. curvatus 36, Weissela viridescens 23, W. viridescens 31 and Lactococcus garvieae 36) isolated from an artisanal Brazilian calabresa, a traditional meat sausage. Regarding their beneficial aspects, all tested isolates were positive for mub, while EF226-cbp, EF1249-fbp and EF2380-maz were detected in at least one tested strain; none of the isolates presented map, EFTu or prgB. However, evaluated strains presented a variable pattern of virulence-related genes, but none of the strains presented gelE, cylA, efsA, cpd, int-Tn or sprE. Moreover, other virulence-related genes evaluated in this study were detected at different frequencies. L. curvatus 12 was generated positive results for ace, ccf, int, ermC, tetL, aac(6')-Ie-aph(2″)-Ia, aph(2″)-Ib, aph(2″)-Ic, bcrB, vanB and vanC2; L. curvatus 36: hyl, asa1, esp, int, ermC, tetK, aph(3')-IIIa, aph(2'')-Ic and vanC2; L. garvieae 32: asa1, ant(4')-Ia, aph(2'')-Ib, catA, vanA and vanC1; W. viridescens 23: esp, cob, ermB, aph(3')-IIIa, aph(2'')-Ic, vanA, vanB and vanC2; W. viridescens 31: hyl, esp, ermC, aph(3')-IIIa, aph(2'')-Ib, aph(2'')-Ic, catA, vanA and vanB. Despite presenting some beneficial aspects, the presence of virulence and antibiotic resistance genes jeopardize their utilization as starter or biopreservatives cultures in food products. Considering the inhibitory potential of these strains, an alternative would be the use of their bacteriocins as semi-purified or pure technological preparation. SIGNIFICANCE AND IMPACT OF THE STUDY: The food industry has a particular interest in using bacteriocinogenic lactic acid bacteria (LAB) as starter, probiotics and/or biopreservatives in different food products. Characterization of additional beneficial features is important to identify new, multifunctional potential probiotic strains. However, these strains can only be applied in food products only after being properly characterized according their potential negative aspects, such as virulence and antibiotic resistance genes. A wide characterization of beneficial and safety aspects of bacteriocinogenic LAB is determinant to guide the proper utilization of these strains, or their purified bacteriocins, by the food industry. | 2019 | 31250457 |
| 6016 | 13 | 0.9878 | Investigating human-derived lactic acid bacteria for alcohol resistance. BACKGROUND: Excessive alcohol consumption has been consistently linked to serious adverse health effects, particularly affecting the liver. One natural defense against the detrimental impacts of alcohol is provided by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH), which detoxify harmful alcohol metabolites. Recent studies have shown that certain probiotic strains, notably Lactobacillus spp., possess alcohol resistance and can produce these critical enzymes. Incorporating these probiotics into alcoholic beverages represents a pioneering approach that can potentially mitigate the negative health effects of alcohol while meeting evolving consumer preferences for functional and health-centric products. RESULTS: Five lactic acid bacteria (LAB) isolates were identified: Lactobacillus paracasei Alc1, Lacticaseibacillus rhamnosus AA, Pediococcus acidilactici Alc3, Lactobacillus paracasei Alc4, and Pediococcus acidilactici Alc5. Assessment of their alcohol tolerance, safety, adhesion ability, and immunomodulatory effects identified L. rhamnosus AA as the most promising alcohol-tolerant probiotic strain. This strain also showed high production of ADH and ALDH. Whole genome sequencing analysis revealed that the L. rhamnosus AA genome contained both the adh (encoding for ADH) and the adhE (encoding for ALDH) genes. CONCLUSIONS: L. rhamnosus AA, a novel probiotic candidate, showed notable alcohol resistance and the capability to produce enzymes essential for alcohol metabolism. This strain is a highly promising candidate for integration into commercial alcoholic beverages upon completion of comprehensive safety and functionality evaluations. | 2024 | 38659044 |
| 6038 | 14 | 0.9876 | Genomic Comparison of Lactobacillus helveticus Strains Highlights Probiotic Potential. Lactobacillus helveticus belongs to the large group of lactic acid bacteria (LAB), which are the major players in the fermentation of a wide range of foods. LAB are also present in the human gut, which has often been exploited as a reservoir of potential novel probiotic strains, but several parameters need to be assessed before establishing their safety and potential use for human consumption. In the present study, six L. helveticus strains isolated from natural whey cultures were analyzed for their phenotype and genotype in exopolysaccharide (EPS) production, low pH and bile salt tolerance, bile salt hydrolase (BSH) activity, and antibiotic resistance profile. In addition, a comparative genomic investigation was performed between the six newly sequenced strains and the 51 publicly available genomes of L. helveticus to define the pangenome structure. The results indicate that the newly sequenced strain UC1267 and the deposited strain DSM 20075 can be considered good candidates for gut-adapted strains due to their ability to survive in the presence of 0.2% glycocholic acid (GCA) and 1% taurocholic and taurodeoxycholic acid (TDCA). Moreover, these strains had the highest bile salt deconjugation activity among the tested L. helveticus strains. Considering the safety profile, none of these strains presented antibiotic resistance phenotypically and/or at the genome level. The pangenome analysis revealed genes specific to the new isolates, such as enzymes related to folate biosynthesis in strains UC1266 and UC1267 and an integrated phage in strain UC1035. Finally, the presence of maltose-degrading enzymes and multiple copies of 6-phospho-β-glucosidase genes in our strains indicates the capability to metabolize sugars other than lactose, which is related solely to dairy niches. | 2019 | 31293536 |
| 6136 | 15 | 0.9876 | Complete genome sequences of Lacticaseibacillus paracasei INIA P272 (CECT 8315) and Lacticaseibacillus rhamnosus INIA P344 (CECT 8316) isolated from breast-fed infants reveal probiotic determinants. Lacticaseibacillus paracasei INIA P272 and Lacticaseibacillus rhamnosus INIA P344, isolated from breast-fed infants, are two promising bacterial strains for their use in functional foods according to their demonstrated probiotic and technological characteristics. To better understand their probiotic characteristics and evaluate their safety, here we report the draft genome sequences of both strains as well as the analysis of their genetical content. The draft genomes of L. paracasei INIA P272 and L. rhamnosus INIA P344 comprise 3.01 and 3.26 Mb, a total of 2994 and 3166 genes and a GC content of 46.27 % and 46.56 %, respectively. Genomic safety was assessed following the EFSA guidelines: the identification of both strains was confirmed through Average Nucleotide Identity, and the absence of virulence, pathogenic and antibiotic resistance genes was demonstrated. The genome stability analysis revealed the presence of plasmids and phage regions in both genomes, however, CRISPR sequences and other mechanisms to fight against phage infections were encoded. The probiotic abilities of both strains were supported by the presence of genes for the synthesis of SCFA, genes involved in resistance to acid and bile salts or a thiamine production cluster. Moreover, the encoded exopolysaccharide biosynthesis genes could provide additional protection against the deleterious gastrointestinal conditions, besides which, playing a key role in adherence and coaggregation of pathogenic bacteria together with the high number of adhesion proteins and domains encoded by both genomes. Additionally, the bacteriocin cluster genes found in both strains, could provide an advantageous ability to compete against pathogenic bacteria. This genomic study supports the probiotic characteristics described previously for these two strains and satisfies the safety requirements to be used in food products. | 2022 | 35868412 |
| 6043 | 16 | 0.9876 | Histamine and cholesterol lowering abilities of lactic acid bacteria isolated from artisanal Pico cheese. AIMS: This study was designed to select lactic acid bacteria with histamine- and cholesterol-reducing abilities to be used as potential probiotics. METHODS AND RESULTS: Thirty strains of lactic acid bacteria isolated from an artisanal raw milk cheese were screened for their abilities to degrade histamine, reduce cholesterol and hydrolyse bile salts. Strains were also screened for safety and probiotic traits, such as resistance to gastrointestinal conditions, adhesion to Caco-2 cells, resistance to antibiotics and presence of virulence genes. Two Lactobacillus paracasei strains presented high cholesterol- and histamine-lowering abilities, tested negative for the presence of virulence genes and showed susceptibility to most important antibiotics. These strains were also shown to possess desirable in vitro probiotic properties, revealed by tolerance to gastrointestinal conditions and high adhesion to intestinal cells. CONCLUSIONS: Among the screened strains, Lb. paracasei L3C21M6 revealed the best cholesterol and histamine reducing abilities together with desirable probiotic and safety features to be used in food applications. SIGNIFICANCE AND IMPACT OF THE STUDY: The strain L3C21M6 is a good candidate for use as a probiotic with histamine-degrading activity and cholesterol lowering effect. In addition, this strain could be use in dairy foods to prevent histamine food poisoning. | 2020 | 32500572 |
| 6015 | 17 | 0.9876 | Integrative genome analysis of bacteriocin-producing Lactiplantibacillus pentosus LNP1-39 and its synbiotic role in suppressing food-borne pathogens. Lactic acid bacteria were isolated from traditional Thai-fermented foods. Among these, the strain LNP1-39, closely related to Lactiplantibacillus pentosus, was selected for further study because of its non-pathogenic profile. The bacteriocins produced by L. pentosus LNP1-39 were proteinaceous substances that exhibited strong antimicrobial activity across a wide pH range (pH 2-11; 6400-2400 AU/mL) and thermal stability at 100 °C for 40 min (400 AU/mL). These bacteriocins showed a narrow antimicrobial spectrum, effectively targeting Gram-positive pathogens, such as Kocuria rhizophila MIII, Enterococcus faecalis JCM 5803( T), and Listeria monocytogenes ATCC 19115. Comprehensive safety assessments, including whole-genome analysis and in vitro tests, confirmed a low risk of antibiotic resistance and the absence of virulence factors. Strain LNP1-39 was confirmed to be closely related to L. pentosus DSM 20314( T) via digital DNA‒DNA hybridization (dDDH; 75.4%), with average nucleotide identity (ANI) at 96.56% ANIb and 97.22% ANIm values. Additionally, LNP1-39 produces pediocin with notable similarity (76.29% identity to pediocin) and presents low risks for antibiotic-resistance genes or transfer genes while providing antioxidant properties. Strain LNP1-39 survived harsh gastrointestinal tract conditions and exhibited a favorable prebiotic index and positive prebiotic activity score when paired with polydextrose or isomalto-oligosaccharide. These findings support L. pentosus LNP1-39 as potential bacteriocin-producing lactic acid bacteria for further application in food preservation and pathogen control or as a synbiotic. | 2025 | 40622670 |
| 6044 | 18 | 0.9876 | Phenotypic and Genetic Characterization and Production Abilities of Lacticaseibacillus rhamnosus Strain 484-A New Probiotic Strain Isolated From Human Breast Milk. Recent studies suggest that human breast milk (HBM) is a promising source of probiotic bacteria with potential applications in both medicine and the food industry. Probiotic bacteria, particularly species of the genus Lactobacillus, are classified as lactic acid bacteria (LAB). However, probiotic properties are strain-specific, as not all Lactobacillus strains exhibit health benefits or inhibit pathogens. This study evaluated the probiotic potential of a newly isolated strain, Lacticaseibacillus rhamnosus strain 484, derived from human milk. Phenotypic and genomic analyses were performed, with L. rhamnosus 1.0320 serving as a reference genome. We focused on strain safety for human use and potential health benefits. Strain 484 underwent probiotic characterization and demonstrated strong auto- and co-aggregation abilities, contributing to effective pathogenic bacteria inhibition. The strain also showed bile tolerance, antibiotic sensitivity, and lacked hemolytic and catalase activity, indicating safety and suitability profiles for oral administration. Its resistance to low pH and bile salts indicated survival during gastrointestinal transit and intestinal colonization. Notably, cell surface hydrophobicity (CSH) exceeded that of the well-known L. rhamnosus GG strain, potentially enhancing adhesion to intestinal epithelial cells. Genomic analysis confirmed no antibiotic resistance genes (ARGs) and plasmids, suggesting genetic stability. Overall, L. rhamnosus 484 appears to be a safe and promising probiotic candidate with potential applications in both medical and food-related fields, particularly for oral use in preventing and controlling common pathogens. | 2025 | 41019172 |
| 6082 | 19 | 0.9875 | Complete genome sequence of the probiotic candidate strain Lacticaseibacillus rhamnosus B3421 isolated from Panax ginseng C. A. Meyer in South Korea. OBJECTIVES: Lacticaseibacillus rhamnosus is a widely recognized probiotic bacteria with therapeutic applications in human and animal health. The L. rhamnosus B3421 strain, isolated from Panax ginseng, has been reported to be associated with antioxidant and anti-inflammatory properties, supporting its functional potential. We sequenced and analyzed the genome of L. rhamnosus B3421 to evaluate its probiotic potential for human healthcare and animal applications, focusing on genomic features related to safety and functionality. DATA DESCRIPTION: In this study, we isolated L. rhamnosus B3421 from Panax ginseng C. A. Meyer (Ginseng) and performed whole-genome sequencing. The genome of L. rhamnosus B3421 consists of 3,000,051 base pairs (bp) with a guanine + cytosine (G + C) content of 46.70%. It encodes 59 transfer RNAs, 15 ribosomal RNAs, and 2,807 coding sequences (CDSs). Of these CDSs, 99.13% (2,758 proteins) were assigned to functional categories in the Clusters of Orthologous Group (COGs) classification system, while 49 proteins remained uncharacterized. Our genome analysis identified no antibiotic resistance (ABR) or antimicrobial resistance (AMR) genes, indicating that L. rhamnosus B3421 is a safe probiotic bacterium with minimal risk of contributing to the horizontal transfer of antibiotic resistance within the gut microbiome. Additionally, the genome contains genes associated with the ggmotif (PF10439), Enterocin X chain beta, and Carnocin CP52, as identified through BAGEL4 analysis, along with 24 other genes related to reductase or peroxidase activities. These genes may confer competitive advantages against pathogenic bacteria and oxidative stress. Our findings highlight the probiotic potential of L. rhamnosus B3421 and its prospective applications in promoting human and animal health. | 2025 | 40877785 |