# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2236 | 0 | 0.9982 | Development of a Multiplex PCR Platform for the Rapid Detection of Bacteria, Antibiotic Resistance, and Candida in Human Blood Samples. The diagnosis of bloodstream infections (BSIs) still relies on blood culture (BC), but low turnaround times may hinder the early initiation of an appropriate antimicrobial therapy, thus increasing the risk of infection-related death. We describe a direct and rapid multiplex PCR-based assay capable of detecting and identifying 16 bacterial and four Candida species, as well as three antibiotic-resistance determinants, in uncultured samples. Using whole-blood samples spiked with microorganisms at low densities, we found that the MicrobScan assay had a mean limit of detection of 15.1 ± 3.3 CFU of bacteria/Candida per ml of blood. When applied to positive BC samples, the assay allowed the sensitive and specific detection of BSI pathogens, including bla(KPC)-, mecA-, or vanA/vanB-positive bacteria. We evaluated the assay using prospectively collected blood samples from patients with suspected BSI. The sensitivity and specificity were 86.4 and 97.0%, respectively, among patients with positive BCs for the microorganisms targeted by the assay or patients fulfilling the criteria for infection. The mean times to positive or negative assay results were 5.3 ± 0.2 and 5.1 ± 0.1 h, respectively. Fifteen of 20 patients with MicrobScan assay-positive/BC-negative samples were receiving antimicrobial therapy. In conclusion, the MicrobScan assay is well suited to complement current diagnostic methods for BSIs. | 2019 | 31799215 |
| 2237 | 1 | 0.9982 | Evaluation of Sepsis Flow Chip for identification of Gram-negative bacilli and detection of antimicrobial resistance genes directly from positive blood cultures. Blood stream infections are serious conditions associated with high morbi-mortality. In this study, the new Sepsis Flow Chip (SFC) assay for identification of Gram-negative bacteria and their antimicrobial resistance genes was evaluated in positive blood cultures (BCs). SFC is a microarray with a broad panel comprising the most frequent causative agents of sepsis and antimicrobial resistance genes associated with them. A total of 100 prospective BCs, positive for Gram-negative bacilli, were assessed in the routine of the clinical microbiology laboratory and also applying the SFC assay. Moreover, 19 BCs spiked with well-characterized enterobacterial isolates, harboring antimicrobial resistance genes, were analyzed by the latter. Among the monomicrobial BCs (90), the concordance between SFC identification and the reference method was 94.4%; however, it achieved 100% when SFC was combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry after 4-h incubation. Regarding polymicrobial BCs (10), 15 out of the 22 bacteria present (68.2%) were correctly identified, including all contained in 50% of the cultures. With regard to antimicrobial resistance genes, 98.8%, 98.9%, and 99% concordance was obtained for bla(CTX-M), bla(OXA-48), and bla(VIM), respectively, in comparison with polymerase chain reaction amplification. SFC assay gives results in only 4 h and showed a high concordance rate with the reference method. Although further evaluation studies are necessary, SFC assay implementation, together with antimicrobial stewardship programs, could contribute to improve the therapeutic approaches and to reduce the morbi-mortality, length of hospital stay, and healthcare-associated costs in patients with sepsis. | 2018 | 29551362 |
| 2238 | 2 | 0.9981 | Rapid detection of carbapenem resistance among gram-negative organisms directly from positive blood culture bottles. BACKGROUND: Carbapenemase producing gram-negative bacteria (GNB) has become a huge problem in majority of tertiary care centers worldwide. They are associated with very high morbidity and mortality rates, especially when they cause invasive infections. Therefore, rapid detection of these organisms is very important for prompt and adequate antibiotic therapy as well as infection control. The aim of this study was rapid detection of carbapenemase genes and thereby likely carbapenem resistance, 24-48 hours in advance, directly from the positive-flagged blood culture bottles using CHROMagar and Xpert® Carba-R. METHODS: Aspirate from positively flagged blood culture bottles was subjected to differential centrifuge. All gram-negative bacilli on gram stain from the deposit were processed in Xpert® Carba-R and inoculated on CHROMagar. The presence of genes and growth on CHROMagar was compared with carbapenem resistance on VITEK-2 Compact. RESULTS: A total of 119 GNB isolates were processed. One or more of the carbapenemase genes were detected in 80 isolates. On comparison with VITEK-2 result, 92 samples showed concordance for carbapenem resistance 48 hours in advance. There was discordance in 21 isolates with 12 major errors and 09 minor errors. The sensitivity of direct Xpert® Carba-R test for rapid detection of carbapenem resistance, 48 hours in advance, was 81.42%. The sensitivity of direct CHROMagar test for accurate detection of carbapenem resistance, 24 hours in advance, was 92.06%. CONCLUSION: The ability to detect carbapenem resistance with very high accuracy, 48 hours in advance, helps in appropriate antibiotic therapy and implementation of effective infection control practices. | 2023 | 37193528 |
| 2234 | 3 | 0.9981 | Clinical relevance of molecular identification of microorganisms and detection of antimicrobial resistance genes in bloodstream infections of paediatric cancer patients. BACKGROUND: Bloodstream infections (BSIs) are the major cause of mortality in cancer patients. Molecular techniques are used for rapid diagnosis of BSI, allowing early therapy and improving survival. We aimed to establish whether real-time quantitative polymerase chain reaction (qPCR) could improve early diagnosis and therapy in paediatric cancer patients, and describe the predominant pathogens of BSI and their antimicrobial susceptibility. METHODS: Blood samples were processed by the BACTEC system and microbial identification and susceptibility tests were performed by the Phoenix system. All samples were screened by multiplex 16 s rDNA qPCR. Seventeen species were evaluated using sex-specific TaqMan probes and resistance genes blaSHV, blaTEM, blaCTX, blaKPC, blaIMP, blaSPM, blaVIM, vanA, vanB and mecA were screened by SYBR Green reactions. Therapeutic efficacy was evaluated at the time of positive blood culture and at final phenotypic identification and antimicrobial susceptibility results. RESULTS: We analyzed 69 episodes of BSI from 64 patients. Gram-positive bacteria were identified in 61 % of the samples, Gram-negative bacteria in 32 % and fungi in 7 %. There was 78.2 % of agreement between the phenotypic and molecular methods in final species identification. The mecA gene was detected in 81.4 % of Staphylococcus spp., and 91.6 % were concordant with the phenotypic method. Detection of vanA gene was 100 % concordant. The concordance for Gram-negative susceptibilities was 71.4 % for Enterobacteriaceae and 50 % for Pseudomonas aeruginosa. Therapy was more frequently inadequate in patients who died, and the molecular test was concordant with the phenotypic susceptibility test in 50 %. CONCLUSIONS: qPCR has potential indication for early identification of pathogens and antimicrobial resistance genes from BSI in paediatric cancer patients and may improve antimicrobial therapy. | 2016 | 27585633 |
| 2233 | 4 | 0.9980 | Assessment of the multiplex PCR-based assay Unyvero pneumonia application for detection of bacterial pathogens and antibiotic resistance genes in children and neonates. BACKGROUND: Pneumonia is a major healthcare problem. Rapid pathogen identification is critical, but often delayed due to the duration of culturing. Early, broad antibacterial therapy might lead to false-negative culture findings and eventually to the development of antibiotic resistances. We aimed to assess the accuracy of the new application Unyvero P50 based on multiplex PCR to detect bacterial pathogens in respiratory specimens from children and neonates. METHODS: In this prospective study, bronchoalveolar lavage fluids, tracheal aspirates, or pleural fluids from neonates and children were analyzed by both traditional culture methods and Unyvero multiplex PCR. RESULTS: We analyzed specimens from 79 patients with a median age of 1.8 (range 0.01-20.1). Overall, Unyvero yielded a sensitivity of 73.1% and a specificity of 97.9% compared to culture methods. Best results were observed for non-fermenting bacteria, for which sensitivity of Unyvero was 90% and specificity 97.3%, while rates were lower for Gram-positive bacteria (46.2 and 93.9%, respectively). For resistance genes, we observed a concordance with antibiogram of 75% for those specimens in which there was a cultural correlate. CONCLUSIONS: Unyvero is a fast and easy-to-use tool that might provide additional information for clinical decision making, especially in neonates and in the setting of nosocomial pneumonia. Sensitivity of the PCR for Gram-positive bacteria and important resistance genes must be improved before this application can be widely recommended. | 2018 | 29086343 |
| 5798 | 5 | 0.9979 | Rapid identification of bacteria, mecA and van genes from blood cultures. The Genotype technology, a quick molecular genetic assay based on DNA multiplex amplification with biotinylated primers followed by hybridization to membrane bound probes, complies with the requirements for a fast diagnosis of sepsis. We evaluated the new Genotype BC Gram-negative and Gram-positive test kits (Hain Life Science, Germany) which respectively allow for the identification of 15 species of Gram-negative (GN) rods, and the identification of 17 Gram-positive (GP) bacteria species together with the determination of methicillin and vancomycin resistance (mecA and van genes). The study was performed on 60 positive blood cultures from BacT/ALERT bottles (aerobic, anaerobic and pediatric bottles). First, a Gram stain was carried out to select between Genotype BC GP or GN test, then identification were performed by the Genotype BC tests and by biochemical conventional tests after subculture and phenotypic susceptibility determination. The operating procedure was very easy to carry out and required a small amount of starting material (5 to 10 microL of blood culture). The results were available within 4.5 hours. For all the blood cultures, the Genotype BC results correlated with the biochemical identification and phenotypic antibiotics susceptibility. According to our results, this DNA strip technology based assay can easily be incorporated into routine diagnosis. | 2007 | 17913394 |
| 5796 | 6 | 0.9979 | Antibiotic treatment algorithm development based on a microarray nucleic acid assay for rapid bacterial identification and resistance determination from positive blood cultures. Rapid diagnosis of bloodstream infections remains a challenge for the early targeting of an antibiotic therapy in sepsis patients. In recent studies, the reliability of the Nanosphere Verigene Gram-positive and Gram-negative blood culture (BC-GP and BC-GN) assays for the rapid identification of bacteria and resistance genes directly from positive BCs has been demonstrated. In this work, we have developed a model to define treatment recommendations by combining Verigene test results with knowledge on local antibiotic resistance patterns of bacterial pathogens. The data of 275 positive BCs were analyzed. Two hundred sixty-three isolates (95.6%) were included in the Verigene assay panels, and 257 isolates (93.5%) were correctly identified. The agreement of the detection of resistance genes with subsequent phenotypic susceptibility testing was 100%. The hospital antibiogram was used to develop a treatment algorithm on the basis of Verigene results that may contribute to a faster patient management. | 2016 | 26712265 |
| 1486 | 7 | 0.9979 | Multicenter evaluation of the Verigene Gram-negative blood culture nucleic acid test for rapid detection of bacteria and resistance determinants in positive blood cultures. The Verigene Gram-Negative Blood Culture Nucleic Acid Test (BC-GN) is a microarray-based assay that enables rapid detection of 9 common Gram-negative bacteria and 6 resistance determinants directly from positive blood cultures. We compared the performance of BC-GN with currently used automated systems, testing 141 clinical blood cultures and 205 spiked blood cultures. For identification of BC-GN target organisms in clinical and spiked blood cultures, the BC-GN assay showed 98.5% (130/132) and 98.9% (182/184) concordance, respectively. Of 140 resistance genes positively detected in clinical and spiked blood cultures with the BC-GN test, 139 (99.3%) were confirmed by PCR, and the detection results were consistent with the resistance phenotypes observed. The BC-GN assay, thus, can potentially improve care for sepsis patients by enabling timely detection and targeted antimicrobial therapy. | 2015 | 26361710 |
| 2235 | 8 | 0.9979 | Nanosphere's Verigene(®) Blood Culture Assay to Detect Multidrug-Resistant Gram-Negative Bacterial Outbreak: A Prospective Study on 79 Hematological Patients in a Country with High Prevalence of Antimicrobial Resistance. Infections are a major cause of morbidity and mortality in hematological patients. We prospectively tested a new molecular assay (Verigene(®)) in 79 consecutive hematological patients, with sepsis by gram-negative bacteria. A total of 82 gram-negative microorganisms were isolated by blood cultures, of which 76 cases were mono-microbial. Considering the bacteria detectable by the system, the concordance with standard blood cultures was 100%. Resistance genes were detected in 20 of the isolates and 100% were concordant with the phenotypic antibiotic resistance. Overall, this new assay correctly identified 66/82 of all the gram-negative pathogens, yielding a general sensitivity of 80.5%, and providing information on genetic antibiotic resistance in a few hours. This new molecular assay could ameliorate patient management, resulting in a more rational use of antibiotics. | 2019 | 34595420 |
| 5828 | 9 | 0.9978 | Target-enriched sequencing enables accurate identification of bloodstream infections in whole blood. Bloodstream infections are within the top ten causes of death globally, with a mortality rate of up to 70%. Gold standard blood culture testing is time-consuming, resulting in delayed, but accurate, treatment. Molecular methods, such as RT-qPCR, have limited targets in one run. We present a new Ampliseq detection system (ADS) combining target amplification and next-generation sequencing for accurate identification of bacteria, fungi, and antimicrobial resistance determinants directly from blood samples. In this study, we included removal of human genomic DNA during nucleic acid extraction, optimized the target sequence set and drug resistance genes, performed antimicrobial resistance profiling of clinical isolates, and evaluated mock specimens and clinical samples by ADS. ADS successfully identified pathogens at the species-level in 36 h, from nucleic acid extraction to results. Besides pathogen identification, ADS can also present drug resistance profiles. ADS enabled detection of all bacteria and accurate identification of 47 pathogens. In 20 spiked samples and 8 clinical specimens, ADS detected at least 92.81% of reads mapped to pathogens. ADS also showed consistency with the three culture-negative samples, and correctly identified pathogens in four of five culture-positive clinical blood specimens. This Ampliseq-based technology promises broad coverage and accurate pathogen identification, helping clinicians to accurately diagnose and treat bloodstream infections. | 2022 | 34915067 |
| 5824 | 10 | 0.9978 | Evaluation of a micro/nanofluidic chip platform for the high-throughput detection of bacteria and their antibiotic resistance genes in post-neurosurgical meningitis. BACKGROUND: Post-neurosurgical meningitis (PNM) is one of the most severe hospital-acquired infections worldwide, and a large number of pathogens, especially those possessing multi-resistance genes, are related to these infections. Existing methods for detecting bacteria and measuring their response to antibiotics lack sensitivity and stability, and laboratory-based detection methods are inconvenient, requiring at least 24h to complete. Rapid identification of bacteria and the determination of their susceptibility to antibiotics are urgently needed, in order to combat the emergence of multi-resistant bacterial strains. METHODS: This study evaluated a novel, fast, and easy-to-use micro/nanofluidic chip platform (MNCP), which overcomes the difficulties of diagnosing bacterial infections in neurosurgery. This platform can identify 10 genus or species targets and 13 genetic resistance determinants within 1h, and it is very simple to operate. A total of 108 bacterium-containing cerebrospinal fluid (CSF) cultures were tested using the MNCP for the identification of bacteria and determinants of genetic resistance. The results were compared to those obtained with conventional identification and antimicrobial susceptibility testing methods. RESULTS: For the 108 CSF cultures, the concordance rate between the MNCP and the conventional identification method was 94.44%; six species attained 100% consistency. For the production of carbapenemase- and extended-spectrum beta-lactamase (ESBL)-related antibiotic resistance genes, both the sensitivity and specificity of the MNCP tests were high (>90.0%) and could fully meet the requirements of clinical diagnosis. CONCLUSIONS: The MNCP is fast, accurate, and easy to use, and has great clinical potential in the treatment of post-neurosurgical meningitis. | 2018 | 29559366 |
| 2226 | 11 | 0.9978 | Evaluation of the Microbiological Performance and Potential Clinical Impact of New Rapid Molecular Assays for the Diagnosis of Bloodstream Infections. Bloodstream infection (BSI) is a critical medical emergency associated with a high mortality rate. Rapid and accurate identification of the causative pathogen and the results of antimicrobial susceptibility testing are crucial for initiating appropriate antimicrobial therapy. The aim of this study was to evaluate the performance of a new rapid PCR Molecular Mouse System (MMS) for the identification of Gram-negative bacteria (GNB) and GNB resistance genes directly from a positive blood culture (BC). The validation of these rapid multiplex assays was carried out in a real hospital setting. A total of 80 BSI episodes were included in our study and the results were compared with culture-based methods. BC samples in which GNB had previously been detected microscopically and which originated from different hospital wards were analysed. The MMS GNB identification assay achieved a sensitivity of 98.7% and a specificity of 100% for the covered pathogens. In one BC sample, Klebsiella aerogenes was identified at the family level (Enterobacteriaceae) with MMS. However, in three polymicrobial samples, MMS identified bacteria that were not detected by culture-based methods (Klebsiella pneumoniae, K. aerogenes and Stenotrophomonas maltophilia). MMS also showed excellent overall performance in the detection of GNB resistance markers (100% sensitivity and 100% specificity). The type of extended-spectrum beta-lactamase (ESBL) resistance gene identified correctly with MMS was CTX-M-1/9 (n = 17/20), alone or in combination with SHV-type β-lactamase or with the different types of carbapenemase genes. MMS detected one carbapenemase gene of each type (KPC, NDM and OXA-23) and six OXA-48 genes. In addition, the colistin resistance gene mcr-1 was detected in one positive BC with Escherichia coli (E. coli). The time to result was significantly shorter for MMS than for routine culture methods. A retrospective analysis of the patients' medical records revealed that a change in empirical antimicrobial therapy would have been made in around half of the patients following the MMS results. These results support the use of MMS as a valuable complement to conventional culture methods for more rapid BSI diagnosis and adjustment of empirical therapy. | 2025 | 40142509 |
| 5797 | 12 | 0.9978 | PCR-reverse blot hybridization assay for screening and identification of pathogens in sepsis. Rapid and accurate identification of the pathogens involved in bloodstream infections is crucial for the prompt initiation of appropriate therapy, as this can decrease morbidity and mortality rates. A PCR-reverse blot hybridization assay for sepsis, the reverse blot hybridization assay (REBA) Sepsis-ID test, was developed; it uses pan-probes to distinguish Gram-positive and -negative bacteria and fungi. In addition, the assay was designed to identify bacteria and fungi using six genus-specific and 13 species-specific probes; it uses additional probes for antibiotic resistance genes, i.e., the mecA gene of methicillin-resistant Staphylococcus aureus (MRSA) and the vanA and vanB genes of vancomycin-resistant enterococci (VRE). The REBA Sepsis-ID test successfully identified clinical isolates and blood culture samples as containing Gram-positive bacteria, Gram-negative bacteria, or fungi. The results matched those obtained with conventional microbiological methods. For the REBA Sepsis-ID test, of the 115 blood culture samples tested, 47 (40.8%) and 49 (42.6%) samples were identified to the species and genus levels, respectively, and the remaining 19 samples (16.5%), which included five Gram-positive rods, were identified as Gram-positive bacteria, Gram-negative bacteria, or fungi. The antibiotic resistances of the MRSA and VRE strains were identified using both conventional microbiological methods and the REBA Sepsis-ID test. In conclusion, the REBA Sepsis-ID test developed for this study is a fast and reliable test for the identification of Gram-positive bacteria, Gram-negative bacteria, fungi, and antibiotic resistance genes (including mecA for MRSA and the vanA and vanB genes for VRE) in bloodstream infections. | 2013 | 23447637 |
| 2211 | 13 | 0.9978 | The molecular analysis of antibiotic resistance and identification of the aerobic bacteria isolated from pleural fluids obtained from patients. OBJECTIVE: Pleural effusion is a common clinical condition due to various etiological causes. Infectious pleural effusion can be seen in 20-40% of patients. In this study, follow-up of patients admitted to our hospital and diagnosed with pleural effusion are reported. It was aimed to investigate the prevalence of bacteria isolated from patients with pleural effusion and their antibiotic resistance profiles. MATERIALS AND METHODS: The pleural fluids obtained from the patients during surgical operations were analyzed microbiologically. Conventional culture, Vitek 2, 16S rRNA, and single Polymerase Chain Reaction (sPCR) were used for microbiological analysis. RESULTS: Twenty-two (12.2%) bacteria were isolated from 180 patients. The most prominent of them were 16 (8.8%) Klebsiella pneumoniae strains. As for the antibiotic sensitivity, gram-negative bacteria showed the highest sensitivity to colistin, while Gram-positive bacteria showed sensitivity to different antibiotics. In 16S rRNA PCR, 22 samples were found to be positive. In the analysis of antibiotic resistance genes, the OXA-48 gene was determined as the highest. CONCLUSIONS: In our region, it is essential to perform a microbiological analysis of the sample in patients with pleural effusion. It was thought that revealing both the phenotype and genotype of the antibiotic resistance of the patients was important in terms of treatment. In hospital surveillance, it was considered important to reveal and record the resistance gene profiles of the patients. | 2022 | 36263534 |
| 2210 | 14 | 0.9978 | Beyond Culture: Real-Time PCR Performance in Detecting Causative Pathogens and Key Antibiotic Resistance Genes in Hospital-Acquired Pneumonia. Introduction: The rise in hospital-acquired pneumonia (HAP) due to antibiotic-resistant bacteria is increasing morbidity, mortality, and inappropriate empirical antibiotic use. This prospective research aimed to evaluate the performance of a real-time polymerase chain reaction (PCR) assay for detecting causative microorganisms and antibiotic-resistance genes from respiratory specimens compared to traditional methods. Additionally, we aimed to determine the molecular epidemiology of antibiotic resistance genes among HAP patients at The University of Jordan hospital. Methods: Lower respiratory tract samples were collected from HAP patients, including those with ventilator-associated pneumonia (VAP), between May 2024 and October 2024. Clinical data from the medical files were used to collect and analyze demographic and clinical information, including clinical outcomes. Real-time PCR was run to detect causative microbes and antibiotic resistance genes. Results: Among 83 HAP patients (median age 63, 61.45% male), 48.15% died. Culture identified Klebsiella (25.53%), Acinetobacter (22.34%), and Candida (24.47%) as the most common pathogens, while qPCR showed higher detection rates, including for A. baumannii (62.20%, p = 0.02) and K. pneumoniae (45.12%, p < 0.001). Carbapenem resistance was high; A. baumannii showed 100% resistance to most antibiotics except colistin (92.31%). The resistance genes ndm (60%) and oxa-48 (58.46%) were frequently detected and significantly associated with phenotypic resistance (p < 0.001). The qPCR identified resistance genes in all carbapenem-resistant cases. No gene significantly predicted mortality. Conclusions: Real-time PCR diagnostic technique combined with epidemiology of antibiotic resistance genes data may be a rapid and effective tool to improve HAP management. Large, multicenter studies are needed in the future to validate the performance of real-time PCR in HAP diagnosis, and appropriate management is also required. | 2025 | 41009915 |
| 2206 | 15 | 0.9978 | Retrospective analysis of pediatric sepsis and the burden of antimicrobial resistance in Duhok, Kurdistan Region of Iraq. Introduction: Sepsis is a life-threatening complication in pediatric patients. This study primarily aimed to investigate sepsis-causing bacteria and their antimicrobial resistance profile and check the change in the antimicrobial resistance trend for some selected bacteria. In addition, we evaluated the incidence of sepsis, the related mortality rate, and the effectiveness and outcome of the treatment regimes in sepsis pediatric patients. Methods: A retrospective analysis was conducted on 4-year data (2018-2021) collected from three intensive care units at the Hevi Pediatric Teaching Hospital. Sepsis screening involved clinical detection and confirmation by blood culture. Results: A total of 520 out of 1,098 (47.35%) blood samples showed positive microbial growth. A decrease in sepsis rate was observed during the COVID-19 pandemic. Coagulase-negative Staphylococci (CoNS) and Klebsiella pneumonia were the most commonly isolated bacteria. A notable variation in the antimicrobial resistance trend was observed among sepsis-causing bacteria. The empirical sepsis treatment recommended by the WHO was ineffective, as certain bacteria exhibited 100% resistance to every antibiotic tested. The mortality rate significantly increased from 1.3% in 2018 to 16.5% in 2021. Discussion: The antimicrobial resistance profile of sepsis causing bacteria is of concerns, indicating a potentially serious situation. Thus, to avoid treatment failure, the monitoring of antimicrobial resistance in pediatric patients is essential. | 2024 | 38469402 |
| 1482 | 16 | 0.9978 | Evaluation and clinical practice of pathogens and antimicrobial resistance genes of BioFire FilmArray Pneumonia panel in lower respiratory tract infections. BACKGROUND: Existing panels for lower respiratory tract infections (LRTIs) are slow and lack quantification of important pathogens and antimicrobial resistance, which are not solely responsible for their complex etiology and antibiotic resistance. BioFire FilmArray Pneumonia (PN) panels may provide rapid information on their etiology. METHODS: The bronchoalveolar lavage fluid of 187 patients with LRTIs was simultaneously analyzed using a PN panel and cultivation, and the impact of the PN panel on clinical practice was assessed. The primary endpoint was to compare the consistency between the PN panel and conventional microbiology in terms of etiology and drug resistance, as well as to explore the clinical significance of the PN panel. The secondary endpoint was pathogen detection using the PN panel in patients with community-acquired pneumonia (CAP) or hospital-acquired pneumonia (HAP). RESULTS: Fifty-seven patients with HAP and 130 with CAP were included. The most common pathogens of HAP were Acinetobacter baumannii and Klebsiella pneumoniae, with the most prevalent antimicrobial resistance (AMR) genes being CTX-M and KPC. For CAP, the most common pathogens were Haemophilus influenzae and Staphylococcus aureus, with the most frequent AMR genes being CTX-M and VIM. Compared with routine bacterial culture, the PN panel demonstrated an 85% combined positive percent agreement (PPA) and 92% negative percent agreement (NPA) for the qualitative identification of 13 bacterial targets. PN detection of bacteria with higher levels of semi-quantitative bacteria was associated with more positive bacterial cultures. Positive concordance between phenotypic resistance and the presence of corresponding AMR determinants was 85%, with 90% positive agreement between CTX-M-type extended-spectrum beta-lactamase gene type and phenotype and 100% agreement for mecA/C and MREJ. The clinical benefit of the PN panel increased by 25.97% compared with traditional cultural tests. CONCLUSION: The bacterial pathogens and AMR identified by the PN panel were in good agreement with conventional cultivation, and the clinical benefit of the PN panel increased by 25.97% compared with traditional detection. Therefore, the PN panel is recommended for patients with CAP or HAP who require prompt pathogen diagnosis and resistance identification. | 2024 | 38123753 |
| 2239 | 17 | 0.9978 | The Direct Semi-Quantitative Detection of 18 Pathogens and Simultaneous Screening for Nine Resistance Genes in Clinical Urine Samples by a High-Throughput Multiplex Genetic Detection System. BACKGROUND: Urinary tract infections (UTIs) are one the most common infections. The rapid and accurate identification of uropathogens, and the determination of antimicrobial susceptibility, are essential aspects of the management of UTIs. However, existing detection methods are associated with certain limitations. In this study, a new urinary tract infection high-throughput multiplex genetic detection system (UTI-HMGS) was developed for the semi-quantitative detection of 18 pathogens and the simultaneously screening of nine resistance genes directly from the clinical urine sample within 4 hours. METHODS: We designed and optimized a multiplex polymerase chain reaction (PCR) involving fluorescent dye-labeled specific primers to detect 18 pathogens and nine resistance genes. The specificity of the UTI-HMGS was tested using standard strains or plasmids for each gene target. The sensitivity of the UTI-HMGS assay was tested by the detection of serial tenfold dilutions of plasmids or simulated positive urine samples. We also collected clinical urine samples and used these to perform urine culture and antimicrobial susceptibility testing (AST). Finally, all urine samples were detected by UTI-HMGS and the results were compared with both urine culture and Sanger sequencing. RESULTS: UTI-HMGS showed high levels of sensitivity and specificity for the detection of uropathogens when compared with culture and sequencing. In addition, ten species of bacteria and three species of fungi were detected semi-quantitatively to allow accurate discrimination of significant bacteriuria and candiduria. The sensitivity of the UTI-HMGS for the all the target genes could reach 50 copies per reaction. In total, 531 urine samples were collected and analyzed by UTI-HMGS, which exhibited high levels of sensitivity and specificity for the detection of uropathogens and resistance genes when compared with Sanger sequencing. The results from UTI-HMGS showed that the detection rates of 15 pathogens were significantly higher (P<0.05) than that of the culture method. In addition, there were 41(7.72%, 41/531) urine samples were positive for difficult-to-culture pathogens, which were missed detected by routine culture method. CONCLUSIONS: UTI-HMGS proved to be an efficient method for the direct semi-quantitative detection of 18 uropathogens and the simultaneously screening of nine antibiotic resistance genes in urine samples. The UTI-HMGS could represent an alternative method for the clinical detection and monitoring of antibiotic resistance. | 2021 | 33912478 |
| 5779 | 18 | 0.9978 | Development of a One-Step Multiplex qPCR Assay for Detection of Methicillin and Vancomycin Drug Resistance Genes in Antibiotic-Resistant Bacteria. The most common antibiotic-resistant bacteria in Korea are methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). Pathogen identification in clinical laboratories can be divided into traditional phenotype- and genotype-based methods, both of which are complementary to each other. The genotype-based method using multiplex real-time polymerase chain reaction (PCR) is a rapid and accurate technique that analyzes material at the genetic level by targeting genes simultaneously. Accordingly, we aimed to develop a rapid method for studying the genetic characteristics of antibiotic-resistant bacteria and to provide an experimental guide for the efficient antibiotic resistance gene analysis of mecA detection for MRSA and vanA or vanB detection for VRE using a one-step multiplex qPCR assay at an early stage of infection. As a result, the sensitivity and specificity of the mecA gene for clinical S. aureus isolates, including MRSA and methicillin-susceptible S. aureus, were 97.44% (95% CI, 86.82-99.87%) and 96.15% (95% CI, 87.02-99.32%), respectively. The receiver operating characteristic area under the curve for the diagnosis of MRSA was 0.9798 (*** p < 0.0001). Therefore, the molecular diagnostic method using this newly developed one-step multiplex qPCR assay can provide accurate and rapid results for the treatment of patients with MRSA and VRE infections. | 2024 | 39452724 |
| 1478 | 19 | 0.9978 | Multicenter Evaluation of the FilmArray Blood Culture Identification 2 Panel for Pathogen Detection in Bloodstream Infections. The FilmArray Blood Culture Identification 2 panel (BCID2; bioMérieux) is a fully automated PCR-based assay for identifying bacteria, fungi, and bacterial resistance markers in positive blood cultures (BC) in about 1 h. In this multicenter study, we evaluated the performance of the BCID2 panel for pathogen detection in positive BC. Conventional culture and BCID2 were performed in parallel at four tertiary-care hospitals. We included 152 positive BC-130 monomicrobial and 22 polymicrobial cultures-in this analysis. The BCID2 assay correctly identified 90% (88/98) of Gram-negative and 89% (70/79) of Gram-positive bacteria. Five bacterial isolates targeted by the BCID2 panel and recovered from five positive BC, including three polymicrobial cultures, were missed by the BCID2 assay. Fifteen isolates were off-panel organisms, accounting for 8% (15/182) of the isolates obtained from BC. The mean positive percent agreement between the BCID2 assay and standard culture was 97% (95% confidence interval, 95 to 99%), with agreement ranging from 67% for Candida albicans to 100% for 17 targets included in the BCID2 panel. BCID2 also identified the bla(CTX-M) gene in seven BC, including one for which no extended-spectrum β-lactamase (ESBL)-producing isolate was obtained in culture. However, it failed to detect ESBL-encoding genes in three BC. Two of the 18 mecA/C genes detected by the BCID2 were not confirmed. No carbapenemase, mecA/C, or MREJ targets were detected. The median turnaround time was significantly shorter for BCID2 than for culture. The BCID2 panel may facilitate faster pathogen identification in bloodstream infections. IMPORTANCE Rapid molecular diagnosis combining the identification of pathogens and the detection of antibiotic resistance genes from positive blood cultures (BC) can improve the outcome for patients with bloodstream infections. The FilmArray BCID2 panel, an updated version of the original BCID, can detect 11 Gram-positive bacteria, 15 Gram-negative bacteria, 7 fungal pathogens, and 10 antimicrobial resistance genes directly from a positive BC. Here, we evaluated the real-life microbiological performance of the BCID2 assay in comparison to the results of standard methods used in routine practice at four tertiary care hospitals. | 2023 | 36519852 |