ESTER - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
537900.9543Membrane-Targeting Triphenylphosphonium Functionalized Ciprofloxacin for Methicillin-Resistant Staphylococcus aureus (MRSA). Multidrug-resistant (MDR) bacteria have become a severe problem for public health. Developing new antibiotics for MDR bacteria is difficult, from inception to the clinically approved stage. Here, we have used a new approach, modification of an antibiotic, ciprofloxacin (CFX), with triphenylphosphonium (TPP, PPh(3)) moiety via ester- (CFX-ester-PPh(3)) and amide-coupling (CFX-amide-PPh(3)) to target bacterial membranes. In this study, we have evaluated the antibacterial activities of CFX and its derivatives against 16 species of bacteria, including MDR bacteria, using minimum inhibitory concentration (MIC) assay, morphological monitoring, and expression of resistance-related genes. TPP-conjugated CFX, CFX-ester-PPh(3), and CFX-amide-PPh(3) showed significantly improved antibacterial activity against Gram-positive bacteria, Staphylococcus aureus, including MDR S. aureus (methicillin-resistant S. aureus (MRSA)) strains. The MRSA ST5 5016 strain showed high antibacterial activity, with MIC values of 11.12 µg/mL for CFX-ester-PPh(3) and 2.78 µg/mL for CFX-amide-PPh(3). The CFX derivatives inhibited biofilm formation in MRSA by more than 74.9% of CFX-amide-PPh(3). In the sub-MIC, CFX derivatives induced significant morphological changes in MRSA, including irregular deformation and membrane disruption, accompanied by a decrease in the level of resistance-related gene expression. With these promising results, this method is very likely to combat MDR bacteria through a simple TPP moiety modification of known antibiotics, which can be readily prepared at clinical sites.202033143023
774510.9533Iron-modified biochar boosts anaerobic digestion of sulfamethoxazole pharmaceutical wastewater: Performance and microbial mechanism. The accumulation of volatile fatty acids (VFAs) caused by antibiotic inhibition significantly reduces the treatment efficiency of sulfamethoxazole (SMX) wastewater. Few studies have been conducted to study the VFAs gradient metabolism of extracellular respiratory bacteria (ERB) and hydrogenotrophic methanogen (HM) under high-concentration sulfonamide antibiotics (SAs). And the effects of iron-modified biochar on antibiotics are unknown. Here, the iron-modified biochar was added to an anaerobic baffled reactor (ABR) to intensify the anaerobic digestion of SMX pharmaceutical wastewater. The results demonstrated that ERB and HM were developed after adding iron-modified biochar, promoting the degradation of butyric, propionic and acetic acids. The content of VFAs reduced from 1166.0 mg L(-1) to 291.5 mg L(-1). Therefore, chemical oxygen demand (COD) and SMX removal efficiency were improved by 22.76% and 36.51%, and methane production was enhanced by 6.19 times. Furthermore, the antibiotic resistance genes (ARGs) such as sul1, sul2, intl1 in effluent were decreased by 39.31%, 43.33%, 44.11%. AUTHM297 (18.07%), Methanobacterium (16.05%), Geobacter (6.05%) were enriched after enhancement. The net energy after enhancement was 0.7122 kWh m(-3). These results confirmed that ERB and HM were enriched via iron-modified biochar to achieve high efficiency of SMX wastewater treatment.202337030222
787920.9526Multidrug-resistant plasmid RP4 increases NO and N(2)O yields via the electron transport system in Nitrosomonas europaea ammonia oxidation. Antibiotic resistance genes (ARGs) have recently become an important public health problem and therefore several studies have characterized ARG composition and distribution. However, few studies have assessed their impact on important functional microorganisms in the environment. Therefore, our study sought to investigate the mechanisms through which multidrug-resistant plasmid RP4 affected the ammonia oxidation capacity of ammonia-oxidizing bacteria, which play a key role in the nitrogen cycle. The ammonia oxidation capacity of N. europaea ATCC25978 (RP4) was significantly inhibited, and NO and N(2)O were produced instead of nitrite. Our findings demonstrated that the decrease in electrons from NH(2)OH decreased the ammonia monooxygenase (AMO) activity, leading to a decrease in ammonia consumption. In the ammonia oxidation process, N. europaea ATCC25978 (RP4) exhibited ATP and NADH accumulation. The corresponding mechanism was the overactivation of Complex Ⅰ, ATPase, and the TCA cycle by the RP4 plasmid. The genes encoding TCA cycle enzymes related to energy generation, including gltA, icd, sucD, and NE0773, were upregulated in N. europaea ATCC25978 (RP4). These results demonstrate the ecological risks of ARGs, including the inhibition of the ammonia oxidation process and an increased production of greenhouse gases such as NO and N(2)O.202337421866
811030.9522Removal of chlortetracycline and antibiotic resistance genes in soil by earthworms (epigeic Eisenia fetida and endogeic Metaphire guillelmi). The impacts of two ecological earthworms on the removal of chlortetracycline (CTC, 0.5 and 15 mg kg(-1)) and antibiotic resistance genes (ARGs) in soil were explored through the soil column experiments. The findings showed that earthworm could significantly accelerate the degradation of CTC and its metabolites (ECTC) in soil (P < 0.05), with epigeic Eisenia fetida promoting degradation rapidly and endogeic Metaphire guillelmi exhibiting a slightly better elimination effect. Earthworms alleviated the abundances of tetR, tetD, tetPB, tetG, tetA, sul1, TnpA, ttgB and intI1 in soil, with the total relative abundances of ARGs decreasing by 35.0-44.2% in earthworm treatments at the 28th day of cultivation. High throughput sequencing results displayed that the structure of soil bacteria community was modified apparently with earthworm added, and some possible CTC degraders, Aeromonas, Flavobacterium and Luteolibacter, were promoted by two kinds of earthworms. Redundancy analysis demonstrated that the reduction of CTC residues, Actinobacteria, Acidobacteria and Gemmatimonadetes owing to earthworm stimulation was responsible for the removal of ARGs and intI1 in soil. Additionally, intI1 declined obviously in earthworm treatments, which could weaken the risk of horizontal transmission of ARGs. Therefore, earthworm could restore the CTC-contaminated soil via enhancing the removal of CTC, its metabolites and ARGs.202133798888
788140.9522Bacterial community shift and antibiotics resistant genes analysis in response to biodegradation of oxytetracycline in dual graphene modified bioelectrode microbial fuel cell. This study explored the biodegradation mechanisms of oxytetracycline (OTC/O) and electrochemical characteristics from the perspective of bacterial community shift and OTC resistance genes in dual graphene modified bioelectrode microbial fuel cell (O-D-GM-BE MFC). In phylum level, Proteobacteria was accounted to 95.04% in O-GM-BA, Proteobacteria and Bacteroidetes were accounted to 59.13% and 20.52% in O-GM-BC, which were beneficial for extracellular electron transport (EET) process and OTC biodegradation. In genus level, the most dominant bacteria in O-GM-BA were Salmonella and Trabulsiella, accounting up to 83.04%, moreover, representative exoelectrogens (Geobacter) were enriched, which contributed to OTC biodegradation and electrochemical performances; abundant degrading bacteria (Moheibacter, Comamonas, Pseudomonas, Dechloromonas, Nitrospira, Methylomicrobium, Pseudorhodoferax, Thiobacillus, Mycobacterium) were enriched in O-GM-BC, which contributed to the maximum removal efficiency of OTC; coding resistance genes of efflux pump, ribosome protective protein and modifying or passivating were all found in O-GM-BE, and this explained the OTC removal mechanisms from gene level.201930640017
615050.9522Redox biotransformation of arsenic along with plant growth promotion by multi-metal resistance Pseudomonas sp. MX6. Remediation of toxic metal-polluted sites by microorganisms is an environment-friendly remediation technique. Multi-metal-resistant bacteria were isolated from a wastewater treatment plant showing resistance against As(III), As(V), Cr, Co, Cu, Cd, Hg, Ni, Pb, Se and Zn. Maximum resistance against all metals was shown by the bacterial isolate MX-6 (As 20mM, Cd 30mM, Cr 5.0mM, Co 25mM, Cu 25mM, Ni 20mM, Zn 30mM, Pb 15mM, Se 20mM and Hg 2.5mM), which was identified as Pseudomonas sp. through 16S rDNA sequencing. Pseudomonas sp. MX-6 reduced 506μM As(V) and also oxidized 160μM As(III). The genes for As, Cd, Se and Zn resistance in Pseudomonas sp. MX-6 were found to be plasmid borne, as indicated by transformation. Pseudomonas sp. MX-6 produced 49.37μg·mL(-1) IAA and was also positive for HCN production and phosphate solubilisation. The bacterial isolate also supported Vigna radiata growth, both in the absence and presence of the aforementioned metals. Such bacteria can be used as biofertilizers to reclaim the polluted lands and to enhance crop production in metal-contaminated soils.201728684222
788060.9518The synergistic mechanism of β-lactam antibiotic removal between ammonia-oxidizing microorganisms and heterotrophs. Nitrifying system is an effective strategy to remove numerous antibiotics, however, the contribution of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and heterotrophs for antibiotic removal are still unclear. In this study, the mechanism of β-lactam antibiotic (cefalexin, CFX) removal was studied in a nitrifying sludge system. Results showed that CFX was synergistically removed by AOB (Nitrosomonas, played a major role) and AOA (Candidatus_Nitrososphaera) through ammonia monooxygenase-mediated co-metabolism, and by heterotrophs (Pseudofulvimonas, Hydrogenophaga, RB41, Thauera, UTCFX1, Plasticicumulans, Phaeodactylibacter) through antibiotic resistance genes (ARGs)-encoded β-lactamases-mediated hydrolysis. Regardless of increased archaeal and heterotrophic CFX removal with the upregulation of amoA in AOA and ARGs, the system exhibited poorer CFX removal performance at 10 mg/L, mainly due to the inhibition of AOB. This study provides new reference for the important roles of heterotrophs and ARGs, opening the possibilities for the application of ARGs in antibiotic biodegradation.202336174754
601770.9517Selection of lactic acid bacteria to promote an efficient silage fermentation capable of inhibiting the activity of Aspergillus parasiticus and Fusarium gramineraum and mycotoxin production. AIMS: To select lactic acid bacteria with potential silage inoculant properties. The bio-control activity against mycotoxicogenic fungi and the presence of antibiotics resistance gene were also evaluated. METHODS AND RESULTS: Lactobacillus rhamnosus RC007 and Lactobacillus plantarum RC009 were selected on the basis of growth rate and efficacy in reducing the pH of maize extract medium; therefore, they were evaluated for their bio-control ability against Fusarium graminearum and Aspergillus parasiticus. Studies on lag phase, growth rate and aflatoxin B1 (AFB1) and zearalenone (ZEA) production were carried out in vitro under different regimes of aw (0·95 and 0·99); pH (4 and 6); temperature (25 and 37°C); and oxygen availability (normal and reduced). Lactobacillus rhamnosus RC007 was able to completely inhibit the F. graminearum growth at all assayed conditions, while Lact. plantarum RC009 only did it at pH 4. Both Lactobacillus strains were able to significantly reduce the A. parasiticus growth rate mainly at 0·99 aw . A decrease in ZEA production was observed as result of Lactobacillus strains -F. graminearum interaction; however, the A. parasiticus- Lact. plantarum interaction resulted in an increased AFB1 production. Lactobacillus rhamnosus RC007 proved to have no genes for resistance to the tested antibiotics. CONCLUSIONS: The ability of Lact. rhamnosus RC007 to rapidly drop the pH and to inhibit fungal growth and mycotoxin production and the absence of antibiotic resistance genes shows the potential of its application as inoculant and bio-control agent in animal feed. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrated the importance of selecting bacteria for silage inoculants not only for the improvement of silage fermentation but also for their effects on mycotoxicogenic fungi and the resulting mycotoxin production due to the risk that they may involve.201323437822
774980.9515Interaction of ciprofloxacin chlorination products with bacteria in drinking water distribution systems. The interaction of ciprofloxacin chlorination products (CIP-CPs) with bacteria in drinking water distribution systems (DWDSs) was investigated. The piperazine ring of CIP was destroyed by chlorination. Among of CIP-CPs, by the bacterial role, 7.63% of the derivative with two carboxylic groups went through decarboxylation to form desethylene ciprofloxacin, and then loss of C(2)H(5)N group generated aniline compound. Furthermore, 12.3% of the aniline compound, 7.60% of chlorinated aniline compound and 1.35% of defluorinated product were bio-mineralized. Therefore, the chlorine and bacteria played synergistic effects on transformation of CIP-CPs in DWDSs, contributing to the obvious decrease of genotoxicity in effluents. Correspondingly, the TEQ(4-NQO) decreased from 667μg/L to 9.41μg/L. However, compared with DWDSs without CIP-CPs, the relative abundance of mexA and qnrS increased 1-fold in effluents and the relative abundance of qnrA and qnrB increased 3-fold in biofilms in DWDSs with CIP-CPs. mexA and qnrS positively correlated with Hyphomicrobium, Sphingomonas and Novosphingobium (p<0.05), while qnrA and qnrB positively correlated with Shewanella and Helicobacter (p<0.05), indicating the increase of antibiotic resistance genes (ARGs) came from the growth of these bacterial genera by transformation of CIP-CPs in DWDSs. These results suggested that biotransformation of antibiotics might increase ARGs risk in DWDSs.201728648729
52390.9513Sulfide-carbonate-mineralized functional bacterial consortium for cadmium removal in flue gas. Sulfide-carbonate-mineralized functional bacterial consortium was constructed for flue gas cadmium biomineralization. A membrane biofilm reactor (MBfR) using the bacterial consortium containing sulfate reducing bacteria (SRB) and denitrifying bacteria (DNB) was investigated for flue gas cadmium (Cd) removal. Cadmium removal efficiency achieved 90%. The bacterial consortium containing Citrobacter, Desulfocurvus and Stappia were dominated for cadmium resistance-nitrate-sulfate reduction. Under flue gas cadmium stress, ten cadmium resistance genes (czcA, czcB, czcC, czcD, cadA, cadB, cadC, cueR, copZ, zntA), and seven genes related to sulfate reduction, increased in abundance; whereas others, nine genes related to denitrification, decreased, indicating that cadmium stress was advantageous to sulfate reduction in the competition with denitrification. A bacterial consortium could capable of simultaneously cadmium resistance, sulfate reduction and denitrification. Microbial induced carbonate precipitation (MICP) and biological adsorption process would gradually yield to sulfide-mineralized process. Flue gas cadmium could transform to Cd-EPS, cadmium carbonate (CdCO(3)) and cadmium sulfide (CdS) bioprecipitate. The functional bacterial consortium was an efficient and eco-friendly bifunctional bacterial consortium for sulfide-carbonate-mineralized of cadmium. This provides a green and low-carbon advanced treatment technology using sulfide-carbonate-mineralized functional bacterial consortium for the removal of cadmium or other hazardous heavy metal contaminants in flue gas.202439019186
8054100.9512Effects of nanoscale zero-valent iron on the performance and the fate of antibiotic resistance genes during thermophilic and mesophilic anaerobic digestion of food waste. The effects of nanoscale zero-valent iron (nZVI) on the performance of food waste anaerobic digestion and the fate of antibiotic resistance genes (ARGs) were investigated in thermophilic (TR) and mesophilic (MR) reactors. Results showed that nZVI enhanced biogas production and facilitated ARGs reduction. The maximum CH(4) production was 212.00 ± 4.77 ml/gVS with 5 g/L of nZVI in MR. The highest ARGs removal ratio was 86.64 ± 0.72% obtained in TR at nZVI of 2 g/L. nZVI corrosion products and their contribution on AD performance were analyzed. The abundance of tetracycline genes reduced significantly in nZVI amended digesters. Firmicutes, Chloroflexi, Proteobacteria and Spirochaetes showed significant positive correlations with various ARGs (p < 0.05) in MR and TR. Redundancy analysis indicated that microbial community was the main factor that influenced the fate of ARGs. nZVI changed microbial communities, with decreasing the abundance bacteria belonging to Firmicutes and resulting in the reduction of ARGs.201931505392
7748110.9512Bacillus subtilis reduces antibiotic resistance genes of animal sludge in vermicomposting by improving heat stress tolerance of Eisenia foetida and bacterial community adjustment. Antibiotic resistance genes (ARGs) in livestock industry have been recognized as a kind of pollutant. The effect of Bacillus subtilis (B. subtilis) as an additive for the reduction of ARGs in animal sludge from livestock and poultry wastewater treatment plant during vermicomposting was investigated. We also evaluated the oxidative stress level and growth of earthworms, Eisenia foetida, bacterial community succession, and the quality of the end products. Two treatments were conducted using B. subtilis, one at 18 °C and another at 28 °C. Controls were setup without the bacteria. The results showed that inoculation of B. subtilis promoted the degradation of organics at 28 °C and increased the germination index to 236%. The increased activities of the superoxide dismutase (1.69 U/mg pr) and catalase (8.05 U/mg pr) and the decreased activity of malondialdehyde (0.02 nmol/mg pr) by B. subtilis at 28 °C showed that the earthworms were relieved of heat stress. The addition of B. subtilis reduced the abundance of 32 target ARGs, including integron (intI-1), transposase (IS613) and resistant genes, such as sulfonamide (sul2), quinolone (oprJ), macrolide-lincosamide-streptogramin group B (ermF, ermB), tetracycline (tetL-02, tetX), β-lactama (blaOXA10-01) and aminoglycoside [strB, aac(6')-Ib(aka aacA4)-01, aac(6')-Ib(aka aacA4)-02]. Organic matter degrading Membranicola, Paludisphaera, Sphingorhabdus and uncultured bacterium belonging to the order Chitinophagales, nitrifying and nitrogen-fixing Singulisphaera and Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, soil remediating Achromobacter, and plant growth promoting Kaistia, Galbibacter and Ilumatobacter were increased significantly (P < 0.05). However, the growth of harmful bacteria such as Burkholderiaceae was inhibited in the vermicompost. In earthworm guts, the probiotic Mesorhizobium was promoted, while the pathogenic uncultured bacterium belonging to the family Enterobacteriaceae was reduced. Besides, B. subtilis enhanced the host relationships between bacteria and ARGs. These findings might be helpful in the removal of ARGs in animal wastes and in understanding the synergy between earthworms and microorganisms.202336529325
7878120.9511Horizontal transfer of the multidrug resistance plasmid RP4 inhibits ammonia nitrogen removal dominated by ammonia-oxidizing bacteria. Antibiotic resistance genes (ARGs) have become an important public health concern. Particularly, although several ARGs have been identified in wastewater treatment plants (WWTPs), very few studies have characterized their impacts on reactor performance. Therefore, our study sought to investigate the effect of a representative conjugative transfer plasmid (RP4) encoding multidrug resistance genes on ammonia oxidation. To achieve this, we established sequencing batch reactors (SBRs) and a conjugation model with E. coli donor strains carrying the RP4 plasmid and a typical ammonia-oxidating (AOB) bacterial strain (Nitrosomonas europaea ATCC 25978) as a recipient to investigate the effect of conjugative transfer of plasmid RP4 on AOB. Our findings demonstrated that the RP4 plasmid carried by the donor strains could be transferred to AOB in the SBR and to Nitrosomonas europaea ATCC 25978. In SBR treated with donor strains carrying the RP4 plasmid, ammonia removal efficiency continuously decreased to 71%. Once the RP4 plasmid entered N. europaea ATCC 25978 in the conjugation model, ammonia removal was significantly inhibited and nitrite generation was decreased. Furthermore, the expression of several functional genes related to ammonia oxidation in AOB was suppressed following the transfer of the RP4 plasmid, including amoA, amoC, hao, nirK, and norB. In contrast, the cytL gene encoding cytochrome P460 was upregulated. These results demonstrated the ecological risk of ARGs in WWTPs, and therefore measures must be taken to avoid their transfer.202235427829
6152130.9511Identification of Bacillus megaterium and Microbacterium liquefaciens genes involved in metal resistance and metal removal. Bacillus megaterium MNSH1-9K-1 and Microbacterium liquefaciens MNSH2-PHGII-2, 2 nickel- and vanadium-resistant bacteria from mine tailings located in Guanajuato, Mexico, are shown to have the ability to remove 33.1% and 17.8% of Ni, respectively, and 50.8% and 14.0% of V, respectively, from spent petrochemical catalysts containing 428 ± 30 mg·kg(-1) Ni and 2165 ± 77 mg·kg(-1) V. In these strains, several Ni resistance determinants were detected by conventional PCR. The nccA (nickel-cobalt-cadmium resistance) was found for the first time in B. megaterium. In M. liquefaciens, the above gene as well as the czcD gene (cobalt-zinc-cadmium resistance) and a high-affinity nickel transporter were detected for the first time. This study characterizes the resistance of M. liquefaciens and B. megaterium to Ni through the expression of genes conferring metal resistance.201627210016
7810140.9511Photoelectrocatalytic coupling system synergistically removal of antibiotics and antibiotic resistant bacteria from aquatic environment. Antibiotics, antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are ubiquitous in the reclaimed water, posing a potential threat to human and ecological health. Nowadays, the reuse technology of reclaimed water has been widely concerned, but the removal of antibiotics, ARB and ARGs in reclaimed water has not been sufficiently studied. This study used TiO2 nanotube arrays (TNTs) decorated with Ag/SnO2-Sb nanoparticles (TNTs-Ag/SnO2-Sb) as the anode and Ti-Pd/SnO2-Sb as the cathode to construct an efficient photoelectrocatalytic (PEC) system. In this system, 99.9% of ARB was inactivated in 20 min, meanwhile, ARGs was removed within 30 min, and antibiotics were almost completely degraded within 1 h. Furthermore, the effects of system parameters on the removals of antibiotics, ARB and ARGs were also studied. The redox performance of the system was verified by adding persulfate. Escherichia coli, as a representative microorganism in aquatic environments, was used to evaluate the ecotoxicity of PEC treated chloramphenicol (CAP) solution. The ecotoxicity of CAP solution was significantly reduced after being treated by PEC. In addition, transformation intermediates of CAP were identified using liquid chromatography-tandems mass spectrometry (LC-MS/MS) and the possible degradation pathways were proposed. This study could provide a potential alternative method for controlling antibiotic resistance and protecting the quality of reclaimed water.202234736195
7742150.9511The dissimilarity of antibiotic and quorum sensing inhibitor on activated sludge nitrification system: Microbial communities and antibiotic resistance genes. Effects of antibiotics (azithromycin, AZM, 1-40 mg/L) and quorum sensing inhibitor (QSI, 2(5H)-furanone, 1-40 mg/L) combined pollution with environmental concentration of copper on bacterial/archaeal community and antibiotic resistance genes (ARGs) in activated sludge system were explored. QSI inhibited nitrification more obviously than AZM. AZM and QSI were synergistic inhibitions on bacterial diversity, and AZM inhibited bacterial compositions more than QSI. While, QSI had more impacts on archaeal diversity/compositions. Less interactions among bacteria and archaea communities with Aquimonas as keystone genus. Functional differences in bacteria/archaea communities were little, and AZM had more effects on metabolism. AZM mainly affected nitrifying bacteria (Candidatus Nitrospira nitrificans and Nitrosomonas). Specific denitrifying bacteria were enriched by AZM (Brevundimonas, 1.76-31.69%) and QSI (Comamonas, 0.61-9.61%), respectively. AZM enriched ARGs more easily than QSI and they were antagonistic to proliferation of ARGs. Bacteria were main hosts of ARGs (macrolide-lincosamide-streptogramin B, other/efflux, etc.) and archaea (Methanosphaerula, Methanolobus) carried multiple ARGs.202235306131
6083160.9510Bioactivity and genome analysis of Bacillus amyloliquefaciens GL18 isolated from the rhizosphere of Kobresia myosuroides in an alpine meadow. The unique eco-environment of the Qinghai-Tibet Plateau breeds abundant microbial resources. In this research, Bacillus amyloliquefaciens GL18, isolated from the rhizosphere of Kobresia myosuroides from an alpine meadow, and the antagonistic activity, bacteriostatic hydrolase activity, and low temperature, salt, and drought resistance of it were determined and analysed. The seedlings of Avena sativa were root-irrigated using bacteria suspensions (cell concentration 1 × 10(7) cfu/mL) of GL18, and the growth-promoting effect of GL18 on it was determined under cold, salt and drought stress, respectively. The whole genome of GL18 was sequenced, and its functional genes were analysed. GL18 presented significant antagonistic activity to Fusarium graminearum, Fusarium acuminatum, Fusarium oxysporum and Aspergillus niger (inhibition zone diameter > 17 mm). Transparent zones formed on four hydrolase detection media, indicating that GL18 secreted cellulase, protease, pectinase and β-1,3-glucanase. GL18 tolerated conditions of 10 °C, 11% NaCl and 15% PEG-6000, presenting cold, salt and drought resistance. GL18 improved the cold, salt and drought tolerance of A. sativa and it showed significant growth effects under different stress. The total length of the GL18 genome was 3,915,550 bp, and the number of coding DNA sequence was 3726. Compared with the clusters of orthologous groups of proteins, gene ontology and kyoto encyclopedia of genes and genomes databases, 3088, 2869 and 2357 functional genes were annotated, respectively. GL18 contained gene clusters related to antibacterial substances, functional genes related to the synthesis of plant growth-promoting substances, and encoding genes related to stress resistance. This study identified an excellent Bacillus strain and provided a theoretical basis for improving stress resistance and promoting the growth of herbages under abiotic stress.202438189906
7744170.9509Dynamics and removal mechanisms of antibiotic and antibiotic resistance genes during the fermentation process of spectinomycin mycelial dregs: An integrated meta-omics study. Antibiotic mycelial dregs (AMDs) have been listed as industrial hazardous wastes. With the aim of reducing the environmental risk, the integrated-omics and qPCR approaches were used to reveal the dynamics and removal mechanisms of antibiotic and antibiotic resistance genes (ARGs) during the fermentation of different spectinomycin mycelial dregs (SMDs). The results showed that the removal efficiency of antibiotic in the fermentation of high moisture SMDs reached up to 98%. The high abundance of aadA1 gene encoded by Streptomyces, Lactobacillus, and Pseudomonas was associated with the efficient degradation of spectinomycin, and the inactivating enzymes secreted by degradative bacteria were identified. Furthermore, the dominant microbiota was impacted by moisture content significantly under high temperature environments. In the fermentation of low moisture SMDs, Saccharopolyspora was the dominant microbiota which secreted S8 endopeptidase, M14, M15, S10, S13 carboxypeptidases, M1, M28, S15 aminopeptidases, and antioxidant enzymes, while in the fermentation of high moisture SMDs, Bacillus and Cerasibacillus were dominant genera which mainly secreted S8 endopeptidase and antioxidant enzymes. The abundance of ARGs and mobile genetic elements decreased significantly at thermophilic phase, with maximum drops of 93.7% and 99.9%, respectively. Maintaining moisture content below 30% at the end phase could prevent the transmission of ARGs effectively.202234396972
6154180.9508Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production. Arsenic contamination is an important environmental problem around the world since its high toxicity, and bacteria resist to this element serve as valuable resource for its bioremediation. Aiming at searching the arsenic-resistant bacteria and determining their resistant mechanism, a total of 27 strains isolated from roots of Prosopis laevigata and Spharealcea angustifolia grown in a heavy metal-contaminated region in Mexico were investigated. The minimum inhibitory concentration (MIC) and transformation abilities of arsenate (As(5+)) and arsenite (As(3+)), arsenophore synthesis, arsenate uptake, and cytoplasmatic arsenate reductase (arsC), and arsenite transporter (arsB) genes were studied for these strains. Based on these results and the 16S rDNA sequence analysis, these isolates were identified as arsenic-resistant endophytic bacteria (AREB) belonging to the genera Arthrobacter, Bacillus, Brevibacterium, Kocuria, Microbacterium, Micrococcus, Pseudomonas, and Staphylococcus. They could tolerate high concentrations of arsenic with MIC from 20 to > 100 mM for As(5+) and 10-20 mM for As(3+). Eleven isolates presented dual abilities of As(5+) reduction and As(3+) oxidation. As the most effective strains, Micrococcus luteus NE2E1 reduced 94% of the As(5+) and Pseudomonas zhaodongensis NM2E7 oxidized 46% of As(3+) under aerobic condition. About 70 and 44% of the test strains produced arsenophores to chelate As(5+) and As(3+), respectively. The AREB may absorb arsenate via the same receptor of phosphate uptake or via other way in some case. The cytoplasmic arsenate reductase and alternative arsenate reduction pathways exist in these AREB. Therefore, these AREB could be candidates for the bioremediation process.201829476206
8064190.9508Removal of sulfamethoxazole and antibiotic resistance genes in paddy soil by earthworms (Pheretima guillelmi): Intestinal detoxification and stimulation of indigenous soil bacteria. Vermiremediation, which use earthworms to remove contaminants from soil, has been proven to be an alternative, low-cost technology. However, the effects of earthworm activity, especially the degraders in earthworm intestines, on the fate of sulfamethoxazole (SMX), and the effects of intestinal bacteria on degrading bacteria in soil are unclear. In this study, the effects of earthworms on the fate of SMX and related antibiotic resistance genes (ARGs) were investigated. Special attention was paid to the impact of earthworms on SMX degradation efficiency, degradation products, related ARGs, and degraders in both soil and earthworm intestines; the effect of intestinal bacteria on soil bacteria associated with SMX was also studied. Earthworms significantly accelerated SMX degradation by both intestinal detoxification and the stimulation of indigenous soil bacteria. Compared with the treatment without earthworms, the treatment with earthworms reduced SMX residues by 25.1 %, 49.2 %, 35.7 %, 34.2 %, and 35.7 % on the 10th, 20th, 30th, 60th, and 90th days, respectively. Compared with those in soil (treated with earthworms), the SMX residues in wormcasts were further reduced by 12.2-29.0 % from the 2nd to the 20th day, producing some unique anaerobic degradation products that were distinct from those in the soil. In earthworm intestines, SMX degradation was enhanced by bacteria of the genera Microvirga, Sphingomonas, Methylobacterium, Bacillus, and Tumebacillus. All of these bacteria (except Bacillus spp.) entered and colonised the soil with wormcasts, further promoting SMX degradation. Additionally, earthworms removed a significant number of ARGs by increasing the fraction of potential SMX degraders and inhibiting the potential hosts of ARGs and int1. This study demonstrated that earthworms could remediate SMX-contaminated soil by enhancing the removal of SMX and ARGs.202235985593