# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8161 | 0 | 0.9979 | Integrative strategies against multidrug-resistant bacteria: Synthesizing novel antimicrobial frontiers for global health. Concerningly, multidrug-resistant bacteria have emerged as a prime worldwide trouble, obstructing the treatment of infectious diseases and causing doubts about the therapeutic accidentalness of presently existing drugs. Novel antimicrobial interventions deserve development as conventional antibiotics are incapable of keeping pace with bacteria evolution. Various promising approaches to combat MDR infections are discussed in this review. Antimicrobial peptides are examined for their broad-spectrum efficacy and reduced ability to develop resistance, while phage therapy may be used under extreme situations when antibiotics fail. In addition, the possibility of CRISPR-Cas systems for specifically targeting and eradicating resistance genes from bacterial populations will be explored. Nanotechnology has opened up the route to improve the delivery system of the drug itself, increasing the efficacy and specificity of antimicrobial action while protecting its host. Discovering potential antimicrobial agents is an exciting prospect through developments in synthetic biology and the rediscovery of natural product-based medicines. Moreover, host-directed therapies are now becoming popular as an adjunct to the main strategies of therapeutics without specifically targeting pathogens. Although these developments appear impressive, questions about production scaling, regulatory approvals, safety, and efficacy for clinical employment still loom large. Thus, tackling the MDR burden requires a multi-pronged plan, integrating newer treatment modalities with existing antibiotic regimens, enforcing robust stewardship initiatives, and effecting policy changes at the global level. The international health community can gird itself against the growing menace of antibiotic resistance if collaboration between interdisciplinary bodies and sustained research endeavours is encouraged. In this study, we evaluate the synergistic potential of combining various medicines in addition to summarizing recent advancements. To rethink antimicrobial stewardship in the future, we provide a multi-tiered paradigm that combines pathogen-focused and host-directed strategies. | 2025 | 40914328 |
| 9189 | 1 | 0.9978 | CRISPR-Cas9 System: A Prospective Pathway toward Combatting Antibiotic Resistance. Antibiotic resistance is rising to dangerously high levels throughout the world. To cope with this problem, scientists are working on CRISPR-based research so that antibiotic-resistant bacteria can be killed and attacked almost as quickly as antibiotic-sensitive bacteria. Nuclease activity is found in Cas9, which can be programmed with a specific target sequence. This mechanism will only attack pathogens in the microbiota while preserving commensal bacteria. This article portrays the delivery methods used in the CRISPR-Cas system, which are both viral and non-viral, along with its implications and challenges, such as microbial dysbiosis, off-target effects, and failure to counteract intracellular infections. CRISPR-based systems have a lot of applications, such as correcting mutations, developing diagnostics for infectious diseases, improving crops productions, improving breeding techniques, etc. In the future, CRISPR-based systems will revolutionize the world by curing diseases, improving agriculture, and repairing genetic disorders. Though all the drawbacks of the technology, CRISPR carries great potential; thus, the modification and consideration of some aspects could result in a mind-blowing technique to attain all the applications listed and present a game-changing potential. | 2023 | 37370394 |
| 9182 | 2 | 0.9978 | Harnessing CRISPR/Cas9 in engineering biotic stress immunity in crops. There is significant potential for CRISPR/Cas9 to be used in developing crops that can adapt to biotic stresses such as fungal, bacterial, viral, and pest infections and weeds. The increasing global population and climate change present significant threats to food security by putting stress on plants, making them more vulnerable to diseases and productivity losses caused by pathogens, pests, and weeds. Traditional breeding methods are inadequate for the rapid development of new plant traits needed to counteract this decline in productivity. However, modern advances in genome-editing technologies, particularly CRISPR/Cas9, have transformed crop protection through precise and targeted modifications of plant genomes. This enables the creation of resilient crops with improved resistance to pathogens, pests, and weeds. This review examines various methods by which CRISPR/Cas9 can be utilized for crop protection. These methods include knocking out susceptibility genes, introducing resistance genes, and modulating defense genes. Potential applications of CRISPR/Cas9 in crop protection involve introducing genes that confer resistance to pathogens, disrupting insect genes responsible for survival and reproduction, and engineering crops that are resistant to herbicides. In conclusion, CRISPR/Cas9 holds great promise for advancing crop protection and ensuring food security in the face of environmental challenges and increasing population pressures. The most recent advancements in CRISPR technology for creating resistance to bacteria, fungi, viruses, and pests are covered here. We wrap up by outlining the most pressing issues and technological shortcomings, as well as unanswered questions for further study. | 2025 | 40663257 |
| 8173 | 3 | 0.9978 | Advancing Antibacterial Strategies: CRISPR-Phage-Mediated Gene Therapy Targeting Bacterial Resistance Genes. One of the most significant issues facing the world today is antibiotic resistance, which makes it increasingly difficult to treat bacterial infections. Regular antibiotics no longer work against many bacteria, affecting millions of people. A novel approach known as CRISPR-phage therapy may be beneficial. This technique introduces a technology called CRISPR into resistant bacteria using bacteriophages. The genes that cause bacteria to become resistant to antibiotics can be identified and cut using CRISPR. This enables antibiotics to function by inhibiting the bacteria. This approach is highly precise, unlike conventional antibiotics, so it doesn't damage our bodies' beneficial bacteria. Preliminary studies and limited clinical trials suggest that this technique can effectively target drug-resistant bacteria such as Klebsiella pneumoniae and Methicillinresistant Staphylococcus aureus (MRSA). However, challenges in phage engineering, host delivery, and the growing threat of bacterial CRISPR resistance demand urgent and strategic innovation. Our perspective underscores that without proactive resolution of these hurdles, the current hopefulness could disappear. Looking ahead, integrating next-generation Cas effectors, non-DSB editors, and resistance monitoring frameworks could transform CRISPR-phage systems from an experimental novelty into a clinical mainstay. This shift will require not only scientific ingenuity but also coordinated advances in regulatory, translational, and manufacturing efforts. | 2025 | 40990280 |
| 8256 | 4 | 0.9978 | Revolutionizing Tomato Cultivation: CRISPR/Cas9 Mediated Biotic Stress Resistance. Tomato (Solanum lycopersicon L.) is one of the most widely consumed and produced vegetable crops worldwide. It offers numerous health benefits due to its rich content of many therapeutic elements such as vitamins, carotenoids, and phenolic compounds. Biotic stressors such as bacteria, viruses, fungi, nematodes, and insects cause severe yield losses as well as decreasing fruit quality. Conventional breeding strategies have succeeded in developing resistant genotypes, but these approaches require significant time and effort. The advent of state-of-the-art genome editing technologies, particularly CRISPR/Cas9, provides a rapid and straightforward method for developing high-quality biotic stress-resistant tomato lines. The advantage of genome editing over other approaches is the ability to make precise, minute adjustments without leaving foreign DNA inside the transformed plant. The tomato genome has been precisely modified via CRISPR/Cas9 to induce resistance genes or knock out susceptibility genes, resulting in lines resistant to common bacterial, fungal, and viral diseases. This review provides the recent advances and application of CRISPR/Cas9 in developing tomato lines with resistance to biotic stress. | 2024 | 39204705 |
| 9186 | 5 | 0.9977 | From Gene Editing to Biofilm Busting: CRISPR-CAS9 Against Antibiotic Resistance-A Review. In recent decades, the development of novel antimicrobials has significantly slowed due to the emergence of antimicrobial resistance (AMR), intensifying the global struggle against infectious diseases. Microbial populations worldwide rapidly develop resistance due to the widespread use of antibiotics, primarily targeting drug-resistant germs. A prominent manifestation of this resistance is the formation of biofilms, where bacteria create protective layers using signaling pathways such as quorum sensing. In response to this challenge, the CRISPR-Cas9 method has emerged as a ground-breaking strategy to counter biofilms. Initially identified as the "adaptive immune system" of bacteria, CRISPR-Cas9 has evolved into a state-of-the-art genetic engineering tool. Its exceptional precision in altering specific genes across diverse microorganisms positions it as a promising alternative for addressing antibiotic resistance by selectively modifying genes in diverse microorganisms. This comprehensive review concentrates on the historical background, discovery, developmental stages, and distinct components of CRISPR Cas9 technology. Emphasizing its role as a widely used genome engineering tool, the review explores how CRISPR Cas9 can significantly contribute to the targeted disruption of genes responsible for biofilm formation, highlighting its pivotal role in reshaping strategies to combat antibiotic resistance and mitigate the challenges posed by biofilm-associated infectious diseases. | 2024 | 38702575 |
| 9191 | 6 | 0.9976 | Blunted blades: new CRISPR-derived technologies to dissect microbial multi-drug resistance and biofilm formation. The spread of multi-drug-resistant (MDR) pathogens has rapidly outpaced the development of effective treatments. Diverse resistance mechanisms further limit the effectiveness of our best treatments, including multi-drug regimens and last line-of-defense antimicrobials. Biofilm formation is a powerful component of microbial pathogenesis, providing a scaffold for efficient colonization and shielding against anti-microbials, which further complicates drug resistance studies. Early genetic knockout tools didn't allow the study of essential genes, but clustered regularly interspaced palindromic repeat inference (CRISPRi) technologies have overcome this challenge via genetic silencing. These tools rapidly evolved to meet new demands and exploit native CRISPR systems. Modern tools range from the creation of massive CRISPRi libraries to tunable modulation of gene expression with CRISPR activation (CRISPRa). This review discusses the rapid expansion of CRISPRi/a-based technologies, their use in investigating MDR and biofilm formation, and how this drives further development of a potent tool to comprehensively examine multi-drug resistance. | 2024 | 38511958 |
| 8267 | 7 | 0.9976 | Why put up with immunity when there is resistance: an excursion into the population and evolutionary dynamics of restriction-modification and CRISPR-Cas. Bacteria can readily generate mutations that prevent bacteriophage (phage) adsorption and thus make bacteria resistant to infections with these viruses. Nevertheless, the majority of bacteria carry complex innate and/or adaptive immune systems: restriction-modification (RM) and CRISPR-Cas, respectively. Both RM and CRISPR-Cas are commonly assumed to have evolved and be maintained to protect bacteria from succumbing to infections with lytic phage. Using mathematical models and computer simulations, we explore the conditions under which selection mediated by lytic phage will favour such complex innate and adaptive immune systems, as opposed to simple envelope resistance. The results of our analysis suggest that when populations of bacteria are confronted with lytic phage: (i) In the absence of immunity, resistance to even multiple bacteriophage species with independent receptors can evolve readily. (ii) RM immunity can benefit bacteria by preventing phage from invading established bacterial populations and particularly so when there are multiple bacteriophage species adsorbing to different receptors. (iii) Whether CRISPR-Cas immunity will prevail over envelope resistance depends critically on the number of steps in the coevolutionary arms race between the bacteria-acquiring spacers and the phage-generating CRISPR-escape mutants. We discuss the implications of these results in the context of the evolution and maintenance of RM and CRISPR-Cas and highlight fundamental questions that remain unanswered. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'. | 2019 | 30905282 |
| 9584 | 8 | 0.9976 | Using bacteria to express and display anti-parasite molecules in mosquitoes: current and future strategies. Vector-borne diseases impose enormous health and economical burdens throughout the world. Unfortunately, as insecticide and drug resistance spread, these burdens will increase unless new control measures are developed. Genetically modifying vectors to be incapable of transmitting parasites is one possible control strategy and much progress has been made towards this goal. Numerous effector molecules have been identified that interfere with parasite development in its insect vectors, and techniques for transforming the vectors with genes encoding these molecules have been established. While the ability to generate refractory vectors is close at hand, a mechanism for replacing a wild vector population with a refractory one remains elusive. This review examines the feasibility of using bacteria to deliver the anti-parasitic effector molecules to wild vector populations. The first half briefly examines paratransgenic approaches currently being tested in both the triatomine bug and tsetse fly. The second half explores the possibility of using midgut bacteria to control malaria transmission by Anopheles mosquitoes. | 2005 | 15894187 |
| 9393 | 9 | 0.9976 | Self-limiting paratransgenesis. Presently, the principal tools to combat malaria are restricted to killing the parasite in infected people and killing the mosquito vector to thwart transmission. While successful, these approaches are losing effectiveness in view of parasite resistance to drugs and mosquito resistance to insecticides. Clearly, new approaches to fight this deadly disease need to be developed. Recently, one such approach-engineering mosquito resident bacteria to secrete anti-parasite compounds-has proven in the laboratory to be highly effective. However, implementation of this strategy requires approval from regulators as it involves introduction of recombinant bacteria into the field. A frequent argument by regulators is that if something unexpectedly goes wrong after release, there must be a recall mechanism. This report addresses this concern. Previously we have shown that a Serratia bacterium isolated from a mosquito ovary is able to spread through mosquito populations and is amenable to be engineered to secrete anti-plasmodial compounds. We have introduced a plasmid into this bacterium that carries a fluorescent protein gene and show that when cultured in the laboratory, the plasmid is completely lost in about 130 bacterial generations. Importantly, when these bacteria were introduced into mosquitoes, the bacteria were transmitted from one generation to the next, but the plasmid was lost after three mosquito generations, rendering the bacteria non-recombinant (wild type). Furthermore, no evidence was obtained for horizontal transfer of the plasmid to other bacteria either in culture or in the mosquito. Prior to release, it is imperative to demonstrate that the genes that thwart parasite development in the mosquito are safe to the environment. This report describes a methodology to safely achieve this goal, utilizing transient expression from a plasmid that is gradually lost, returning the bacterium to wild type status. | 2020 | 32810151 |
| 9617 | 10 | 0.9976 | Multiplex CRISPRi System Enables the Study of Stage-Specific Biofilm Genetic Requirements in Enterococcus faecalis. Enterococcus faecalis is an opportunistic pathogen, which can cause multidrug-resistant life-threatening infections. Gaining a complete understanding of enterococcal pathogenesis is a crucial step in identifying a strategy to effectively treat enterococcal infections. However, bacterial pathogenesis is a complex process often involving a combination of genes and multilevel regulation. Compared to established knockout methodologies, CRISPR interference (CRISPRi) approaches enable the rapid and efficient silencing of genes to interrogate gene products and pathways involved in pathogenesis. As opposed to traditional gene inactivation approaches, CRISPRi can also be quickly repurposed for multiplexing or used to study essential genes. Here, we have developed a novel dual-vector nisin-inducible CRISPRi system in E. faecalis that can efficiently silence via both nontemplate and template strand targeting. Since the nisin-controlled gene expression system is functional in various Gram-positive bacteria, the developed CRISPRi tool can be extended to other genera. This system can be applied to study essential genes, genes involved in antimicrobial resistance, and genes involved in biofilm formation and persistence. The system is robust and can be scaled up for high-throughput screens or combinatorial targeting. This tool substantially enhances our ability to study enterococcal biology and pathogenesis, host-bacterium interactions, and interspecies communication.IMPORTANCEEnterococcus faecalis causes multidrug-resistant life-threatening infections and is often coisolated with other pathogenic bacteria from polymicrobial biofilm-associated infections. Genetic tools to dissect complex interactions in mixed microbial communities are largely limited to transposon mutagenesis and traditional time- and labor-intensive allelic-exchange methods. Built upon streptococcal dCas9, we developed an easily modifiable, inducible CRISPRi system for E. faecalis that can efficiently silence single and multiple genes. This system can silence genes involved in biofilm formation and antibiotic resistance and can be used to interrogate gene essentiality. Uniquely, this tool is optimized to study genes important for biofilm initiation, maturation, and maintenance and can be used to perturb preformed biofilms. This system will be valuable to rapidly and efficiently investigate a wide range of aspects of complex enterococcal biology. | 2020 | 33082254 |
| 9175 | 11 | 0.9976 | Fitness Trade-Offs Resulting from Bacteriophage Resistance Potentiate Synergistic Antibacterial Strategies. Bacteria that cause life-threatening infections in humans are becoming increasingly difficult to treat. In some instances, this is due to intrinsic and acquired antibiotic resistance, indicating that new therapeutic approaches are needed to combat bacterial pathogens. There is renewed interest in utilizing viruses of bacteria known as bacteriophages (phages) as potential antibacterial therapeutics. However, critics suggest that similar to antibiotics, the development of phage-resistant bacteria will halt clinical phage therapy. Although the emergence of phage-resistant bacteria is likely inevitable, there is a growing body of literature showing that phage selective pressure promotes mutations in bacteria that allow them to subvert phage infection, but with a cost to their fitness. Such fitness trade-offs include reduced virulence, resensitization to antibiotics, and colonization defects. Resistance to phage nucleic acid entry, primarily via cell surface modifications, compromises bacterial fitness during antibiotic and host immune system pressure. In this minireview, we explore the mechanisms behind phage resistance in bacterial pathogens and the physiological consequences of acquiring phage resistance phenotypes. With this knowledge, it may be possible to use phages to alter bacterial populations, making them more tractable to current therapeutic strategies. | 2020 | 32094257 |
| 9210 | 12 | 0.9976 | Plasmid maintenance systems suitable for GMO-based bacterial vaccines. Live carrier-based bacterial vaccines represent a vaccine strategy that offers exceptional flexibility. Commensal or attenuated strains of pathogenic bacteria can be used as live carriers to present foreign antigens from unrelated pathogens to the immune system, with the aim of eliciting protective immune responses. As for oral immunisation, such an approach obviates the usual loss of antigen integrity observed during gastrointestinal passage and allows the delivery of a sufficient antigen dose to the mucosal immune system. Antibiotic and antibiotic-resistance genes have traditionally been used for the maintenance of recombinant plasmid vectors in bacteria used for biotechnological purposes. However, their continued use may appear undesirable in the field of live carrier-based vaccine development. This review focuses on strategies to omit antibiotic resistance determinants in live bacterial vaccines and discusses several balanced lethal-plasmid stabilisation systems with respect to maintenance of plasmid inheritance and antigenicity of plasmid-encoded antigen in vivo. | 2005 | 15755571 |
| 9477 | 13 | 0.9976 | The microbiome-shaping roles of bacteriocins. The microbiomes on human body surfaces affect health in multiple ways. They include not only commensal or mutualistic bacteria but also potentially pathogenic bacteria, which can enter sterile tissues to cause invasive infection. Many commensal bacteria produce small antibacterial molecules termed bacteriocins that have the capacity to eliminate specific colonizing pathogens; as such, bacteriocins have attracted increased attention as potential microbiome-editing tools. Metagenome-based and activity-based screening approaches have strongly expanded our knowledge of the abundance and diversity of bacteriocin biosynthetic gene clusters and the properties of a continuously growing list of bacteriocin classes. The dynamic acquisition, diversification or loss of bacteriocin genes can shape the fitness of a bacterial strain that is in competition with bacteriocin-susceptible bacteria. However, a bacteriocin can only provide a competitive advantage if its fitness benefit exceeds the metabolic cost of production, if it spares crucial mutualistic partner strains and if major competitors cannot develop resistance. In contrast to most currently available antibiotics, many bacteriocins have only narrow activity ranges and could be attractive agents for precision therapy and prevention of infections. A common scientific strategy involving multiple disciplines is needed to uncover the immense potential of microbiome-shaping bacteriocins. | 2021 | 34075213 |
| 9179 | 14 | 0.9976 | A detailed landscape of CRISPR-Cas-mediated plant disease and pest management. Genome editing technology has rapidly evolved to knock-out genes, create targeted genetic variation, install precise insertion/deletion and single nucleotide changes, and perform large-scale alteration. The flexible and multipurpose editing technologies have started playing a substantial role in the field of plant disease management. CRISPR-Cas has reduced many limitations of earlier technologies and emerged as a versatile toolbox for genome manipulation. This review summarizes the phenomenal progress of the use of the CRISPR toolkit in the field of plant pathology. CRISPR-Cas toolbox aids in the basic studies on host-pathogen interaction, in identifying virulence genes in pathogens, deciphering resistance and susceptibility factors in host plants, and engineering host genome for developing resistance. We extensively reviewed the successful genome editing applications for host plant resistance against a wide range of biotic factors, including viruses, fungi, oomycetes, bacteria, nematodes, insect pests, and parasitic plants. Recent use of CRISPR-Cas gene drive to suppress the population of pathogens and pests has also been discussed. Furthermore, we highlight exciting new uses of the CRISPR-Cas system as diagnostic tools, which rapidly detect pathogenic microorganism. This comprehensive yet concise review discusses innumerable strategies to reduce the burden of crop protection. | 2022 | 35835393 |
| 9177 | 15 | 0.9976 | Multitarget Approaches against Multiresistant Superbugs. Despite efforts to develop new antibiotics, antibacterial resistance still develops too fast for drug discovery to keep pace. Often, resistance against a new drug develops even before it reaches the market. This continued resistance crisis has demonstrated that resistance to antibiotics with single protein targets develops too rapidly to be sustainable. Most successful long-established antibiotics target more than one molecule or possess targets, which are encoded by multiple genes. This realization has motivated a change in antibiotic development toward drug candidates with multiple targets. Some mechanisms of action presuppose multiple targets or at least multiple effects, such as targeting the cytoplasmic membrane or the carrier molecule bactoprenol phosphate and are therefore particularly promising. Moreover, combination therapy approaches are being developed to break antibiotic resistance or to sensitize bacteria to antibiotic action. In this Review, we provide an overview of antibacterial multitarget approaches and the mechanisms behind them. | 2020 | 32156116 |
| 9475 | 16 | 0.9976 | Rapidly evolving genes in pathogens: methods for detecting positive selection and examples among fungi, bacteria, viruses and protists. The ongoing coevolutionary struggle between hosts and pathogens, with hosts evolving to escape pathogen infection and pathogens evolving to escape host defences, can generate an 'arms race', i.e., the occurrence of recurrent selective sweeps that each favours a novel resistance or virulence allele that goes to fixation. Host-pathogen coevolution can alternatively lead to a 'trench warfare', i.e., balancing selection, maintaining certain alleles at loci involved in host-pathogen recognition over long time scales. Recently, technological and methodological progress has enabled detection of footprints of selection directly on genes, which can provide useful insights into the processes of coevolution. This knowledge can also have practical applications, for instance development of vaccines or drugs. Here we review the methods for detecting genes under positive selection using divergence data (i.e., the ratio of nonsynonymous to synonymous substitution rates, d(N)/d(S)). We also review methods for detecting selection using polymorphisms, such as methods based on F(ST) measures, frequency spectrum, linkage disequilibrium and haplotype structure. In the second part, we review examples where targets of selection have been identified in pathogens using these tests. Genes under positive selection in pathogens have mostly been sought among viruses, bacteria and protists, because of their paramount importance for human health. Another focus is on fungal pathogens owing to their agronomic importance. We finally discuss promising directions in pathogen studies, such as detecting selection in non-coding regions. | 2009 | 19442589 |
| 9184 | 17 | 0.9976 | Unlocking the potential of phages: Innovative approaches to harnessing bacteriophages as diagnostic tools for human diseases. Phages, viruses that infect bacteria, have been explored as promising tools for the detection of human disease. By leveraging the specificity of phages for their bacterial hosts, phage-based diagnostic tools can rapidly and accurately detect bacterial infections in clinical samples. In recent years, advances in genetic engineering and biotechnology have enabled the development of more sophisticated phage-based diagnostic tools, including those that express reporter genes or enzymes, or target specific virulence factors or antibiotic resistance genes. However, despite these advancements, there are still challenges and limitations to the use of phage-based diagnostic tools, including concerns over phage safety and efficacy. This review aims to provide a comprehensive overview of the current state of phage-based diagnostic tools, including their advantages, limitations, and potential for future development. By addressing these issues, we hope to contribute to the ongoing efforts to develop safe and effective phage-based diagnostic tools for the detection of human disease. | 2023 | 37770168 |
| 9190 | 18 | 0.9975 | Phage-based biocontrol strategies and their application in agriculture and aquaculture. Meeting global food demands for a growing human population with finite natural resources is a major challenge. Aquaculture and agriculture are critical to satisfy food requirements, yet suffer significant losses from bacterial diseases. Therefore, there is an urgent need to develop novel antimicrobial strategies, which is heightened by increasing antibiotic resistance. Bacteriophages (phages) are viruses that specifically infect bacteria, and phage-derived therapies are promising treatments in the fight against bacterial diseases. Here, we describe multiple ways that phages and phage-based technologies can be used as antimicrobials. Antimicrobial activity can be achieved through lysis of targeted bacteria by virulent phages or lytic enzymes. Alternatively, phages can be engineered for the delivery of lethal genes and other cargoes to kill bacteria and to manipulate the bacterial response to conventional antibiotics. We also briefly highlight research exploring phages as potential biocontrol agents with examples from agriculture and aquaculture. | 2018 | 30514766 |
| 8761 | 19 | 0.9975 | Infection processes of xylem-colonizing pathogenic bacteria: possible explanations for the scarcity of qualitative disease resistance genes against them in crops. Disease resistance against xylem-colonizing pathogenic bacteria in crops. Plant pathogenic bacteria cause destructive diseases in many commercially important crops. Among these bacteria, eight pathogens, Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, Erwinia amylovora, Pantoea stewartii subsp. stewartii, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. actinidiae, and Xylella fastidiosa, infect their host plants through different infection sites and paths and eventually colonize the xylem tissues of their host plants, resulting in wilting symptoms by blocking water flow or necrosis of xylem tissues. Noticeably, only a relatively small number of resistant cultivars in major crops against these vascular bacterial pathogens except X. oryzae pv. oryzae have been found or generated so far, although these pathogens threaten productivity of major crops. In this review, we summarize the lifestyles of major xylem-colonizing bacterial pathogens and then discuss the progress of current research on disease resistance controlled by qualitative disease resistance genes or quantitative trait loci against them. Finally, we propose infection processes of xylem-colonizing bacterial pathogens as one of possible reasons for why so few qualitative disease resistance genes against these pathogens have been developed or identified so far in crops. | 2015 | 25917599 |