ESPECIALLY - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
318800.9990Impact of COVID-19 pandemic on profiles of antibiotic-resistant genes and bacteria in hospital wastewater. The COVID-19 pandemic has severely affected healthcare worldwide and has led to the excessive use of disinfectants and antimicrobial agents. However, the impact of excessive disinfection measures and specific medication prescriptions on the development and dissemination of bacterial drug resistance during the pandemic remains unclear. This study investigated the influence of the pandemic on the composition of antibiotics, antibiotic resistance genes (ARGs), and pathogenic communities in hospital wastewater using ultra-performance liquid chromatography-tandem mass spectrometry and metagenome sequencing. The overall level of antibiotics decreased after the COVID-19 outbreak, whereas the abundance of various ARGs increased in hospital wastewater. After COVID-19 outbreak, bla(OXA), sul2, tetX, and qnrS had higher concentrations in winter than in summer. Seasonal factors and the COVID-19 pandemic have affected the microbial structure in wastewater, especially of Klebsiella, Escherichia, Aeromonas, and Acinetobacter. Further analysis revealed the co-existence of qnrS, bla(NDM), and bla(KPC) during the pandemic. Various ARGs significantly correlated with mobile genetic elements, implying their potential mobility. A network analysis revealed that many pathogenic bacteria (Klebsiella, Escherichia, and Vibrio) were correlated with ARGs, indicating the existence of multi-drug resistant pathogens. Although the calculated resistome risk score did not change significantly, our results suggest that the COVID-19 pandemic shifted the composition of residual antibiotics and ARGs in hospital wastewater and contributed to the dissemination of bacterial drug resistance.202337399936
658010.9990Transmission of antimicrobial resistance (AMR) during animal transport. The transmission of antimicrobial resistance (AMR) between food-producing animals (poultry, cattle and pigs) during short journeys (< 8 h) and long journeys (> 8 h) directed to other farms or to the slaughterhouse lairage (directly or with intermediate stops at assembly centres or control posts, mainly transported by road) was assessed. Among the identified risk factors contributing to the probability of transmission of antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), the ones considered more important are the resistance status (presence of ARB/ARGs) of the animals pre-transport, increased faecal shedding, hygiene of the areas and vehicles, exposure to other animals carrying and/or shedding ARB/ARGs (especially between animals of different AMR loads and/or ARB/ARG types), exposure to contaminated lairage areas and duration of transport. There are nevertheless no data whereby differences between journeys shorter or longer than 8 h can be assessed. Strategies that would reduce the probability of AMR transmission, for all animal categories include minimising the duration of transport, proper cleaning and disinfection, appropriate transport planning, organising the transport in relation to AMR criteria (transport logistics), improving animal health and welfare and/or biosecurity immediately prior to and during transport, ensuring the thermal comfort of the animals and animal segregation. Most of the aforementioned measures have similar validity if applied at lairage, assembly centres and control posts. Data gaps relating to the risk factors and the effectiveness of mitigation measures have been identified, with consequent research needs in both the short and longer term listed. Quantification of the impact of animal transportation compared to the contribution of other stages of the food-production chain, and the interplay of duration with all risk factors on the transmission of ARB/ARGs during transport and journey breaks, were identified as urgent research needs.202236304831
654920.9990A Review on the Prevalence and Treatment of Antibiotic Resistance Genes in Hospital Wastewater. Antibiotic resistance is a global environmental and health threat. Approximately 4.95 million deaths were associated with antibiotic resistance in 2019, including 1.27 million deaths that were directly attributable to bacterial antimicrobial resistance. Hospital wastewater is one of the key sources for the spread of clinically relevant antibiotic resistance genes (ARGs) into the environment. Understanding the current situation of ARGs in hospital wastewater is of great significance. Here, we review the prevalence of ARGs and antibiotic-resistant bacteria (ARB) in hospital wastewater and wastewater from other places and the treatment methods used. We further discuss the intersection between ARGs and COVID-19 during the pandemic. This review highlights the issues associated with the dissemination of critical ARGs from hospital wastewater into the environment. It is imperative to implement more effective processes for hospital wastewater treatment to eliminate ARGs, particularly during the current long COVID-19 period.202540278579
319830.9989Enhance antibiotic resistance and human health risks in aerosols during the COVID-19 pandemic. Aerosols are an important route for the transmission of antibiotic resistance genes (ARGs). Since the 2019 (COVID-19) pandemic, the large-scale use of disinfectants has effectively prevented the spread of environmental microorganisms, but studies regarding the antibiotic resistance of airborne bacteria remain limited. This study focused on four functional urban areas (commercial areas, educational areas, residential areas and wastewater treatment plant) to study the variations in ARG abundances, bacterial community structures and risks to human health during the COVID-19 pandemic in aerosol. The results indicated the abundance of ARGs during the COVID-19 period were up to approximately 13-fold greater than before the COVID-19 period. Large-scale disinfection resulted in a decrease in total bacterial abundance. However, chlorine-resistant bacteria tended to be survived. Among the four functional areas, the diversity and abundance of aerosol bacteria were highest in commercial aera. Antibiotic susceptibility assays suggested elevated resistance of isolated bacteria to several tested antibiotics due to disinfection exposure. The potential exposure risks of ARGs to human health were 2 times higher than before the COVID-19 pandemic, and respiratory intake was the main exposure route. The results highlighted the elevated antibiotic resistance of bacteria in aerosols that were exposed to disinfectants after the COVID-19 pandemic. This study provides theoretical guidance for the rational use of disinfectants and control of antimicrobial resistance.202336754321
671640.9989Wastewater surveillance of antibiotic-resistant bacteria for public health action: potential and challenges. Antibiotic resistance is an urgent public health threat. Actions to reduce this threat include requiring prescriptions for antibiotic use, antibiotic stewardship programs, educational programs targeting patients and healthcare providers, and limiting antibiotic use in agriculture, aquaculture, and animal husbandry. Wastewater surveillance might complement clinical surveillance by tracking time/space variation essential for detecting outbreaks and evaluating efficacy of evidence-based interventions, identifying high-risk populations for targeted monitoring, providing early warning of the emergence and spread of antibiotic-resistant bacteria (ARBs), and identifying novel antibiotic-resistant threats. Wastewater surveillance was an effective early warning system for SARS-CoV-2 spread and detection of the emergence of new viral strains. In this data-driven commentary, we explore whether monitoring wastewater for antibiotic-resistant genes (ARGs) and/or bacteria resistant to antibiotics might provide useful information for public health action. Using carbapenem resistance as an example, we highlight technical challenges associated with using wastewater to quantify temporal/spatial trends in ARBs and ARGs and compare with clinical information. While ARGs and ARBs are detectable in wastewater enabling early detection of novel ARGs, quantitation of ARBs and ARGs with current methods is too variable to reliably track space/time variation.202539475072
654750.9989An overview on the prevalence and potential impact of antimicrobials and antimicrobial resistance in the aquatic environment of India. India at present is one of the leading countries in antimicrobial drug production and use, leading to increasing antimicrobial resistance (AMR) and public health problems. Attention has mainly been focused on the human and food animals' contribution to AMR neglecting the potential contribution of the perceptibly degraded aquatic environment in India. The paper reviews the available published literature in India on the prevalence of antimicrobial residues and their dissemination pathways in wastewater of pharmaceutical industries, sewage treatment plants, hospitals, riverine, community pond water, and groundwater. The prevalence of antimicrobial residue concentration, pathogenic and non-pathogenic bacteria antimicrobial resistant bacteria (ARB), their drug resistance levels, and their specific antimicrobial resistant genes (ARGs) occurring in various water matrices of India have been comprehensively depicted from existing literature. The concentration of some widely used antimicrobials recorded from the sewage treatment plants and hospital wastewater and rivers in India has been compared with other countries. The ecotoxicological risk posed by these antimicrobials in the various water matrices in India indicated high hazard quotient (HQ) values for pharmaceutical effluents, hospital effluents, and river water. The degraded aquatic environment exhibited the selection of a wide array of co-existent resistant genes for antibiotics and metals. The review revealed improper use of antibiotics and inadequate wastewater treatment as major drivers of AMR contaminating water bodies in India and suggestion for containing the challenges posed by AMR in India has been proposed.202337530878
655860.9989Does Irrigation with Treated and Untreated Wastewater Increase Antimicrobial Resistance in Soil and Water: A Systematic Review. Population growth and water scarcity necessitate alternative agriculture practices, such as reusing wastewater for irrigation. Domestic wastewater has been used for irrigation for centuries in many historically low-income and arid countries and is becoming more widely used by high-income countries to augment water resources in an increasingly dry climate. Wastewater treatment processes are not fully effective in removing all contaminants, such as antimicrobial resistant bacteria (ARB) and antimicrobial resistance genes (ARGs). Literature reviews on the impact of wastewater irrigation on antimicrobial resistance (AMR) in the environment have been inconclusive and mostly focused on treated wastewater. We conducted the first systematic review to assess the impact of irrigation with both treated or untreated domestic wastewater on ARB and ARGs in soil and adjacent water bodies. We screened titles/abstracts of 3002 articles, out of which 41 were screened in full text and 26 were included in this review. Of these, thirteen investigated irrigation with untreated wastewater, and nine found a positive association with ARB/ARGs in soil. Out of thirteen studies focused on treated wastewater, six found a positive association with ARB/ARGs while six found mixed/negative associations. Our findings demonstrate that irrigation with untreated wastewater increases AMR in soil and call for precautionary action by field workers, their families, and consumers when untreated wastewater is used to irrigate crops. The effect of irrigation with treated wastewater was more variable among the studies included in our review, highlighting the need to better understand to what extent AMR is disseminated through this practice. Future research should assess factors that modify the effect of wastewater irrigation on AMR in soil, such as the degree and type of wastewater treatment, and the duration and intensity of irrigation, to inform guidelines on the reuse of wastewater for irrigation.202134769568
654370.9989A new modelling framework for assessing the relative burden of antimicrobial resistance in aquatic environments. The infections caused by antibiotic resistant bacteria (ARB) can lead to higher medical costs, prolonged hospital stays, and increased mortality compared to bacteria that are susceptible to antibiotics. Challenges exist in quantifying the potential risk/burden associated with antimicrobial resistance (AMR) as there is a lack of dose-response models available for pathogens which are resistant to antibiotics, in addition to the fact that very little is known regarding the health risks posed by antibiotic resistant genes (ARG). In this paper, we proposed a new modelling framework to evaluate the relative burden of AMR in natural aquatic environments. With this framework, an AMR burden score for each sample was calculated based on burden coefficients assigned for each ARB and ARG, as well as weighted burdens for the separate ARBs and ARGs components. The method developed in this study was applied to assess the relative burden of AMR in local aquatic environments with different land uses at different seasons. The collected filed data were used to verify the applicability of the proposed relative burden assessment method. Through the established method, the spatial and temporal hotspots of AMR were identified, which could provide useful information to agencies for better control and management of AMR emergence in natural aquatic environments.202234763923
656680.9989Antimicrobial resistance bacteria and genes detected in hospital sewage provide valuable information in predicting clinical antimicrobial resistance. Extensive use of antibiotics is significantly associated with development of antibiotic-resistant (AR) bacteria. However, their causal relationships have not been adequately investigated, especially in human population and hospitals. Our aims were to understand clinical AR through revealing co-occurrence patterns between antibiotic-resistant bacteria and genes (ARB and ARGs), and their association with antibiotic use, and to consider impact of ARB and ARGs on environmental and human health. Antibiotic usage was calculated based on the actual consumption in our target hospital. ARB was identified by culture. In isolates collected from hospital sewage, bacterial-specific DNA sequences and ARGs were determined using metagenomics. Our data revealed that the use of culture-based single-indicator-strain approaches only captured ARB in 16.17% of the infectious samples. On the other hand, 1573 bacterial species and 885 types of ARGs were detected in the sewage. Furthermore, hospital use of antibiotics influenced the resistance profiles, but the strength varied among bacteria. From our metagenomics analyses, ARGs for aminoglycosides were the most common, followed by sulfonamide, tetracycline, phenicol, macrolides, and quinolones, comprising 82.6% of all ARGs. Association analyses indicated that 519 pairs of ARGs were significantly correlated with ARB species (r > 0.8). The co-occurrence patterns of bacteria-ARGs mirrored the AR in the clinic. In conclusion, our systematic investigation further emphasized that antibiotic usage in hospital significantly influenced the abundance and types of ARB and ARGs in dose- and time-dependent manners which, in turn, mirrored clinical AR. In addition, our data provide novel information on development of certain ARB with multiple antibiotic resistance. These ARB and ARGs from sewage can also be disseminated into the environment and communities to create health problems. Therefore, it would be helpful to use such data to develop improved predictive risk model of AR, to enhance effective use of antibiotics, and to reduce environmental pollution.202134247085
318390.9989The microbiome, resistome, and their co-evolution in sewage at a hospital for infectious diseases in Shanghai, China. The emergence of antibiotic-resistant bacteria (ARB) caused by the overuse of antibiotics severely threatens human health. Hospital sewage may be a key transmission hub for ARB. However, the complex link between the microbiome and resistomeresistance in hospital sewage remains unclear. In this study, metagenomic assembly and binning methods were used to investigate the microbial community, resistome, and association of antibiotic resistance genes (ARGs) with ARB in sewage from 10 representative sites (outpatient building, surgery building, internal medicine buildings [IMB1-4], staff dormitory, laboratory animal building, tuberculosis building [TBB], and hospital wastewater treatment plant) of a hospital in Shanghai from June 2021 to February 2022. A total of 252 ARG subtypes, belonging to 17 antibiotic classes, were identified. The relative abundance of KPC-2 was higher at IMBs and TBB than at other sites. Of the ARG-carrying contigs, 47.3%-62.6% were associated with mobile genetic elements, and the proportion of plasmid-associated ARGs was significantly higher than that of chromosome-associated ARGs. Although a similar microbiome composition was shared, certain bacteria were enriched at different sites. Potential pathogens Enterococcus B faecium and Klebsiella pneumoniae were primarily enriched in IMB2 and IMB4, respectively. The same ARGs were identified in diverse bacterial hosts (especially pathogenic bacteria), and accordingly, the latter possessed multiple ARGs. Furthermore, gene flow was frequently observed in the sewage of different buildings. The results provide crucial information on the characterization profiles of resistomes in hospital sewage in Shanghai.IMPORTANCEEnvironmental antibiotic resistance genes (ARGs) play a critical role in the emergence and spread of antimicrobial resistance, which poses a global health threat. Wastewater from healthcare facilities serves as a significant reservoir for ARGs. Here, we characterized the microbial community along with the resistome (comprising all antibiotic resistance genes) in wastewater from a specialized hospital for infectious diseases in Shanghai. Potential pathogenic bacteria (e.g., Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Enterococcus B faecium) were frequently detected in hospital wastewater and carried multiple ARGs. A complex link between microbiome and resistome was observed in the wastewater of this hospital. The monitoring of ARGs and antibiotic-resistant bacteria (ARB) in hospital wastewater might be of great significance for preventing the spread of ARB.202438132570
6604100.9989The spread of antimicrobial resistance in the aquatic environment from faecal pollution: a scoping review of a multifaceted issue. Antimicrobial resistance (AMR) is a major global health concern accelerated by the misuse and mismanagement of antibiotics in clinical and veterinary settings, leading to longer treatment times, increased costs and greater mortality rates. The environment can play a major role as a source and disseminator of AMR, with faecal pollution, from both anthropogenic and non-anthropogenic sources making a significant contribution. The review aimed to identify how faecal pollution contributes to AMR in surface water, focusing on current methods of source tracking faecal pollution. The databases used were Medline Ovid® and Scopus. From the search, 744 papers from January 2020 to November 2023 were identified, and after the screening, 33 papers were selected that reported on AMR, aquatic environments and faecal pollution and were published in English. The studies were from six different continents, most were from Europe and Asia indicating faecal pollution is influenced by spatiotemporal differences such as population and sanitation infrastructure. Multiple different methodologies were used with a lack of standardised methods making comparability challenging. All studies identified AMR strains of faecal indicator bacteria showing resistance to a wide variety of antibiotics, particularly beta-lactams and tetracyclines. Few studies investigated mobile gene elements with class 1 integrons being the most frequently studied. Wastewater treatment plants were significant contributors, releasing large amounts of AMR bacteria into the environment. Environmental factors such as seasonal differences, temperature, rainfall and UV exposure, along with local antibiotic usage influenced the local resistome. Animals, both wild and domestic, introduced antimicrobial resistance genes and potential pathogens into the aquatic environment. Overall, faecal pollution is a complicated issue with multiple factors contributing to and facilitating the spread of AMR. Standardisation of methods and surveillance, robust wastewater management and further research into AMR dissemination are needed to address the human health, animal health and environmental concerns.202540131552
6548110.9988Review of Antimicrobial Resistance in Wastewater in Japan: Current Challenges and Future Perspectives. Antimicrobial resistance (AMR) circulates through humans, animals, and the environments, requiring a One Health approach. Recently, urban sewage has increasingly been suggested as a hotspot for AMR even in high-income countries (HICs), where the water sanitation and hygiene infrastructure are well-developed. To understand the current status of AMR in wastewater in a HIC, we reviewed the epidemiological studies on AMR in the sewage environment in Japan from the published literature. Our review showed that a wide variety of clinically important antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), and antimicrobial residues are present in human wastewater in Japan. Their concentrations are lower than in low- and middle-income countries (LMICs) and are further reduced by sewage treatment plants (STPs) before discharge. Nevertheless, the remaining ARB and ARGs could be an important source of AMR contamination in river water. Furthermore, hospital effluence may be an important reservoir of clinically important ARB. The high concentration of antimicrobial agents commonly prescribed in Japan may contribute to the selection and dissemination of AMR within wastewater. Our review shows the importance of both monitoring for AMR and antimicrobials in human wastewater and efforts to reduce their contamination load in wastewater.202235884103
6594120.9988An omics-based framework for assessing the health risk of antimicrobial resistance genes. Antibiotic resistance genes (ARGs) are widespread among bacteria. However, not all ARGs pose serious threats to public health, highlighting the importance of identifying those that are high-risk. Here, we developed an 'omics-based' framework to evaluate ARG risk considering human-associated-enrichment, gene mobility, and host pathogenicity. Our framework classifies human-associated, mobile ARGs (3.6% of all ARGs) as the highest risk, which we further differentiate as 'current threats' (Rank I; 3%) - already present among pathogens - and 'future threats' (Rank II; 0.6%) - novel resistance emerging from non-pathogens. Our framework identified 73 'current threat' ARG families. Of these, 35 were among the 37 high-risk ARGs proposed by the World Health Organization and other literature; the remaining 38 were significantly enriched in hospital plasmids. By evaluating all pathogen genomes released since framework construction, we confirmed that ARGs that recently transferred into pathogens were significantly enriched in Rank II ('future threats'). Lastly, we applied the framework to gut microbiome genomes from fecal microbiota transplantation donors. We found that although ARGs were widespread (73% of genomes), only 8.9% of genomes contained high-risk ARGs. Our framework provides an easy-to-implement approach to identify current and future antimicrobial resistance threats, with potential clinical applications including reducing risk of microbiome-based interventions.202134362925
6717130.9988Updated research agenda for water, sanitation and antimicrobial resistance. The emergence and spread of antimicrobial resistance (AMR), including clinically relevant antimicrobial-resistant bacteria, genetic resistance elements, and antibiotic residues, presents a significant threat to human health. Reducing the incidence of infection by improving water, sanitation, and hygiene (WASH) is one of five objectives in the World Health Organization's (WHO) Global Action Plan on AMR. In September 2019, WHO and the Health-Related Water Microbiology specialist group (HRWM-SG) of the International Water Association (IWA) organized its third workshop on AMR, focusing on the following three main issues: environmental pathways of AMR transmission, environmental surveillance, and removal from human waste. The workshop concluded that despite an increase in scientific evidence that the environment may play a significant role, especially in low-resource settings, the exact relative role of the environment is still unclear. Given many antibiotic-resistant bacteria (ARB) can be part of the normal gut flora, it can be assumed that for environmental transmission, the burden of fecal-oral transmission of AMR in a geographical area follows that of WASH-related infections. There are some uncertainties as to the potential for the propagation of particular resistance genes within wastewater treatment plants (WWTPs), but there is no doubt that the reduction in viable microbes (with or without resistance genes) available for transmission via the environment is one of the goals of human waste management. Although progress has been made in the past years with respect to quantifying environmental AMR transmission potential, still more data on the spread of environmental AMR within human communities is needed. Even though evidence on AMR in WWTPs has increased, the reduction in the emergence and spread of AMR by basic sanitation methods is yet unresolved. In order to contribute to the generation of harmonized One Health surveillance data, WHO has initiated an integrated One Health surveillance strategy that includes the environment. The main challenge lies in rolling it out globally including to the poorest regions.202033328358
6573140.9988The bacterial biofilm resistome in drinking water distribution systems: A systematic review. Antibiotic resistance in drinking water systems poses human health risks. Earlier studies, including reviews on antibiotic resistance in drinking water systems are limited to the occurrence, behaviour and fate in bulk raw water and drinking water treatment systems. By comparison, reviews on the bacterial biofilm resistome in drinking water distribution systems are still limited. Therefore, the present systematic review investigates the occurrence, behaviour and fate and, detection methods of bacterial biofilm resistome in the drinking water distribution systems. A total of 12 original articles drawn from 10 countries were retrieved and analyzed. Antibiotic resistant bacteria and antibiotic resistance genes detected in biofilms include those for sulfonamides, tetracycline, and beta-lactamase. The genera detected in biofilms include Staphylococcus, Enterococcus, Pseudomonas, Ralstonia, Mycobacteria, as well as Enterobacteriaceae family and other gram-negative bacteria. The presence of Enterococcus faecium, Staphylococcusaureus, Klebsiella pneumoniae, Acinetobacterbaumannii, Pseudomonas aeruginosa, and Enterobacter species (ESKAPE bacteria) among the detected bacteria points to potential human exposure and health risks especially for susceptible individuals via the consumption of drinking water. Besides, the effects of water quality parameter and residual chlorine, the physico-chemical factors controlling the emergence, persistence and fate of the biofilm resistome are still poorly understood. Culture-based methods, and molecular methods, and their advantages and limitations are discussed. The limited data on the bacterial biofilm resistome in drinking water distribution system points to the need for further research. To this end, future research directions are discussed including understanding the formation, behaviour, and fate of the resistome and the controlling factors.202337059195
6706150.9988Antimicrobial Resistance Development Pathways in Surface Waters and Public Health Implications. Human health is threatened by antibiotic-resistant bacteria and their related infections, which cause thousands of human deaths every year worldwide. Surface waters are vulnerable to human activities and natural processes that facilitate the emergence and spread of antibiotic-resistant bacteria in the environment. This study evaluated the pathways and drivers of antimicrobial resistance (AR) in surface waters. We analyzed antibiotic resistance healthcare-associated infection (HAI) data reported to the CDC's National Healthcare Safety Network to determine the number of antimicrobial-resistant pathogens and their isolates detected in healthcare facilities. Ten pathogens and their isolates associated with HAIs tested resistant to the selected antibiotics, indicating the role of healthcare facilities in antimicrobial resistance in the environment. The analyzed data and literature research revealed that healthcare facilities, wastewater, agricultural settings, food, and wildlife populations serve as the major vehicles for AR in surface waters. Antibiotic residues, heavy metals, natural processes, and climate change were identified as the drivers of antimicrobial resistance in the aquatic environment. Food and animal handlers have a higher risk of exposure to resistant pathogens through ingestion and direct contact compared with the general population. The AR threat to public health may grow as pathogens in aquatic systems adjust to antibiotic residues, contaminants, and climate change effects. The unnecessary use of antibiotics increases the risk of AR, and the public should be encouraged to practice antibiotic stewardship to decrease the risk.202235740227
7459160.9988Field-realistic dose of cefotaxime enhances potential mobility of β-lactam resistance genes in the gut microbiota of zebrafish (Danio rerio). With large amounts of cephalosporin end up in natural ecosystems, water has been acknowledged as the large reservoir of β-lactam resistance over the past decades. However, there is still insufficient knowledge available on the function of the living organisms to the transmission of antibiotic resistance. For this reason, in this study, using adult zebrafish (Danio rerio) as animal model, exposing them to environmentally relevant dose of cefotaxime for 150 days, we asked whether cefotaxime contamination accelerated β-lactam resistance in gut microbiota as well as its potential transmission. Results showed that some of β-lactam resistance genes (βRGs) were intrinsic embedded in intestinal microbiome of zebrafish even without antibiotic stressor. Across cefotaxime treatment, the abundance of most βRGs in fish gut microbiome decreased apparently in the short term firstly, and then increased with the prolonged exposure, forming distinctly divergent βRG profiles with antibiotic-untreated zebrafish. Meanwhile, with the rising concentration of cefotaxime, the range of βRGs' host-taxa expanded and the co-occurrence relationships of mobile genetics elements (MGEs) with βRGs intensified, indicating the enhancement of βRGs' mobility in gut microbiome when the fish suffered from cefotaxime contamination. Furthermore, the path of partial least squares path modeling (PLS-PM) gave an integral assessment on the specific causality of cefotaxime treatment to βRG profiles, showing that cefotaxime-mediated βRGs variation was most ascribed to the alteration of MGEs under cefotaxime stress, followed by bacterial community, functioning both direct influence as βRG-hosts and indirect effects via affecting MGEs. Finally, pathogenic bacteria Aeromonas was identified as the critical host for multiple βRGs in fish guts, and its β-lactam resistance increased over the duration time of cefotaxime exposure, suggesting the potential spreading risks for the antibiotic-resistant pathogens from environmental ecosystems to clinic. Overall, our finding emphasized cefotaxime contamination in aquatic surroundings could enhance the β-lactam resistance and its transmission mobility in fish bodies.202336857871
6713170.9988Human Colonization with Antibiotic-Resistant Bacteria from Nonoccupational Exposure to Domesticated Animals in Low- and Middle-Income Countries: A Critical Review. Data on community-acquired antibiotic-resistant bacterial infections are particularly sparse in low- and middle-income countries (LMICs). Limited surveillance and oversight of antibiotic use in food-producing animals, inadequate access to safe drinking water, and insufficient sanitation and hygiene infrastructure in LMICs could exacerbate the risk of zoonotic antibiotic resistance transmission. This critical review compiles evidence of zoonotic exchange of antibiotic-resistant bacteria (ARB) or antibiotic resistance genes (ARGs) within households and backyard farms in LMICs, as well as assesses transmission mechanisms, risk factors, and environmental transmission pathways. Overall, substantial evidence exists for exchange of antibiotic resistance between domesticated animals and in-contact humans. Whole bacteria transmission and horizontal gene transfer between humans and animals were demonstrated within and between households and backyard farms. Further, we identified water, soil, and animal food products as environmental transmission pathways for exchange of ARB and ARGs between animals and humans, although directionality of transmission is poorly understood. Herein we propose study designs, methods, and topical considerations for priority incorporation into future One Health research to inform effective interventions and policies to disrupt zoonotic antibiotic resistance exchange in low-income communities.202235947446
7110180.9988The "best practices for farming" successfully contributed to decrease the antibiotic resistance gene abundances within dairy farms. INTRODUCTION: Farms are significant hotspots for the dissemination of antibiotic-resistant bacteria and genes (ARGs) into the environment and directly to humans. The prevalence of ARGs on farms underscores the need for effective strategies to reduce their spread. This study aimed to evaluate the impact of a guideline on "best practices for farming" aimed at reducing the dissemination of antibiotic resistance. METHODS: A guideline focused on prudent antibiotic use, selective therapy, and hygienic and immune-prophylactic practices was developed and provided to the owners of 10 selected dairy farms and their veterinarians. Fecal samples were collected from lactating cows, dry cows, and calves both before and after the implementation of the guideline. ARGs (bla (TEM), ermB, sul2, and tetA) were initially screened by end-point PCR, followed by quantification using digital droplet PCR. ARG abundance was expressed in relative terms by dividing the copy number of ARGs by the copy number of the 16S rRNA gene. RESULTS: The ARG abundances were higher in lactating cows compared to other categories. Despite similar levels of antibiotic administration (based on veterinary prescription data from the sampled farms) in both sampling campaigns, the total abundance of selected ARGs, particularly bla (TEM) and tetA, significantly decreased after the adoption of the farming guidelines. DISCUSSION: This study highlights the positive impact of prudent antibiotic use and the implementation of farming best practices in reducing the abundance of ARGs. The lactating cow category emerged as a crucial point of intervention for reducing the spread of antibiotic resistance. These findings contribute to ongoing efforts to address antibiotic resistance in farm environments and strengthen the evidence supporting the adoption of good farming practices.202439840338
7454190.9988Invited review: Fate of antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes in US dairy manure management systems. United States dairy operations use antibiotics (primarily β-lactams and tetracyclines) to manage bacterial diseases in dairy cattle. Antibiotic residues, antibiotic-resistant bacteria (ARB), and antibiotic resistance genes (ARG) can be found in dairy manure and may contribute to the spread of antibiotic resistance (AR). Although β-lactam residues are rarely detected in dairy manure, tetracycline residues are common and perhaps persistent. Generally, <15% of bacterial pathogen dairy manure isolates are ARB, although resistance to some antibiotics (e.g., tetracycline) can be higher. Based on available data, the prevalence of medically important ARB on dairy operations is generally static or may be declining for antibiotic-resistant Staphylococcus spp. Over 60 ARG can be found in dairy manure (including β-lactam and tetracycline resistance genes), although correlations with antibiotic usage, residues, and ARB have been inconsistent, possibly because of sampling and analytical limitations. Manure treatment systems have not been specifically designed to mitigate AR, though certain treatments have some capacity to do so. Generally, well-managed aerobic compost treatments reaching higher peak temperatures (>60°C) are more effective at mitigating antibiotic residues than static stockpiles, although this depends on the antibiotic residue and their interactions. Similarly, thermophilic anaerobic digesters operating under steady-state conditions may be more effective at mitigating antibiotic residues than mesophilic or irregularly operated digesters or anaerobic lagoons. The number of ARB may decline during composting and digestion or be enriched as the bacterial communities in these systems shift, affecting relative ARG abundance or acquire ARG during treatment. Antibiotic resistance genes often persist through these systems, although optimal management and higher operating temperature may facilitate their mitigation. Less is known about other manure treatments, although separation technologies may be unique in their ability to partition antibiotic residues based on sorption and solubility properties. Needed areas of study include determining natural levels of AR in dairy systems, standardizing and optimizing analytical techniques, and more studies of operating on-farm systems, so that treatment system performance and actual human health risks associated with levels of antibiotic residues, ARB, and ARG found in dairy manure can be accurately assessed.202031837779