# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8158 | 0 | 0.9892 | Nanobioconjugates: Weapons against Antibacterial Resistance. The increase in drug resistance in pathogenic bacteria is emerging as a global threat as we swiftly edge toward the postantibiotic era. Nanobioconjugates have gained tremendous attention to treat multidrug-resistant (MDR) bacteria and biofilms due to their tunable physicochemical properties, drug targeting ability, enhanced uptake, and alternate mechanisms of drug action. In this review, we highlight the recent advances made in the use of nanobioconjugates to combat antibacterial resistance and provide crucial insights for designing nanomaterials that can serve as antibacterial agents for nanotherapeutics, nanocargos for targeted antibiotic delivery, or both. Also discussed are different strategies for treating robust biofilms formed by bacteria. | 2020 | 35019602 |
| 8171 | 1 | 0.9880 | Advancements in CRISPR-Cas-based strategies for combating antimicrobial resistance. Multidrug resistance (MDR) in bacteria presents a significant global health threat, driven by the widespread dissemination of antibiotic-resistant genes (ARGs). The CRISPR-Cas system, known for its precision and adaptability, holds promise as a tool to combat antimicrobial resistance (AMR). Although previous studies have explored the use of CRISPR-Cas to target bacterial genomes or plasmids harboring resistance genes, the application of CRISPR-Cas-based antimicrobial therapies is still in its early stages. Challenges such as low efficiency and difficulties in delivering CRISPR to bacterial cells remain. This review provides an overview of the CRISPR-Cas system, highlights recent advancements in CRISPR-Cas-based antimicrobials and delivery strategies for combating AMR. The review also discusses potential challenges for the future development of CRISPR-Cas-based antimicrobials. Addressing these challenges would enable CRISPR therapies to become a practical solution for treating AMR infections in the future. | 2025 | 40440869 |
| 9808 | 2 | 0.9880 | Understanding Recent Developments in Colistin Resistance: Mechanisms, Clinical Implications, and Future Perspectives. Colistin resistance, driven by chromosomal mutations and the spread of plasmid-mediated MCR genes, has emerged as a critical challenge in combating multidrug-resistant Gram-negative bacteria. This resistance compromises the efficacy of colistin, leading to higher treatment failure rates, prolonged hospitalizations, and increased mortality. Recent studies have highlighted key mechanisms, including lipid A modifications, that enable bacteria to evade colistin's effects. The global spread of MCR genes exacerbates the issue, underlining the need for improved diagnostics and rapid detection of resistant strains to prevent adverse patient outcomes. To combat this growing threat, a multifaceted approach is essential, involving enhanced antimicrobial stewardship, stricter infection control measures, and continued research into alternative therapies and diagnostic methods. Collaborative efforts from researchers, healthcare providers, policymakers, and the pharmaceutical industry are crucial to preserving colistin's effectiveness and mitigating the broader impact on public health. | 2025 | 41148650 |
| 8161 | 3 | 0.9879 | Integrative strategies against multidrug-resistant bacteria: Synthesizing novel antimicrobial frontiers for global health. Concerningly, multidrug-resistant bacteria have emerged as a prime worldwide trouble, obstructing the treatment of infectious diseases and causing doubts about the therapeutic accidentalness of presently existing drugs. Novel antimicrobial interventions deserve development as conventional antibiotics are incapable of keeping pace with bacteria evolution. Various promising approaches to combat MDR infections are discussed in this review. Antimicrobial peptides are examined for their broad-spectrum efficacy and reduced ability to develop resistance, while phage therapy may be used under extreme situations when antibiotics fail. In addition, the possibility of CRISPR-Cas systems for specifically targeting and eradicating resistance genes from bacterial populations will be explored. Nanotechnology has opened up the route to improve the delivery system of the drug itself, increasing the efficacy and specificity of antimicrobial action while protecting its host. Discovering potential antimicrobial agents is an exciting prospect through developments in synthetic biology and the rediscovery of natural product-based medicines. Moreover, host-directed therapies are now becoming popular as an adjunct to the main strategies of therapeutics without specifically targeting pathogens. Although these developments appear impressive, questions about production scaling, regulatory approvals, safety, and efficacy for clinical employment still loom large. Thus, tackling the MDR burden requires a multi-pronged plan, integrating newer treatment modalities with existing antibiotic regimens, enforcing robust stewardship initiatives, and effecting policy changes at the global level. The international health community can gird itself against the growing menace of antibiotic resistance if collaboration between interdisciplinary bodies and sustained research endeavours is encouraged. In this study, we evaluate the synergistic potential of combining various medicines in addition to summarizing recent advancements. To rethink antimicrobial stewardship in the future, we provide a multi-tiered paradigm that combines pathogen-focused and host-directed strategies. | 2025 | 40914328 |
| 8176 | 4 | 0.9877 | Overcoming Multidrug Resistance in Bacteria Through Antibiotics Delivery in Surface-Engineered Nano-Cargos: Recent Developments for Future Nano-Antibiotics. In the recent few decades, the increase in multidrug-resistant (MDR) bacteria has reached an alarming rate and caused serious health problems. The incidence of infections due to MDR bacteria has been accompanied by morbidity and mortality; therefore, tackling bacterial resistance has become an urgent and unmet challenge to be properly addressed. The field of nanomedicine has the potential to design and develop efficient antimicrobials for MDR bacteria using its innovative and alternative approaches. The uniquely constructed nano-sized antimicrobials have a predominance over traditional antibiotics because their small size helps them in better interaction with bacterial cells. Moreover, surface engineering of nanocarriers offers significant advantages of targeting and modulating various resistance mechanisms, thus owe superior qualities for overcoming bacterial resistance. This review covers different mechanisms of antibiotic resistance, application of nanocarrier systems in drug delivery, functionalization of nanocarriers, application of functionalized nanocarriers for overcoming bacterial resistance, possible limitations of nanocarrier-based approach for antibacterial delivery, and future of surface-functionalized antimicrobial delivery systems. | 2021 | 34307323 |
| 9191 | 5 | 0.9877 | Blunted blades: new CRISPR-derived technologies to dissect microbial multi-drug resistance and biofilm formation. The spread of multi-drug-resistant (MDR) pathogens has rapidly outpaced the development of effective treatments. Diverse resistance mechanisms further limit the effectiveness of our best treatments, including multi-drug regimens and last line-of-defense antimicrobials. Biofilm formation is a powerful component of microbial pathogenesis, providing a scaffold for efficient colonization and shielding against anti-microbials, which further complicates drug resistance studies. Early genetic knockout tools didn't allow the study of essential genes, but clustered regularly interspaced palindromic repeat inference (CRISPRi) technologies have overcome this challenge via genetic silencing. These tools rapidly evolved to meet new demands and exploit native CRISPR systems. Modern tools range from the creation of massive CRISPRi libraries to tunable modulation of gene expression with CRISPR activation (CRISPRa). This review discusses the rapid expansion of CRISPRi/a-based technologies, their use in investigating MDR and biofilm formation, and how this drives further development of a potent tool to comprehensively examine multi-drug resistance. | 2024 | 38511958 |
| 8178 | 6 | 0.9876 | Unraveling resistance mechanisms in combination therapy: A comprehensive review of recent advances and future directions. Antimicrobial resistance is a global health threat. Misuse and overuse of antimicrobials are the main drivers in developing drug-resistant bacteria. The emergence of the rapid global spread of multi-resistant bacteria requires urgent multisectoral action to generate novel treatment alternatives. Combination therapy offers the potential to exploit synergistic effects for enhanced antibacterial efficacy of drugs. Understanding the complex dynamics and kinetics of drug interactions in combination therapy is crucial. Therefore, this review outlines the current advances in antibiotic resistance's evolutionary and genetic dynamics in combination therapies-exposed bacteria. Moreover, we also discussed four pivotal future research areas to comprehend better the development of antibiotic resistance in bacteria treated with combination strategies. | 2024 | 38510041 |
| 8170 | 7 | 0.9876 | Exploring molecular mechanisms of drug resistance in bacteria and progressions in CRISPR/Cas9-based genome expurgation solutions. Antibiotic resistance in bacteria is a critical global health challenge, driven by molecular mechanisms such as genetic mutations, efflux pumps, enzymatic degradation of antibiotics, target site modifications, and biofilm formation. Horizontal gene transfer (HGT) further accelerates the spread of resistance genes across bacterial populations. These mechanisms contribute to the emergence of multidrug-resistant (MDR) strains, rendering conventional antibiotics ineffective. Recent advancements in CRISPR/Cas9-based genome editing offer innovative solutions to combat drug resistance. CRISPR/Cas9 enables precise targeting of resistance genes, facilitating their deletion or inactivation, and provides a potential method to eliminate resistance-carrying plasmids. Furthermore, phage-delivered CRISPR systems show promise in selectively killing resistant bacteria while leaving susceptible strains unaffected. Despite challenges such as efficient delivery, off-target effects, and potential bacterial resistance to CRISPR itself, ongoing research and technological innovations hold promise for using CRISPR-based antimicrobials to reverse bacterial drug resistance and develop more effective therapies. These abstract highlights the molecular mechanisms underlying bacterial drug resistance and explores how CRISPR/Cas9 technology could revolutionize treatment strategies against resistant pathogens. | 2025 | 40051841 |
| 9174 | 8 | 0.9876 | Developing Phage Therapy That Overcomes the Evolution of Bacterial Resistance. The global rise of antibiotic resistance in bacterial pathogens and the waning efficacy of antibiotics urge consideration of alternative antimicrobial strategies. Phage therapy is a classic approach where bacteriophages (bacteria-specific viruses) are used against bacterial infections, with many recent successes in personalized medicine treatment of intractable infections. However, a perpetual challenge for developing generalized phage therapy is the expectation that viruses will exert selection for target bacteria to deploy defenses against virus attack, causing evolution of phage resistance during patient treatment. Here we review the two main complementary strategies for mitigating bacterial resistance in phage therapy: minimizing the ability for bacterial populations to evolve phage resistance and driving (steering) evolution of phage-resistant bacteria toward clinically favorable outcomes. We discuss future research directions that might further address the phage-resistance problem, to foster widespread development and deployment of therapeutic phage strategies that outsmart evolved bacterial resistance in clinical settings. | 2023 | 37268007 |
| 8179 | 9 | 0.9875 | Nanotechnology as a Promising Approach to Combat Multidrug Resistant Bacteria: A Comprehensive Review and Future Perspectives. The wide spread of antibiotic resistance has been alarming in recent years and poses a serious global hazard to public health as it leads to millions of deaths all over the world. The wide spread of resistance and sharing resistance genes between different types of bacteria led to emergence of multidrug resistant (MDR) microorganisms. This problem is exacerbated when microorganisms create biofilms, which can boost bacterial resistance by up to 1000-fold and increase the emergence of MDR infections. The absence of novel and potent antimicrobial compounds is linked to the rise of multidrug resistance. This has sparked international efforts to develop new and improved antimicrobial agents as well as innovative and efficient techniques for antibiotic administration and targeting. There is an evolution in nanotechnology in recent years in treatment and prevention of the biofilm formation and MDR infection. The development of nanomaterial-based therapeutics, which could overcome current pathways linked to acquired drug resistance, is a hopeful strategy for treating difficult-to-treat bacterial infections. Additionally, nanoparticles' distinct size and physical characteristics enable them to target biofilms and treat resistant pathogens. This review highlights the current advances in nanotechnology to combat MDR and biofilm infection. In addition, it provides insight on development and mechanisms of antibiotic resistance, spread of MDR and XDR infection, and development of nanoparticles and mechanisms of their antibacterial activity. Moreover, this review considers the difference between free antibiotics and nanoantibiotics, and the synergistic effect of nanoantibiotics to combat planktonic bacteria, intracellular bacteria and biofilm. Finally, we will discuss the strength and limitations of the application of nanotechnology against bacterial infection and future perspectives. | 2023 | 36830949 |
| 8175 | 10 | 0.9875 | Role of Nanocarrier Systems in Drug Delivery for Overcoming Multi-Drug Resistance in Bacteria. Multidrug-resistant (MDR) bacteria have risen alarmingly in the last few decades, posing a serious threat to human health. The need for effective bacterial resistance treatment is urgent and unmet due to the rise in morbidity and mortality that has coincided with the prevalence of infections caused by MDR bacteria. Using its creative and unconventional methods, effective antibiotics for MDR bacteria could be developed using nanomedicine techniques. To combat microbial resistance, a number of strategies have been developed, including the use of natural bactericides, the introduction of fresh antibiotics, the application of combination therapy and the creation of NP-based antibiotic nanocarriers. The absence of novel antibacterial agents has worsened the situation for MDR bacteria. Ineffective antibiotics used to treat MDR bacteria also contribute to the bacteria's tolerance growing. Nanoparticles (NPs) are the most efficient method for eliminating MDR bacteria because they serve as both carriers of natural antibiotics and antimicrobials and active agents against bacteria. Additionally, surface engineering of nanocarriers has important benefits for focusing on and modifying a variety of resistance mechanisms. The use of nanocarrier systems in drug delivery for overcoming bacterial resistance is covered in this review along with various mechanisms of antibiotic resistance. | 2023 | 37480270 |
| 6656 | 11 | 0.9875 | Understanding the Evolution and Transmission Dynamics of Antibiotic Resistance Genes: A Comprehensive Review. Antibiotic resistance poses a formidable challenge to global public health, necessitating comprehensive understanding and strategic interventions. This review explores the evolution and transmission dynamics of antibiotic resistance genes, with a focus on Bangladesh. The indiscriminate use of antibiotics, compounded by substandard formulations and clinical misdiagnosis, fuels the emergence and spread of resistance in the country. Studies reveal high resistance rates among common pathogens, emphasizing the urgent need for targeted interventions and rational antibiotic use. Molecular assessments uncover a diverse array of antibiotic resistance genes in environmental reservoirs, highlighting the complex interplay between human activities and resistance dissemination. Horizontal gene transfer mechanisms, particularly plasmid-mediated conjugation, facilitate the exchange of resistance determinants among bacterial populations, driving the evolution of multidrug-resistant strains. The review discusses clinical implications, emphasizing the interconnectedness of environmental and clinical settings in resistance dynamics. Furthermore, bioinformatic and experimental evidence elucidates novel mechanisms of resistance gene transfer, underscoring the dynamic nature of resistance evolution. In conclusion, combating antibiotic resistance requires a multifaceted approach, integrating surveillance, stewardship, and innovative research to preserve the efficacy of antimicrobial agents and safeguard public health. | 2024 | 39113256 |
| 8162 | 12 | 0.9875 | Nanotechnology for Targeted Detection and Removal of Bacteria: Opportunities and Challenges. The emergence of nanotechnology has created unprecedented hopes for addressing several unmet industrial and clinical issues, including the growing threat so-termed "antibiotic resistance" in medicine. Over the last decade, nanotechnologies have demonstrated promising applications in the identification, discrimination, and removal of a wide range of pathogens. Here, recent insights into the field of bacterial nanotechnology are examined that can substantially improve the fundamental understanding of nanoparticle and bacteria interactions. A wide range of developed nanotechnology-based approaches for bacterial detection and removal together with biofilm eradication are summarized. The challenging effects of nanotechnologies on beneficial bacteria in the human body and environment and the mechanisms of bacterial resistance to nanotherapeutics are also reviewed. | 2021 | 34558234 |
| 6657 | 13 | 0.9874 | From Cure to Crisis: Understanding the Evolution of Antibiotic-Resistant Bacteria in Human Microbiota. The growing prevalence of antibiotic-resistant bacteria within the human microbiome has become a pressing global health crisis. While antibiotics have revolutionized medicine by significantly reducing mortality and enabling advanced medical interventions, their misuse and overuse have led to the emergence of resistant bacterial strains. Key resistance mechanisms include genetic mutations, horizontal gene transfer, and biofilm formation, with the human microbiota acting as a reservoir for antibiotic resistance genes (ARGs). Industrialization and environmental factors have exacerbated this issue, contributing to a rise in infections with multidrug-resistant (MDR) bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA) and carbapenem-resistant Enterobacteriaceae. These resistant pathogens compromise the effectiveness of essential treatments like surgical prophylaxis and chemotherapy, increase healthcare costs, and prolong hospital stays. This crisis highlights the need for a global One-Health approach, particularly in regions with weak regulatory frameworks. Innovative strategies, including next-generation sequencing (NGS) technologies, offer promising avenues for mitigating resistance. Addressing this challenge requires coordinated efforts, encompassing research, policymaking, public education, and antibiotic stewardship, to safeguard current antibiotics and foster the development of new therapeutic solutions. An integrated, multidimensional strategy is essential to tackle this escalating problem and ensure the sustainability of effective antimicrobial treatments. | 2025 | 39858487 |
| 2492 | 14 | 0.9874 | Mobile Tigecycline Resistance: An Emerging Health Catastrophe Requiring Urgent One Health Global Intervention. Mobile tigecycline resistance (MTR) threatens the clinical efficacy of the salvage antibiotic, tigecycline (TIG) used in treating deadly infections in humans caused by superbugs (multidrug-, extensively drug-, and pandrug-resistant bacteria), including carbapenem- and colistin-resistant bacteria. Currently, non-mobile tet(X) and mobile plasmid-mediated transmissible tet(X) and resistance-nodulation-division (RND) efflux pump tmexCD-toprJ genes, conferring high-level TIG (HLT) resistance have been detected in humans, animals, and environmental ecosystems. Given the increasing rate of development and spread of plasmid-mediated resistance against the two last-resort antibiotics, colistin (COL) and TIG, there is a need to alert the global community on the emergence and spread of plasmid-mediated HLT resistance and the need for nations, especially developing countries, to increase their antimicrobial stewardship. Justifiably, MTR spread projects One Health ramifications and portends a monumental threat to global public and animal health, which could lead to outrageous health and economic impact due to limited options for therapy. To delve more into this very important subject matter, this current work will discuss why MTR is an emerging health catastrophe requiring urgent One Health global intervention, which has been constructed as follows: (a) antimicrobial activity of TIG; (b) mechanism of TIG resistance; (c) distribution, reservoirs, and traits of MTR gene-harboring isolates; (d) causes of MTR development; (e) possible MTR gene transfer mode and One Health implication; and (f) MTR spread and mitigating strategies. | 2022 | 35979498 |
| 8172 | 15 | 0.9874 | From resistance to remedy: the role of clustered regularly interspaced short palindromic repeats system in combating antimicrobial resistance-a review. The growing challenge of antimicrobial resistance (AMR) poses a significant and increasing risk to public health worldwide, necessitating innovative strategies to restore the efficacy of antibiotics. The precise genome-editing abilities of the CRISPR-Cas system have made it a potent instrument for directly targeting and eliminating antibiotic resistance genes. This review explored the mechanisms and applications of CRISPR-Cas systems in combating AMR. The latest developments in CRISPR technology have broadened its potential use, encompassing programmable antibacterial agents and improved diagnostic methods for antibiotic-resistant infections. Nevertheless, several challenges must be overcome for clinical success, including the survival of resistant bacteria, generation of anti-CRISPR proteins that reduce effectiveness, and genetic modifications that change target sequences. Additionally, the efficacy of CRISPR-Cas systems differs across bacterial species, making their universal application challenging. After overcoming these challenges, CRISPR-Cas has the potential to revolutionize AMR treatment, restore antibiotic efficacy, and reshape infection control. | 2025 | 39404843 |
| 9218 | 16 | 0.9873 | CRISPR-Cas System: A New Dawn to Combat Antibiotic Resistance. Antimicrobial resistance (AMR) can potentially harm global public health. Horizontal gene transfer (HGT), which speeds up the emergence of AMR and increases the burden of drug resistance in mobile genetic elements (MGEs), is the primary method by which AMR genes are transferred across bacterial pathogens. New approaches are urgently needed to halt the spread of bacterial diseases and antibiotic resistance. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), an RNA-guided adaptive immune system, protects prokaryotes from foreign DNA like plasmids and phages. This approach may be essential in limiting horizontal gene transfer and halting the spread of antibiotic resistance. The CRISPR-Cas system has been crucial in identifying and understanding resistance mechanisms and developing novel therapeutic approaches. This review article investigates the CRISPR-Cas system's potential as a tool to combat bacterial AMR. Antibiotic-resistant bacteria can be targeted and eliminated by the CRISPR-Cas system. It has been proven to be an efficient method for removing carbapenem-resistant plasmids and regaining antibiotic susceptibility. The CRISPR-Cas system has enormous potential as a weapon against bacterial AMR. It precisely targets and eliminates antibiotic-resistant bacteria, facilitates resistance mechanism identification, and offers new possibilities in diagnostics and therapeutics. | 2024 | 38605260 |
| 9765 | 17 | 0.9872 | Daunorubicin resensitizes Gram-negative superbugs to the last-line antibiotics and prevents the transmission of antibiotic resistance. Although meropenem, colistin, and tigecycline are recognized as the last-line antibiotics for multidrug-resistant Gram-negative bacteria (MDR-GN), the emergence of mobile resistance genes such as bla(NDM), mcr, and tet(X) severely compromises their clinical effectiveness. Developing novel antibiotic adjuvants to restore the effectiveness of existing antibiotics provides a feasible approach to address this issue. Herein, we discover that a Food and Drug Administration (FDA)-approved drug daunorubicin (DNR) drastically potentiates the activity of last-resort antibiotics against MDR-GN pathogens and biofilm-producing bacteria. Furthermore, DNR effectively inhibits the evolution and spread of colistin and tigecycline resistance. Mechanistically, DNR and colistin combination exacerbates membrane disruption, induces DNA damage and the massive production of reactive oxygen species (ROS), ultimately leading to bacterial cell death. Importantly, DNR restores the effectiveness of colistin in Galleria mellonella and murine models of infection. Collectively, our findings provide a potential drug combination strategy for treating severe infections elicited by Gram-negative superbugs. | 2023 | 37235051 |
| 6616 | 18 | 0.9872 | The menace of colistin resistance across globe: Obstacles and opportunities in curbing its spread. Colistin-resistance in bacteria is a big concern for public health, since it is a last resort antibiotic to treat infectious diseases of multidrug resistant and carbapenem resistant Gram-negative pathogens in clinical settings. The emergence of colistin resistance in aquaculture and poultry settings has escalated the risks associated with colistin resistance in environment as well. The staggering number of reports pertaining to the rise of colistin resistance in bacteria from clinical and non-clinical settings is disconcerting. The co-existence of colistin resistant genes with other antibiotic resistant genes introduces new challenges in combatting antimicrobial resistance. Some countries have banned the manufacture, sale and distribution of colistin and its formulations for food producing animals. However, to tackle the issue of antimicrobial resistance, a one health approach initiative, inclusive of human, animal, and environmental health needs to be developed. Herein, we review the recent reports in colistin resistance in bacteria of clinical and non-clinical settings, deliberating on the new findings obtained regarding the development of colistin resistance. This review also discusses the initiatives implemented globally in mitigating colistin resistance, their strength and weakness. | 2023 | 36812837 |
| 8180 | 19 | 0.9872 | Harnessing Nanoparticles to Overcome Antimicrobial Resistance: Promises and Challenges. The rise of antimicrobial resistance (AMR) has become a serious global health issue that kills millions of people each year globally. AMR developed in bacteria is difficult to treat and poses a challenge to clinicians. Bacteria develop resistance through a variety of processes, including biofilm growth, targeted area alterations, and therapeutic drug alteration, prolonging the period they remain within cells, where antibiotics are useless at therapeutic levels. This rise in resistance is linked to increased illness and death, highlighting the urgent need for effective solutions to combat this growing challenge. Nanoparticles (NPs) offer unique solutions for fighting AMR bacteria. Being smaller in size with a high surface area, enhancing interaction with bacteria makes the NPs strong antibacterial agents against various infections. In this review, we have discussed the epidemiology and mechanism of AMR development. Furthermore, the role of nanoparticles as antibacterial agents, and their role in drug delivery has been addressed. Additionally, the potential, challenges, toxicity, and future prospects of nanoparticles as antibacterial agents against AMR pathogens have been discussed. The research work discussed in this review links with Sustainable Development Goal 3 (SDG-3), which aims to ensure disease-free lives and promote well-being for all ages. | 2025 | 39219123 |