ERYTHRAEA - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
50000.8472An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea. Erythromycin A, a clinically important polyketide antibiotic, is produced by the Gram-positive bacterium Saccharopolyspora erythraea. In an arrangement that seems to be generally true of antibiotic biosynthetic genes in Streptomyces and related bacteria like S. erythraea, the ery genes encoding the biosynthetic pathway to erythromycin are clustered around the gene (ermE) that confers self-resistance on S. erythraea. The aglycone core of erythromycin A is derived from one propionyl-CoA and six methylmalonyl-CoA units, which are incorporated head-to-tail into the growing polyketide chain, in a process similar to that of fatty-acid biosynthesis, to generate a macrolide intermediate, 6-deoxyerythronolide B. 6-Deoxyerythronolide B is converted into erythromycin A through the action of specific hydroxylases, glycosyltransferases and a methyltransferase. We report here the analysis of about 10 kilobases of DNA from S. erythraea, cloned by chromosome 'walking' outwards from the erythromycin-resistance determinant ermE, and previously shown to be essential for erythromycin biosynthesis. Partial sequencing of this region indicates that it encodes the synthase. Our results confirm this, and reveal a novel organization of the erythromycin-producing polyketide synthase, which provides further insight into the mechanism of chain assembly.19902234082
53010.8367Location of the genes for anthranilate synthase in Streptomyces venezuelae ISP5230: genetic mapping after integration of the cloned genes. The anthranilate synthase (trpEG) genes in Streptomyces venezuelae ISP5230 were located by allowing a segregationally unstable plasmid carrying cloned S. venezuelae trpEG DNA and a thiostrepton resistance (tsr) marker to integrate into the chromosome. The integrated tsr was mapped by conjugation and transduction to a location close to tyr-2, between arg-6 and trpA13. A genomic DNA fragment containing trpC from S. venezuelae ISP5230 was cloned by complementation of a trpC mutation in Streptomyces lividans. Evidence from restriction enzyme analysis of the cloned DNA fragments, from Southern hybridization using the cloned trp DNA as probes, and from cotransduction frequencies, placed trpEG at a distance of 12-45 kb from the trpCBA cluster. The overall arrangement of tryptophan biosynthesis genes in the S. venezuelae chromosome differs from that in other bacteria examined so far.19938515229
82320.8363Characterization of the prtA and prtB genes of Erwinia chrysanthemi EC16. Two tandem metalloprotease-encoding structural genes, prtA and prtB, were sequenced from Erwinia chrysanthemi EC16. These were highly homologous to previously reported genes from the same bacteria, as well as to three other metalloprotease-encoding genes from enteric bacteria. The three tandem prt structural genes from strain EC16 were closely linked to a cluster of genes previously found to be essential for extracellular secretion of the metalloproteases.19938224883
33130.8356MmpS4 promotes glycopeptidolipids biosynthesis and export in Mycobacterium smegmatis. The MmpS family (mycobacterial membrane protein small) includes over 100 small membrane proteins specific to the genus Mycobacterium that have not yet been studied experimentally. The genes encoding MmpS proteins are often associated with mmpL genes, which are homologous to the RND (resistance nodulation cell division) genes of Gram-negative bacteria that encode proteins functioning as multidrug efflux system. We showed by molecular genetics and biochemical analysis that MmpS4 in Mycobacterium smegmatis is required for the production and export of large amounts of cell surface glycolipids, but is dispensable for biosynthesis per se. A new specific and sensitive method utilizing single-chain antibodies against the surface-exposed glycolipids was developed to confirm that MmpS4 was dispensable for transport to the surface. Orthologous complementation demonstrated that the MmpS4 proteins are exchangeable, thus not specific to a defined lipid species. MmpS4 function requires the formation of a protein complex at the pole of the bacillus, which requires the extracytosolic C-terminal domain of MmpS4. We suggest that MmpS proteins facilitate lipid biosynthesis by acting as a scaffold for coupled biosynthesis and transport machinery.201021062372
81540.8349The sequence of the mer operon of pMER327/419 and transposon ends of pMER327/419, 330 and 05. Three different, independently isolated mercury-resistance-conferring plasmids, pMER327/419, pMER330 and pMER05, from cultures originating from the river Mersey (UK), contain identical regulatory merR genes and transposon ends. The mer determinant from pMER327/419 contains an additional potential ORF (ORF F) located between merP and merA when compared with the archetypal Tn501. Although these plasmids confer narrow-spectrum resistance (resistance to Hg2+, but not organomercurials) their merR genes encode a potential organomercurial-sensing protein. Transposition of the mer of pMER05 into plasmid RP4 was demonstrated and, as with Tn502 and Tn5053, insertion occurred at a specific region. The sequence of pMER05 is identical at the 'left' and 'right' termini and across merR to Tn5053, which was independently isolated from the chromosome of a Xanthomonas sp. bacteria from the Khaidarkan mercury mine in Kirgizia, former Soviet Union [Kholodii et al., J. Mol. Biol. 230 (1993a) 1103-1107]. The transpositional unit of pMER05 is, like that of Tn5053, bounded by DNA homologous to the imperfect 25-bp inverted repeats (IR) of the In2 integron, which brackets antibiotic-resistance cassettes in Tn21 subgroup transposons. At one end of the transposable element, and internal to the In2-like IR, is a 38-bp IR which closely resembles the IR that bounds Tn21.19948063107
52050.8347Respiratory chain components are required for peptidoglycan recognition protein-induced thiol depletion and killing in Bacillus subtilis and Escherichia coli. Mammalian peptidoglycan recognition proteins (PGRPs or PGLYRPs) kill bacteria through induction of synergistic oxidative, thiol, and metal stress. Tn-seq screening of Bacillus subtilis transposon insertion library revealed that mutants in the shikimate pathway of chorismate synthesis had high survival following PGLYRP4 treatment. Deletion mutants for these genes had decreased amounts of menaquinone (MK), increased resistance to killing, and attenuated depletion of thiols following PGLYRP4 treatment. These effects were reversed by MK or reproduced by inhibiting MK synthesis. Deletion of cytochrome aa(3)-600 or NADH dehydrogenase (NDH) genes also increased B. subtilis resistance to PGLYRP4-induced killing and attenuated thiol depletion. PGLYRP4 treatment also inhibited B. subtilis respiration. Similarly in Escherichia coli, deletion of ubiquinone (UQ) synthesis, formate dehydrogenases (FDH), NDH-1, or cytochrome bd-I genes attenuated PGLYRP4-induced thiol depletion. PGLYRP4-induced low level of cytoplasmic membrane depolarization in B. subtilis and E. coli was likely not responsible for thiol depletion. Thus, our results show that the respiratory electron transport chain components, cytochrome aa(3)-600, MK, and NDH in B. subtilis, and cytochrome bd-I, UQ, FDH-O, and NDH-1 in E. coli, are required for both PGLYRP4-induced killing and thiol depletion and indicate conservation of the PGLYRP4-induced thiol depletion and killing mechanisms in Gram-positive and Gram-negative bacteria.202133420211
51960.8342The Ruegeria pomeroyi acuI gene has a role in DMSP catabolism and resembles yhdH of E. coli and other bacteria in conferring resistance to acrylate. The Escherichia coli YhdH polypeptide is in the MDR012 sub-group of medium chain reductase/dehydrogenases, but its biological function was unknown and no phenotypes of YhdH(-) mutants had been described. We found that an E. coli strain with an insertional mutation in yhdH was hyper-sensitive to inhibitory effects of acrylate, and, to a lesser extent, to those of 3-hydroxypropionate. Close homologues of YhdH occur in many Bacterial taxa and at least two animals. The acrylate sensitivity of YhdH(-) mutants was corrected by the corresponding, cloned homologues from several bacteria. One such homologue is acuI, which has a role in acrylate degradation in marine bacteria that catabolise dimethylsulfoniopropionate (DMSP) an abundant anti-stress compound made by marine phytoplankton. The acuI genes of such bacteria are often linked to ddd genes that encode enzymes that cleave DMSP into acrylate plus dimethyl sulfide (DMS), even though these are in different polypeptide families, in unrelated bacteria. Furthermore, most strains of Roseobacters, a clade of abundant marine bacteria, cleave DMSP into acrylate plus DMS, and can also demethylate it, using DMSP demethylase. In most Roseobacters, the corresponding gene, dmdA, lies immediately upstream of acuI and in the model Roseobacter strain Ruegeria pomeroyi DSS-3, dmdA-acuI were co-regulated in response to the co-inducer, acrylate. These observations, together with findings by others that AcuI has acryloyl-CoA reductase activity, lead us to suggest that YdhH/AcuI enzymes protect cells against damaging effects of intracellular acryloyl-CoA, formed endogenously, and/or via catabolising exogenous acrylate. To provide "added protection" for bacteria that form acrylate from DMSP, acuI was recruited into clusters of genes involved in this conversion and, in the case of acuI and dmdA in the Roseobacters, their co-expression may underpin an interaction between the two routes of DMSP catabolism, whereby the acrylate product of DMSP lyases is a co-inducer for the demethylation pathway.201222563425
34470.8340Identification of genes in Rhizobium leguminosarum bv. trifolii whose products are homologues to a family of ATP-binding proteins. The specific interaction between rhizobia and their hosts requires many genes that influence both early and late steps in symbiosis. Three new genes, designated prsD, prsE (protein secretion) and orf3, were identified adjacent to the exo133 mutation in a cosmid carrying the genomic DNA of Rhizobium leguminosarum bv. trifolii TA1. The prsDE genes share significant homology to the genes encoding ABC transporter proteins PrtDE from Erwinia chrysanthemi and AprDE from Pseudomonas aeruginosa which export the proteases in these bacteria. PrsD shows at least five potential transmembrane hydrophobic regions and a large hydrophilic domain containing an ATP/GTP binding cassette. PrsE has only one potential transmembrane hydrophobic domain in the N-terminal part and is proposed to function as an accessory factor in the transport system. ORF3, like PrtF and AprF, has a typical N-terminal signal sequence but has no homology to these proteins. The insertion of a kanamycin resistance cassette into the prsD gene of the R. leguminosarum bv. trifolii TA1 wild-type strain created a mutant which produced a normal amount of exopolysaccharide but was not effective in the nodulation of clover plants.19979141701
52780.8336Characterization of the bagremycin biosynthetic gene cluster in Streptomyces sp. Tü 4128. Bagremycin A and bagremycin B isolated from Streptomyces sp. Tü 4128 have activities against Gram-positive bacteria, fungi and also have a weak antitumor activity, which make them have great potential for development of novel antibiotics. Here, we report a draft genome 8,424,112 bp in length of S. sp. Tü 4128 by Illumina Hiseq2000, and identify the bagremycins biosynthetic gene cluster (BGC) by bioinformatics analysis. The putative bagremycins BGC includes 16 open reading frames (ORFs) with the functions of biosynthesis, resistance and regulation. Disruptions of relative genes and HPLC analysis of bagremycins production demonstrated that not all the genes within the BGC are responsible for the biosynthesis of bagremycins. In addition, the biosynthetic pathways of bagremycins are proposed for deeper inquiries into their intriguing biosynthetic mechanism.201930526412
54990.8334Extracytoplasmic function sigma factor σ(D) confers resistance to environmental stress by enhancing mycolate synthesis and modifying peptidoglycan structures in Corynebacterium glutamicum. Mycolates are α-branched, β-hydroxylated, long-chain fatty acid specifically synthesized in bacteria in the suborder Corynebacterineae of the phylum Actinobacteria. They form an outer membrane, which functions as a permeability barrier and confers pathogenic mycobacteria to resistance to antibiotics. Although the mycolate biosynthetic pathway has been intensively studied, knowledge of transcriptional regulation of genes involved in this pathway is limited. Here, we report that the extracytoplasmic function sigma factor σ(D) is a key regulator of the mycolate synthetic genes in Corynebacterium glutamicum in the suborder. Chromatin immunoprecipitation with microarray analysis detected σ(D) -binding regions in the genome, establishing a consensus promoter sequence for σ(D) recognition. The σ(D) regulon comprised acyl-CoA carboxylase subunits, acyl-AMP ligase, polyketide synthase and mycolyltransferases; they were involved in mycolate synthesis. Indeed, deletion or overexpression of sigD encoding σ(D) modified the extractable mycolate amount. Immediately downstream of sigD, rsdA encoded anti-σ(D) and was under the control of a σ(D) -dependent promoter. Another σ(D) regulon member, l,d-transpeptidase, conferred lysozyme resistance. Thus, σ(D) modifies peptidoglycan cross-linking and enhances mycolate synthesis to provide resistance to environmental stress.201829148103
196100.8322A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti. Microbes tailor macromolecules and metabolism to overcome specific environmental challenges. Acetic acid bacteria perform the aerobic oxidation of ethanol to acetic acid and are generally resistant to high levels of these two membrane-permeable poisons. The citric acid cycle (CAC) is linked to acetic acid resistance in Acetobacter aceti by several observations, among them the oxidation of acetate to CO2 by highly resistant acetic acid bacteria and the previously unexplained role of A. aceti citrate synthase (AarA) in acetic acid resistance at a low pH. Here we assign specific biochemical roles to the other components of the A. aceti strain 1023 aarABC region. AarC is succinyl-coenzyme A (CoA):acetate CoA-transferase, which replaces succinyl-CoA synthetase in a variant CAC. This new bypass appears to reduce metabolic demand for free CoA, reliance upon nucleotide pools, and the likely effect of variable cytoplasmic pH upon CAC flux. The putative aarB gene is reassigned to SixA, a known activator of CAC flux. Carbon overflow pathways are triggered in many bacteria during metabolic limitation, which typically leads to the production and diffusive loss of acetate. Since acetate overflow is not feasible for A. aceti, a CO(2) loss strategy that allows acetic acid removal without substrate-level (de)phosphorylation may instead be employed. All three aar genes, therefore, support flux through a complete but unorthodox CAC that is needed to lower cytoplasmic acetate levels.200818502856
460110.8321Horizontal transfer of the photosynthesis gene cluster and operon rearrangement in purple bacteria. A 37-kb photosynthesis gene cluster was sequenced in a photosynthetic bacterium belonging to the beta subclass of purple bacteria (Proteobacteria), Rubrivivax gelatinosus. The cluster contained 12 bacteriochlorophyll biosynthesis genes (bch), 7 carotenoid biosynthesis genes (crt), structural genes for photosynthetic apparatuses (puf and puh), and some other related genes. The gene arrangement was markedly different from those of other purple photosynthetic bacteria, while two superoperonal structures, crtEF-bchCXYZ-puf and bchFNBHLM-lhaA-puhA, were conserved. Molecular phylogenetic analyses of these photosynthesis genes showed that the photosynthesis gene cluster of Rvi. gelatinosus was originated from those of the species belonging to the alpha subclass of purple bacteria. It was concluded that a horizontal transfer of the photosynthesis gene cluster from an ancestral species belonging to the alpha subclass to that of the beta subclass of purple bacteria had occurred and was followed by rearrangements of the operons in this cluster.200111343129
397120.8315PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Streptomycetes are high G+C Gram-positive, antibiotic-producing, mycelial soil bacteria. The 8.7-Mb Streptomyces coelicolor genome was previously sequenced by using an ordered library of Supercos-1 clones. Here, we describe an efficient procedure for creating precise gene replacements in the cosmid clones by using PCR targeting and lambda-Red-mediated recombination. The cloned Streptomyces genes are replaced with a cassette containing a selectable antibiotic resistance and oriT(RK2) for efficient transfer to Streptomyces by RP4-mediated intergeneric conjugation. Supercos-1 does not replicate in Streptomyces, but the clones readily undergo double-crossover recombination, thus creating gene replacements. The antibiotic resistance cassettes are flanked by yeast FLP recombinase target sequences for removal of the antibiotic resistance and oriT(RK2) to generate unmarked, nonpolar mutations. The technique has been used successfully by >20 researchers to mutate around 100 Streptomyces genes. As an example, we describe its application to the discovery of a gene involved in the production of geosmin, the ubiquitous odor of soil. The gene, Sco6073 (cyc2), codes for a protein with two sesquiterpene synthase domains, only one of which is required for geosmin biosynthesis, probably via a germacra-1 (10) E,5E-dien-11-ol intermediate generated by the sesquiterpene synthase from farnesyl pyrophosphate.200312563033
548130.8313Mammalian antioxidant protein complements alkylhydroperoxide reductase (ahpC) mutation in Escherichia coli. The MER5 [now called the Aop1 (antioxidant protein 1) gene] was cloned as a transiently expressed gene of murine erythroleukaemia (MEL) cell differentiation and its antisense expression inhibited differentiation of MEL cells. We found that the Aop1 gene shows significant nucleotide sequence similarity to the gene coding for the C22 subunit of Salmonella typhimurium alkylhydroperoxide reductase, which is also found in other bacteria, suggesting it functions as an antioxidant protein. Expression of the Aop1 gene product in E. coli deficient in the C22-subunit gene rescued resistance of the bacteria to alkylhydroperoxide. The human and mouse Aop1 genes are highly conserved, and they mapped to the regions syntenic between mouse and human chromosomes. Sequence comparisons with recently cloned mammalian Aop1 homologues suggest that these genes consist of a family that is responsible for regulation of cellular proliferation, differentiation and antioxidant functions.19957733872
369140.8313A gene fusion system using the aminoglycoside 3'-phosphotransferase gene of the kanamycin-resistance transposon Tn903: use in the yeast Kluyveromyces lactis and Saccharomyces cerevisiae. The aminoglycoside 3'-phosphotransferase type I (APHI)-coding gene of the bacterial transposon Tn903 confers resistance to kanamycin on bacteria and resistance to geneticin (G418) on many eukaryotes. We developed an APHI fusion system that can be used in the study of gene expression in these organisms, particularly in yeasts. The first 19 codons of the KmR (APHI) gene can be deleted, and replaced by other genes in a continuous reading frame, without loss of APH activity. Examples of vector constructions are given which are adapted to the yeast Kluyveromyces lactis transformation system. Their derivatives containing the 2 mu origin of replication can also be used in Saccharomyces cerevisiae.19882853096
6077150.8312Brytella acorum gen. nov., sp. nov., a novel acetic acid bacterium from sour beverages. Polyphasic taxonomic and comparative genomic analyses revealed that a series of lambic beer isolates including strain LMG 32668(T) and the kombucha isolate LMG 32879 represent a novel species among the acetic acid bacteria, with Acidomonas methanolica as the nearest phylogenomic neighbor with a valid name. Overall genomic relatedness indices and phylogenomic and physiological analyses revealed that this novel species was best classified in a novel genus for which we propose the name Brytella acorum gen. nov., sp. nov., with LMG 32668(T) (=CECT 30723(T)) as the type strain. The B. acorum genomes encode a complete but modified tricarboxylic acid cycle, and complete pentose phosphate, pyruvate oxidation and gluconeogenesis pathways. The absence of 6-phosphofructokinase which rendered the glycolysis pathway non-functional, and an energy metabolism that included both aerobic respiration and oxidative fermentation are typical metabolic characteristics of acetic acid bacteria. Neither genome encodes nitrogen fixation or nitrate reduction genes, but both genomes encode genes for the biosynthesis of a broad range of amino acids. Antibiotic resistance genes or virulence factors are absent.202337429096
123160.8312Genes for all metals--a bacterial view of the periodic table. The 1996 Thom Award Lecture. Bacterial chromosomes have genes for transport proteins for inorganic nutrient cations and oxyanions, such as NH4+, K+, Mg2+, Co2+, Fe3+, Mn2+, Zn2+ and other trace cations, and PO4(3-), SO4(2-) and less abundant oxyanions. Together these account for perhaps a few hundred genes in many bacteria. Bacterial plasmids encode resistance systems for toxic metal and metalloid ions including Ag+, AsO2-, AsO4(3-), Cd2+, Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, TeO3(2-), Tl+ and Zn2+. Most resistance systems function by energy-dependent efflux of toxic ions. A few involve enzymatic (mostly redox) transformations. Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. The Cd(2+)-resistance cation pump of Gram-positive bacteria is membrane P-type ATPase, which has been labeled with 32P from [gamma-32P]ATP and drives ATP-dependent Cd2+ (and Zn2+) transport by membrane vesicles. The genes defective in the human hereditary diseases of copper metabolism, Menkes syndrome and Wilson's disease, encode P-type ATPases that are similar to bacterial cadmium ATPases. The arsenic resistance system transports arsenite [As(III)], alternatively with the ArsB polypeptide functioning as a chemiosmotic efflux transporter or with two polypeptides, ArsB and ArsA, functioning as an ATPase. The third protein of the arsenic resistance system is an enzyme that reduces intracellular arsenate [As(V)] to arsenite [As(III)], the substrate of the efflux system. In Gram-negative cells, a three polypeptide complex functions as a chemiosmotic cation/protein exchanger to efflux Cd2+, Zn2+ and Co2+. This pump consists of an inner membrane (CzcA), an outer membrane (CzcC) and a membrane-spanning (CzcB) protein that function together.19989523453
9990170.8310Axe-Txe, a broad-spectrum proteic toxin-antitoxin system specified by a multidrug-resistant, clinical isolate of Enterococcus faecium. Enterococcal species of bacteria are now acknowledged as leading causes of bacteraemia and other serious nosocomial infections. However, surprisingly little is known about the molecular mechanisms that promote the segregational stability of antibiotic resistance and other plasmids in these bacteria. Plasmid pRUM (24 873 bp) is a multidrug resistance plasmid identified in a clinical isolate of Enterococcus faecium. A novel proteic-based toxin-antitoxin cassette identified on pRUM was demonstrated to be a functional segregational stability module in both its native host and evolutionarily diverse bacterial species. Induced expression of the toxin protein (Txe) of this system resulted in growth inhibition in Escherichia coli. The toxic effect of Txe was alleviated by co-expression of the antitoxin protein, Axe. Homologues of the axe and txe genes are present in the genomes of a diversity of Eubacteria. These homologues (yefM-yoeB) present in the E. coli chromosome function as a toxin-antitoxin mechanism, although the Axe and YefM antitoxin components demonstrate specificity for their cognate toxin proteins in vivo. Axe-Txe is one of the first functional proteic toxin-antitoxin systems to be accurately described for Gram-positive bacteria.200312603745
525180.8309New insights into the metabolic potential of the phototrophic purple bacterium Rhodopila globiformis DSM 161(T) from its draft genome sequence and evidence for a vanadium-dependent nitrogenase. Rhodopila globiformis: is the most acidophilic anaerobic anoxygenic phototrophic purple bacterium and was isolated from a warm acidic sulfur spring in Yellowstone Park. Its genome is larger than genomes of other phototrophic purple bacteria, containing 7248 Mb with a G + C content of 67.1% and 6749 protein coding and 53 RNA genes. The genome revealed some previously unknown properties such as the presence of two sets of structural genes pufLMC for the photosynthetic reaction center genes and two types of nitrogenases (Mo-Fe and V-Fe nitrogenase), capabilities of autotrophic carbon dioxide fixation and denitrification using nitrite. Rhodopila globiformis assimilates sulfate and utilizes the C1 carbon substrates CO and methanol and a number of organic compounds, in particular, sugars and aromatic compounds. It is among the few purple bacteria containing a large number of pyrroloquinoline quinone-dependent dehydrogenases. It has extended capacities to resist stress by heavy metals, demonstrates different resistance mechanisms to antibiotics, and employs several toxin/antitoxin systems.201829423563
531190.8308p-Aminobenzoic acid and chloramphenicol biosynthesis in Streptomyces venezuelae: gene sets for a key enzyme, 4-amino-4-deoxychorismate synthase. Amplification of sequences from Streptomyces venezuelae ISP5230 genomic DNA using PCR with primers based on conserved prokaryotic pabB sequences gave two main products. One matched pabAB, a locus previously identified in S. venezuelae. The second closely resembled the conserved pabB sequence consensus and hybridized with a 3.8 kb NcoI fragment of S. venezuelae ISP5230 genomic DNA. Cloning and sequence analysis of the 3.8 kb fragment detected three ORFs, and their deduced amino acid sequences were used in BLAST searches of the GenBank database. The ORF1 product was similar to PabB in other bacteria and to the PabB domain encoded by S. venezuelae pabAB. The ORF2 product resembled PabA of other bacteria. ORF3 was incomplete; its deduced partial amino acid sequence placed it in the MocR group of GntR-type transcriptional regulators. Introducing vectors containing the 3.8 kb NcoI fragment of S. venezuelae DNA into pabA and pabB mutants of Escherichia coli, or into the Streptomyces lividans pab mutant JG10, enhanced sulfanilamide resistance in the host strains. The increased resistance was attributed to expression of the pair of discrete translationally coupled p-aminobenzoic acid biosynthesis genes (designated pabB/pabA) cloned in the 3.8 kb fragment. These represent a second set of genes encoding 4-amino-4-deoxychorismate synthase in S. venezuelae ISP5230. In contrast to the fused pabAB set previously isolated from this species, they do not participate in chloramphenicol biosynthesis, but like pabAB they can be disrupted without affecting growth on minimal medium. The gene disruption results suggest that S. venezuelae may have a third set of genes encoding PABA synthase.200111495989