EQUIPMENT - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
366900.9904Detection of clinically relevant antimicrobial resistance determinants in warm-blooded marine animals in Livingston Island (South Shetland Islands, Antarctica): A field-based molecular genetics study. Molecular genetic studies of stools were performed to assess the spread of some clinically relevant antimicrobial resistance determinants (ARD) in a gentoo penguin (Pygoscelis papua) and an Antarctic fur seal (Arctocephalus gazella) on Livingston Island. Glycopeptide resistance genes (vanA/vanD and vanB) were detected in both fecal samples, while the penguin's one was also mecA-positive and bla(NDM)-positive. Because of the remoteness and the isolation of the sampling locations, the carriage of vancomycin-resistant Enterococcus spp., methicillin-resistant Staphylococcus aureus, and NDM-producing Enterobacterales or other gram-negative bacilli suggested an ocean pollution with antibiotic resistant bacteria (ARB). Additionally, due to the type of ARD we detected, our results are alarming, and they cannot be explained only with agricultural and/or aquacultural pollution. Even though the current study is a preliminary one, it also demonstrates the potential of the field genetics analyses carried out with minimal equipment as a reliable monitoring tool for pollution with ARB.202235597002
506810.9903Ultrasensitive Label-Free Detection of Unamplified Multidrug-Resistance Bacteria Genes with a Bimodal Waveguide Interferometric Biosensor. Infections by multidrug-resistant bacteria are becoming a major healthcare emergence with millions of reported cases every year and an increasing incidence of deaths. An advanced diagnostic platform able to directly detect and identify antimicrobial resistance in a faster way than conventional techniques could help in the adoption of early and accurate therapeutic interventions, limiting the actual negative impact on patient outcomes. With this objective, we have developed a new biosensor methodology using an ultrasensitive nanophotonic bimodal waveguide interferometer (BiMW), which allows a rapid and direct detection, without amplification, of two prevalent and clinically relevant Gram-negative antimicrobial resistance encoding sequences: the extended-spectrum betalactamase-encoding gene blaCTX-M-15 and the carbapenemase-encoding gene blaNDM-5 We demonstrate the extreme sensitivity and specificity of our biosensor methodology for the detection of both gene sequences. Our results show that the BiMW biosensor can be employed as an ultrasensitive (attomolar level) and specific diagnostic tool for rapidly (less than 30 min) identifying drug resistance. The BiMW nanobiosensor holds great promise as a powerful tool for the control and management of healthcare-associated infections by multidrug-resistant bacteria.202033086716
507320.9901Parallel Detection of the Unamplified Carbapenem Resistance Genes bla(NDM-1) and bla(OXA-1) Using a Plasmonic Nano-Biosensor with a Field-Portable DNA Extraction Method. Antimicrobial resistance (AMR) is a rapidly growing global concern resulting from the overuse of antibiotics in agricultural and clinical settings. The challenge is exacerbated by the lack of rapid surveillance for resistant bacteria in clinical, environmental, and food supply settings. The increasing resistance to carbapenems, an important sub-class of beta-lactam antibiotics, is a major concern in the healthcare community. Carbapenem resistance (CR) has been found in the environment and food supply chain, where it has the potential to spread to pathogens, animals, and humans through direct or indirect contact. Rapid detection for preventative and control measures should be developed. This study utilized a gold nanoparticle-based plasmonic biosensor for the parallel detection of the CR genes bla(NDM-1) and bla(OXA-1). To explore the field portability, DNA was extracted using two methods: a commercial extraction kit and a boiling method. The results were compared between the two methods using a spectrophotometer and a cellphone application for RGB values to quantify the visual results. The results showed that the boiling method of extraction was more effective than extraction with a commercial kit for this analysis. The parallel detection of unamplified genes extracted via the boiling method is novel. When combined with other portable testing equipment, the approach has the potential to be an inexpensive, rapid, and simple on-site CR gene detection protocol.202539997014
503830.9900Simple and quick detection of extended-spectrum β-lactamase and carbapenemase-encoding genes using isothermal nucleic acid amplification techniques. The spread of plasmid-mediated antibiotic-resistant bacteria must be controlled; to this end, developing kits for simple and rapid detection in food and clinical settings is desirable. This review describes the detection of antibiotic resistance genes in extended-spectrum β-lactamase (ESBL)- and carbapenemase-producing bacteria. Loop-mediated isothermal amplification (LAMP), a technique developed in Japan, is a useful diffusion amplification method that does not require equipment like thermal cyclers, and amplifies the target gene in 30 min at about 65℃. Although most reports targeting ESBL and carbapenemase genes are intended for clinical use, environmental and food samples have also been targeted. Recombinase polymerase amplification (RPA) has recently been developed; in RPA, the reaction proceeds under the human skin with reaction conditions of 30 min at 37℃. Detection of ESBL and carbapenemase-encoding genes in food and clinical samples using RPA has been reported in limited studies. However, research on RPA has just begun, and further development is expected.202338233166
504240.9899Multiplex loop-mediated isothermal amplification (multi-LAMP) assay for rapid detection of mcr-1 to mcr-5 in colistin-resistant bacteria. Purpose: The discovery of the plasmid-mediated colistin resistance genes, mcr, revealed a mechanism of transmission of colistin resistance, which is a major, global public health concern especially among individuals infected with carbapenem-resistant Gram-negative bacteria. To monitor the spread and epidemiology of mcr genes, a convenient and reliable method to detect mcr genes in clinical isolates is needed, especially in the primary care institutions. This study aimed to establish a restriction endonuclease-based multiplex loop-mediated isothermal amplification (multi-LAMP) assay to detect mcr genes (mcr-1 to mcr-5) harbored by colistin-resistant bacteria. Methods: A triple-LAMP assay for mcr-1, mcr-3, and mcr-4 and a double-LAMP assay for mcr-2 and mcr-5 were established. The sensitivity and specificity of the LAMP reactions were determined via electrophoresis and visual detection. Results: The sensitivity of the LAMP assay was 10-fold greater than that of PCR, with high specificity among the screened primers. Specific mcr genes were distinguished in accordance with band numbers and the fragment length of the digested LAMP amplification products. Furthermore, the LAMP assay was confirmed as a rapid and reliable diagnostic technique upon application for clinical samples, and the results were consistent with those of conventional PCR assay. Conclusion: The multi-LAMP assay is a potentially promising method to detect mcr genes and will, if implemented, help prevent infections by drug-resistant bacteria in primary-care hospitals due to rapid and reliable surveillance. To our knowledge, this is the first study to report the application of LAMP to detect mcr-2 to mcr-5 genes and the first time that multi-LAMP has been applied to detect mcr genes.201931308708
222550.9899Evaluation of the DNA microarray "AMR Direct Flow Chip Kit" for detection of antimicrobial resistance genes from Gram-positive and Gram-negative bacterial isolated colonies. INTRODUCTION: The AMR Direct Flow Chip assay allows the simultaneous detection of a large variety of antibiotic resistance genetic markers. To assess this kit's performance, we use isolated colonies as starting material. The assay has been approved by the European Economic Area as a suitable device for in vitro diagnosis (CE IVD) using clinical specimens. METHODS: A total of 210 bacterial isolates harbouring either one or more antimicrobial resistance genes including plasmid-encoded extended-spectrum β-lactamases (SHV, CTX-M) and carbapenemases (GES, SME, KPC, NMC/IMI, SIM, GIM, SPM, NDM, VIM, IMP, and OXA), mecA, vanA and vanB, and 30 controls were included. RESULTS: The assay displayed a sensitivity and specificity of 100% for all target genes included in the array. CONCLUSION: The AMR Direct Flow Chip Kit is an accurate assay for detecting genes which commonly confer resistance to β-lactams and vancomycin from isolated colonies in culture of Gram-positive and Gram-negative bacteria.201930857832
523660.9898Genome characterization of a multi-drug resistant Escherichia coli strain, L1PEag1, isolated from commercial cape gooseberry fruits (Physalis peruviana L.). INTRODUCTION: Foodborne infections, which are frequently linked to bacterial contamination, are a serious concern to public health on a global scale. Whether agricultural farming practices help spread genes linked to antibiotic resistance in bacteria associated with humans or animals is a controversial question. METHODS: This study applied a long-read Oxford Nanopore MinION-based sequencing to obtain the complete genome sequence of a multi-drug resistant Escherichia coli strain (L1PEag1), isolated from commercial cape gooseberry fruits (Physalis peruviana L.) in Ecuador. Using different genome analysis tools, the serotype, Multi Locus Sequence Typing (MLST), virulence genes, and antimicrobial resistance (AMR) genes of the L1PEag1 isolate were determined. Additionally, in vitro assays were performed to demonstrate functional genes. RESULTS: The complete genome sequence of the L1PEag1 isolate was assembled into a circular chromosome of 4825.722 Kbp and one plasmid of 3.561 Kbp. The L1PEag1 isolate belongs to the B2 phylogroup, sequence type ST1170, and O1:H4 serotype based on in silico genome analysis. The genome contains 4,473 genes, 88 tRNA, 8 5S rRNA, 7 16S rRNA, and 7 23S rRNA. The average GC content is 50.58%. The specific annotation consisted of 4,439 and 3,723 genes annotated with KEEG and COG respectively, 3 intact prophage regions, 23 genomic islands (GIs), and 4 insertion sequences (ISs) of the ISAs1 and IS630 families. The L1PEag1 isolate carries 25 virulence genes, and 4 perfect and 51 strict antibiotic resistant gene (ARG) regions based on VirulenceFinder and RGI annotation. Besides, the in vitro antibiotic profile indicated resistance to kanamycin (K30), azithromycin (AZM15), clindamycin (DA2), novobiocin (NV30), amikacin (AMK30), and other antibiotics. The L1PEag1 isolate was predicted as a human pathogen, matching 464 protein families (0.934 likelihood). CONCLUSION: Our work emphasizes the necessity of monitoring environmental antibiotic resistance, particularly in commercial settings to contribute to develop early mitigation techniques for dealing with resistance diffusion.202439104589
224170.9898Standard and real-time multiplex PCR methods for detection of trimethoprim resistance dfr genes in large collections of bacteria. Two multiplex PCR (mPCR) methods were developed to screen large collections of trimethoprim-resistant Escherichia coli isolates for the most prevalent resistance determinants. Five common integron-carried genes (dfrA1, dfrA5, dfrA7, dfrA12 and dfrA17) were selected as PCR targets. Primers and conditions for standard mPCRs and real-time mPCRs were selected and tested. Two protocols using essentially the same primer pairs were established. The standard mPCR protocol also included an internal control targeting the E. coli 16S rRNA gene. Both protocols proved to be sensitive and specific for detection of the five selected genes. Screening of three different collections of clinical urinary and blood isolates (n = 368) with the two multiplex methods revealed that the five dfr genes accounted for 75-86% of trimethoprim resistance. The standard mPCR is useful and accessible for most laboratories, while the real-time mPCR requires additional equipment and expensive reagents, but is very convenient for high-throughput screening of large collections of bacterial isolates.200717725650
523580.9898Draft genome sequences of rare Lelliottia nimipressuralis strain MEZLN61 and two Enterobacter kobei strains MEZEK193 and MEZEK194 carrying mobile colistin resistance gene mcr-9 isolated from wastewater in South Africa. OBJECTIVES: Antimicrobial-resistant bacteria of the order Enterobacterales are emerging threats to global public and animal health, leading to morbidity and mortality. The emergence of antimicrobial-resistant, livestock-associated pathogens is a great public health concern. The genera Enterobacter and Lelliottia are ubiquitous, facultatively anaerobic, motile, non-spore-forming, rod-shaped Gram-negative bacteria belonging to the Enterobacteriaceae family and include pathogens of public health importance. Here, we report the first draft genome sequences of a rare Lelliottia nimipressuralis strain MEZLN61 and two Enterobacter kobei strains MEZEK193 and MEZEK194 in Africa. METHODS: The bacteria were isolated from environmental wastewater samples. Bacteria were cultured on nutrient agar, and the pure cultures were subjected to whole-genome sequencing. Genomic DNA was sequenced using an Illumina MiSeq platform. Generated reads were trimmed and subjected to de novo assembly. The assembled contigs were analysed for virulence genes, antimicrobial resistance genes, and extra-chromosomal plasmids, and multilocus sequence typing was performed. To compare the sequenced strains with other, previously sequenced E. kobei and L. nimipressuralis strains, available raw read sequences were downloaded, and all sequence files were treated identically to generate core genome bootstrapped maximum likelihood phylogenetic trees. RESULTS: Whole-genome sequencing analyses identified strain MEZLN61 as L. nimipressuralis and strains MEZEK193 and MEZEK194 as E. kobei. MEZEK193 and MEZEK194 carried genes encoding resistance to fosfomycin (fosA), beta-lactam antibiotics (bla(ACT-9)), and colistin (mcr-9). Additionally, MEZEK193 harboured nine different virulence genes, while MEZEK194 harboured eleven different virulence genes. The phenotypic analysis showed that L. nimipressuralis strain MEZLN61 was susceptible to colistin (2 μg/mL), while E. kobei MEZEK193 (64 μg/mL) and MEZEK194 (32 μg/mL) were resistant to colistin. CONCLUSION: The genome sequences of strains L. nimipressuralis MEZLN6, E. kobei MEZEK193, and E. kobei MEZEK194 will serve as a reference point for molecular epidemiological studies of L. nimipressuralis and E. kobei in Africa. In addition, this study provides an in-depth analysis of the genomic structure and offers important information that helps clarify the pathogenesis and antimicrobial resistance of L. nimipressuralis and E. kobei. The detection of mcr-9, which is associated with very low-level colistin resistance in Enterobacter species, is alarming and may indicate the undetected dissemination of mcr genes in bacteria of the order Enterobacterales. Continuous monitoring and surveillance of the prevalence of mcr genes and their associated phenotypic changes in clinically important pathogens and environmentally associated bacteria is necessary to control and prevent the spread of colistin resistance.202336948496
506990.9898MC-PRPA-HLFIA Cascade Detection System for Point-of-Care Testing Pan-Drug-Resistant Genes in Urinary Tract Infection Samples. Recently, urinary tract infection (UTI) triggered by bacteria carrying pan-drug-resistant genes, including carbapenem resistance gene bla(NDM) and bla(KPC), colistin resistance gene mcr-1, and tet(X) for tigecycline resistance, have been reported, posing a serious challenge to the treatment of clinical UTI. Therefore, point-of-care (POC) detection of these genes in UTI samples without the need for pre-culturing is urgently needed. Based on PEG 200-enhanced recombinase polymerase amplification (RPA) and a refined Chelex-100 lysis method with HRP-catalyzed lateral flow immunoassay (LFIA), we developed an MCL-PRPA-HLFIA cascade assay system for detecting these genes in UTI samples. The refined Chelex-100 lysis method extracts target DNA from UTI samples in 20 min without high-speed centrifugation or pre-incubation of urine samples. Following optimization, the cascade detection system achieved an LOD of 10(2) CFU/mL with satisfactory specificity and could detect these genes in both simulated and actual UTI samples. It takes less than an hour to complete the process without the use of high-speed centrifuges or other specialized equipment, such as PCR amplifiers. The MCL-PRPA-HLFIA cascade assay system provides new ideas for the construction of rapid detection methods for pan-drug-resistant genes in clinical UTI samples and provides the necessary medication guidance for UTI treatment.202337047757
2348100.9897Characterization of Multidrug-Resistant Staphylococcus aureus Isolates and Comparison of Methods of Susceptibility to Vancomycin. S. aureus are among the main bacteria causing problems related to multidrug resistance in nosocomial infections. Therefore, it is necessary to carry out a reliable and rapid diagnosis for the identification of the bacteria and characterization of its susceptibility profile, especially vancomycin, which is an alternative treatment against multidrug-resistant (MDR) S. aureus. Thus, the goal of this study was to characterize isolates of S. aureus regarding the resistance and virulence and to check the susceptibility to vancomycin, through different methods, for comparative purposes. Seventeen antimicrobials were tested to assess the susceptibility profile. It was evaluated the presence of identification (nuc), resistance (mecA and blaZ), biofilm (icaA and icaD) and siderophore (sfaD and sbnD) genes. The susceptibility to vancomycin was evaluated by Minimum Inhibitory Concentration (MIC) by broth microdilution (BMD), E-test, commercial panel (Kit), and Phoenix equipment. Most S. aureus (93,33%) was classified as MDR. These isolates were 100% positive for nuc, mecA, icaA, icaD, and sfaD genes; 96.67% for sbnD and 33.33% for blaZ. In relation to BMD, all methods correctly classified the susceptibility of the isolates; however, regarding the exact MIC value for vancomycin, Phoenix showed agreement of 63.33%, E-test (33.33%) and Kit (26.66%). In conclusion, most of S. aureus was considered MDR. Also, they presented resistance, biofilm production, and siderophores genes, showing the pathogenic potential of these bacteria. Besides, the Phoenix test was considered the most effective, as it presents advantages, such as identification of the microorganism and a greater number of antimicrobials tested at a time.202236308600
1673110.9897Carbapenem-resistant bacteria on hand-held and hands-free electronic devices of healthcare workers and non-healthcare workers in Delhi, India. BACKGROUND: Monitoring sensitivity profiles of circulating hospital strains is a key activity of a hospital infection control policy. The hospital environment and equipment may be reservoirs for carbapenem-resistant bacteria. Mobile phones have been shown to be a potential source for the transmission of bacteria in the healthcare environment. METHODS: Bacteria were cultured from seven common electronic devices. These included touchpads, chargers, hands-free headphones/microphones, laptops, digital wristwatches and computer mice which were used by healthcare workers and non-healthcare workers including family members and patient attendants. The Gram-negative bacteria were further analysed for phenotypic and genotypic (bla (KPC), bla (NDM-1) genes) carbapenem resistance. RESULTS: 110 Gram-negative bacteria were isolated Mobile phones were found to be the most heavily contaminated devices and hands-free devices the least. 53.6% (n=59/110) Gram-negative bacteria were phenotypically carbapenem-resistant of which 36.37% (n=40) were metallo-β-lactamase positive. 40% (n=44/110) were genotypically resistant and 30% (n=33) were bla (NDM-1) gene positive. 9% (n=10) bacteria had both bla (NDM-1)and bla (KPC) genes. CONCLUSIONS: Carbapenem-resistant bacteria are widespread in India's hospital environment and present a challenge in healthcare. Electronic devices are a potential vehicle for the transmission of carbapenem-resistant bacteria. The results of the study support that hands-free electronic devices are less likely to be contaminated with carbapenem-resistant bacteria and that promoting the use of hands-free devices may help to reduce the spread of multidrug resistant bacteria in healthcare.202134647012
2214120.9897Development of multiplex recombinase polymerase amplification for the rapid detection of five carbapenemase (bla(KPC), bla(NDM), bla(OXA-48)-like, bla(IMP), and bla(VIM)) and 10 mcr (mcr-1 to mcr-10) genes in blood cultures. The emergence of plasmid-encoded carbapenemase and mobile colistin resistance (mcr) genes poses a significant challenge in controlling the spread of multidrug-resistant Gram-negative bacteria. Addressing this issue requires the development of rapid, accurate, and cost-effective tools for gene detection. For the first time, this study reports three multiplex recombinase polymerase amplification (RPA) assays, each designed to detect five resistance genes: carbapenemase (bla(KPC), bla(NDM), bla(OXA-48)-like, bla(IMP), and bla(VIM)), mcr-1 to mcr-5, and mcr-6 to mcr-10. Using agarose gel electrophoresis, all 15 target genes were successfully amplified by the three assays, demonstrating the potential of these assays for integration with rapid reporting platforms. To increase their applicability, the assays were combined with SYBR(Ⓡ) Green I for visual identification of all 15 target genes and with lateral flow immunoassays (LFIAs) for detection of two carbapenemase (bla(NDM) and bla(OXA-48)-like) and two mcr genes (mcr-1 and mcr-3) genes. Specificity testing showed that RPA-SYBR(Ⓡ) Green I and RPA-LFIAs produced no cross-reactivity among the target genes. The limit of detection for RPA-SYBR(Ⓡ) Green I, for all genes, ranged from 2 × 10(0) to 2 × 10(2) CFU/reaction, and for RPA-LFIAs from 2 × 10(0) to 2 × 10(3) CFU/reaction. The developed RPA-SYBR(Ⓡ) Green I and RPA-LFIAs successfully detected 15 and four target genes, from positive haemoculture bottles. These assays offer a promising approach for point-of-care testing. Providing a valuable tool for antimicrobial resistance surveillance and timely guidance for effective antibiotic intervention.202540618792
2216130.9897Ultrafast detection of β-lactamase resistance in Klebsiella pneumoniae from blood culture by nanopore sequencing. Aim: This study aimed to assess the ultra-fast method using MinION™ sequencing for rapid identification of β-lactamase-producing Klebsiella pneumoniae clinical isolates from positive blood cultures. Methods: Spiked-blood positive blood cultures were extracted using the ultra-fast method and automated DNA extraction for MinION sequencing. Raw reads were analyzed for β-lactamase resistance genes. Multilocus sequence typing and β-lactamase variant characterization were performed after assembly. Results: The ultra-fast method identified clinically relevant β-lactamase resistance genes in less than 1 h. Multilocus sequence typing and β-lactamase variant characterization required 3-6 h. Sequencing quality showed no direct correlation with pore number or DNA concentration. Conclusion: Nanopore sequencing, specifically the ultra-fast method, is promising for the rapid diagnosis of bloodstream infections, facilitating timely identification of multidrug-resistant bacteria in clinical samples.202337850345
5832140.9897New quadriplex PCR assay for detection of methicillin and mupirocin resistance and simultaneous discrimination of Staphylococcus aureus from coagulase-negative staphylococci. Major challenges in diagnostic molecular microbiology are to develop a simple assay to distinguish Staphylococcus aureus from the less virulent but clinically important coagulase-negative staphylococci (CoNS) and to simultaneously determine their antibiotic resistance profiles. Multiplex PCR assays have been developed for the detection of methicillin- and mupirocin-resistant S. aureus and CoNS but not for the simultaneous discrimination of S. aureus from CoNS. We designed a new set of Staphylococcus genus-specific primers and developed a novel quadriplex PCR assay targeting the 16S rRNA (Staphylococcus genus specific), nuc (S. aureus species specific), mecA (a determinant of methicillin resistance), and mupA (a determinant of mupirocin resistance) genes to identify most staphylococci, to discriminate S. aureus from CoNS and other bacteria, and to simultaneously detect methicillin and mupirocin resistance. Validation of the assay with 96 ATCC control strains and 323 previously characterized clinical isolates, including methicillin- and mupirocin-sensitive and -resistant S. aureus and CoNS isolates and other bacteria, demonstrated 100% sensitivity, specificity, and accuracy. This assay represents a simple, rapid, accurate, and reliable approach for the detection of methicillin- and mupirocin-resistant staphylococci and offers the hope of preventing their widespread dissemination through early and reliable detection.200415528678
4938150.9896Optical maps of plasmids as a proxy for clonal spread of MDR bacteria: a case study of an outbreak in a rural Ethiopian hospital. OBJECTIVES: MDR bacteria have become a prevailing health threat worldwide. We here aimed to use optical DNA mapping (ODM) as a rapid method to trace nosocomial spread of bacterial clones and gene elements. We believe that this method has the potential to be a tool of pivotal importance for MDR control. METHODS: Twenty-four Escherichia coli samples of ST410 from three different wards were collected at an Ethiopian hospital and their plasmids were analysed by ODM. Plasmids were specifically digested with Cas9 targeting the antibiotic resistance genes, stained by competitive binding and confined in nanochannels for imaging. The resulting intensity profiles (barcodes) for each plasmid were compared to identify potential clonal spread of resistant bacteria. RESULTS: ODM demonstrated that a large fraction of the patients carried bacteria with a plasmid of the same origin, carrying the ESBL gene blaCTX-M-15, suggesting clonal spread. The results correlate perfectly with core genome (cg)MLST data, where bacteria with the same plasmid also had very similar cgMLST profiles. CONCLUSIONS: ODM is a rapid discriminatory method for identifying plasmids and antibiotic resistance genes. Long-range deletions/insertions, which are challenging for short-read next-generation sequencing, can be easily identified and used to trace bacterial clonal spread. We propose that plasmid typing can be a useful tool to identify clonal spread of MDR bacteria. Furthermore, the simplicity of the method enables possible future application in low- and middle-income countries.202032653928
5834160.9896Real-Time PCR to Identify Staphylococci and Assay for Virulence from Blood. The genus Staphylococcus includes pathogenic and non-pathogenic facultative anaerobes. Due to the plethora of virulence factors encoded in its genome, the species Staphylococcus aureus is known to be the most pathogenic. S. aureus strains harboring genes encoding virulence and antibiotic resistance are of public health importance. In clinical samples, however, pathogenic S. aureus is often mixed with putatively less pathogenic coagulase-negative staphylococci (CoNS), both of which can harbor mecA, the genetic driver for staphylococcal methicillin-resistance. In this chapter, the detailed practical procedure for operating a real-time pentaplex PCR assay in blood cultures is described. The pentaplex real-time PCR assay simultaneously detects markers for the presence of bacteria (16S rRNA), coagulase-negative staphylococcus (cns), S. aureus (spa), Panton-Valentine leukocidin (pvl), and methicillin resistance (mecA).201728600770
5043170.9896Detection of Colistin Resistance in Escherichia coli by Use of the MALDI Biotyper Sirius Mass Spectrometry System. Polymyxin antibiotics are a last-line treatment for multidrug-resistant Gram-negative bacteria. However, the emergence of colistin resistance, including the spread of mobile mcr genes, necessitates the development of improved diagnostics for the detection of colistin-resistant organisms in hospital settings. The recently developed MALDIxin test enables detection of colistin resistance by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) in less than 15 min but is not optimized for the mass spectrometers commonly found in clinical microbiology laboratories. In this study, we adapted the MALDIxin test for the MALDI Biotyper Sirius MALDI-TOF MS system (Bruker Daltonics). We optimized the sample preparation protocol by using a set of 6 mobile colistin resistance (MCR) protein-expressing Escherichia coli clones and validated the assay with a collection of 40 E. coli clinical isolates, including 19 confirmed MCR protein producers, 12 colistin-resistant isolates that tested negative for commonly encountered mcr genes (i.e., likely chromosomally resistant isolates), and 9 polymyxin-susceptible isolates. We calculated polymyxin resistance ratio (PRR) values from the acquired spectra; PRR values of 0, indicating polymyxin susceptibility, were obtained for all colistin-susceptible E. coli isolates, whereas positive PRR values, indicating resistance to polymyxins, were obtained for all resistant strains, independent of the genetic basis of resistance. Thus, we report a preliminary feasibility study showing that an optimized version of the MALDIxin test adapted for the routine MALDI Biotyper Sirius system provides an unbiased, fast, reliable, cost-effective, and high-throughput way of detecting colistin resistance in clinical E. coli isolates.201931597744
1608180.9896Low prevalence of zoonotic multidrug-resistant bacteria in veterinarians in a country with prudent use of antimicrobials in animals. The occurrence of multidrug-resistant zoonotic bacteria in animals has been increasing worldwide. Working in close contact with livestock increases the risk of carriage of these bacteria. We investigated the occurrence of extended-spectrum beta-lactamase (ESBL) and plasmidic AmpC beta-lactamase producing Enterobacteriaceae (ESBL/pAmpC-PE) and livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) in Finnish veterinarians (n = 320). In addition to microbiological samples, background information was collected. Bacterial whole genome sequencing was performed to deduce sequence types (STs), spa types and resistance genes of the isolates. In total, 3.0% (9/297) of the veterinarians carried ESBL producing Escherichia coli, with one ESBL producing E. coli isolate producing also AmpC. Seven different STs, sequences of several different plasmid groups as well as several different bla(ESBL/pAmpC) genes existed in different combinations. No carbapenemase or colistin resistance genes were detected. MRSA was detected in 0.3% (1/320) of the samples. The strain belonged to LA-MRSA clonal complex (CC) 398 (ST398, spa type 011, lacking Panton-Valentine leukocidin genes). In conclusion, this study shows low carriage of multidrug-resistant zoonotic bacteria in Finnish veterinarians. However, finding LA-MRSA for the first time in a sample from a veterinarian in a country with prudent use of animal antimicrobials and regarding the recent rise of LA-MRSA on Finnish pig farms, a strong recommendation to protect people working in close contact with animals carrying LA-MRSA CC398 is given. Further studies are needed to explain why the prevalence of LA-MRSA in veterinarians is lower in Finland than in other European countries.201931232511
2403190.9896Characterization of coagulase-negative staphylococci and macrococci isolated from cheese in Germany. Cheese, especially ripened varieties, harbor a very complex and heterogeneous microbiota. In addition to the desired microorganisms (starter cultures) added during cheese production, potentially harmful bacteria may also enter the production chain. Regarding the latter, the focus of this study was on coagulase-negative staphylococci (CNS) and Macrococcuscaseolyticus. Both are known to harbor a variety of genes coding for antibiotic resistance, including mecA, mecB, mecC, and mecD. Coagulase-negative staphylococci or macrococci carrying such genes or other virulence factors should not be present in cheese. Cheese samples (101 in total) were collected from retail sources. Coagulase-negative staphylococci and M. caseolyticus were isolated utilizing selective agars, and species were identified by phenotypical tests and partial sequencing of the sodA gene. The results allowed identification of 53 CNS strains and 19 M. caseolyticus strains. Among the CNS, 11 isolates of Staphylococcus saprophyticus and one Staphylococcus epidermidis isolate were obtained. Both species are potential human pathogens and may thus adversely affect the safety of these food products. Screening for antimicrobial resistance was performed by application of disc diffusion tests, a gradient strip-test, and 14 different PCR tests. Evidence for methicillin resistance (by either positive disc diffusion assay for cefoxitin or by mec PCR) was found in CNS isolates and M. caseolyticus (9 isolates each). Regarding other virulence factors, no genetic determinants for coagulase or the most common staphylococcal enterotoxins sea, seb, sec, sed, and see were detected in any of the CNS or M. caseolyticus isolates by PCR testing. In conclusion, the presence of facultatively pathogenic CNS and carriers of genes for antibiotic resistance in both groups of microorganisms, especially mec genes, and the respective food safety issues need further evaluation and surveillance.202235965117