# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1257 | 0 | 0.9898 | Antimicrobial Susceptibility Pattern in the Bacteria Isolated from Surgical Site Infection: Emphasis on Staphylococcus Aureus; Yasuj City, Southwest Iran. BACKGROUND: Surgical site infections (SSIs) in surgical wards remains the most common cause of postoperative complications and realistically is the third most common origin of healthcare-related conditions. Staphylococcus aureus is undoubtedly the most common bacteria causing SSIs. The current study aimed at investigating the antimicrobial susceptibility pattern in bacteria isolated from SSIs, evaluation of tetracycline resistance genes, and SCCmec typing in S. aureus isolates isolated from patients with SSIs from 2018 to 2019 in Yasuj, Kohgiluyeh, and Boyer-Ahmad Province, Iran. METHODS: This study diligently investigated 240 potential patients. Antimicrobial susceptibility testing was performed properly by the disk diffusion method. For the final confirmation of isolated bacteria, PCR was used. The presence of tet genes and SCCmec typing was carried out by multiplex PCR. RESULTS: The results showed that the most common isolated pathogens included S. aureus, E. coli, P. aeruginosa, Coagulase-negative Staphylococci, and K. pneumonia in 58.8%, 19.8%, 9.2%, 6.8% and 5.4% of cases, respectively. The majority of the Gram positive isolates were resistant against penicillin (86%) and Gram negative were resistant against ciprofloxacin (75.6%). In isolates of Staphylococcus aureus, the mecA gene was detected in 63.6% of isolates. The predominant SCCmec types were type III (59.1%) and type I (18.4%). The tetK and tetM genes were detected in 80.7% and 71.9% of the S. aureus isolates, respectively. There was a statistically significant difference between tet genes (tetK and tetM) from the viewpoint of resistance to tetracycline (p = 0.024). CONCLUSIONS: According to the results of the current study, it is recommended to administer vancomycin, amikacin, and imipenem in Yasuj to treat SSIs. | 2021 | 33616327 |
| 1267 | 1 | 0.9893 | Detection and characterization of methicillin-resistant and susceptible coagulase-negative staphylococci in milk from cows with clinical mastitis in Tunisia. OBJECTIVES: This study investigated prevalence of methicillin-resistant (MR) and methicillin-susceptible (MS) coagulase-negative staphylococci (CNS) and the implicated mechanisms of resistance and virulence in milk of mastitis cows. In addition, the presence of SCCmec type was analyzed in MR Staphylococcus epidermidis (MRSE). RESULTS: Three hundred milk samples from cows with clinical mastitis were obtained from 30 dairy farms in different regions of Tunisia. Sixty-eight of the 300 tested samples contained CNS strains. Various CNS species were identified, with Staphylococcus xylosus being the most frequently found (40%) followed by Staphylococcus warneri (12%). The mecA gene was present in 14 of 20 MR-CNS isolates. All of them were lacking the mecC gene. The SCCmecIVa was identified in four MRSE isolates. Most of CNS isolates showed penicillin resistance (70.6%) and 58.3% of them carried the blaZ gene. MR-CNS isolates (n = 20) showed resistance to erythromycin, tetracycline and trimethoprim-sulfametoxazole harboring different resistance genes such us erm(B), erm(T), erm(C), mph(C) or msr(A), tet(K) and dfr(A). However, a lower percentage of resistance was observed among 48 MS-CNS isolates: erythromycin (8.3%), tetracycline (6.2%), streptomycin (6.2%), clindamycin (6.2%), and trimethoprim-sulfametoxazole (2%). The Inu(B) gene was detected in one Staphylococcus xylosus strain that showed clindamycin resistance. The virulence gene tsst-1 was observed in one MR-CNS strain. DISCUSSION: Coagulase-negative staphylococci containing a diversity of antimicrobial resistance genes are frequently detected in milk of mastitis cows. This fact emphasizes the importance of identifying CNS when an intramammary infection is present because of the potential risk of lateral transfer of resistant genes among staphylococcal species and other pathogenic bacteria. | 2018 | 30077662 |
| 1261 | 2 | 0.9891 | Antibiotic Resistance Genes, Virulence Factors, and Biofilm Formation in Coagulase-Negative Staphylococcus spp. Isolates from European Hakes (Merluccius merluccius, L.) Caught in the Northeast Atlantic Ocean. The indiscriminate use of antibiotics has contributed to the dissemination of multiresistant bacteria, which represents a public health concern. The aim of this work was to characterize 27 coagulase-negative staphylococci (CoNS) isolated from eight wild Northeast Atlantic hakes (Merluccius merluccius, L.) and taxonomically identified as Staphylococcus epidermidis (n = 16), Staphylococcus saprophyticus (n = 4), Staphylococcus hominis (n = 3), Staphylococcus pasteuri (n = 2), Staphylococcus edaphicus (n = 1), and Staphylococcus capitis (n = 1). Biofilm formation was evaluated with a microtiter assay, antibiotic susceptibility testing was performed using the disk diffusion method, and antibiotic resistance and virulence determinants were detected by PCR. Our results showed that all staphylococci produced biofilms and that 92.6% of the isolates were resistant to at least one antibiotic, mainly penicillin (88.8%), fusidic acid (40.7%), and erythromycin (37%). The penicillin resistance gene (blaZ) was detected in 66.6% (18) of the isolates, of which 10 also carried resistance genes to macrolides and lincosamides (mphC, msr(A/B), lnuA, or vgaA), 4 to fusidic acid (fusB), and 3 to trimethoprim-sulfamethoxazole (dfrA). At least one virulence gene (scn, hla, SCCmecIII, and/or SCCmecV) was detected in 48% of the isolates. This study suggests that wild European hake destined for human consumption could act as a vector of CoNS carrying antibiotic resistance genes and/or virulence factors. | 2023 | 38133330 |
| 1258 | 3 | 0.9889 | Occurrence of antimicrobial resistance and antimicrobial resistance genes in methicillin-resistant Staphylococcus aureus isolated from healthy rabbits. BACKGROUND AND AIM: Methicillin-resistant globally, Staphylococcus aureus (MRSA) is a major cause of disease in both humans and animals. Several studies have documented the presence of MRSA in healthy and infected animals. However, there is less information on MRSA occurrence in exotic pets, especially healthy rabbits. This study aimed to look into the antimicrobial resistance profile, hidden antimicrobial-resistant genes in isolated bacteria, and to estimate prevalence of MRSA in healthy rabbits. MATERIALS AND METHODS: Two-hundreds and eighteen samples, including 42 eyes, 44 ears, 44 oral, 44 ventral thoracic, and 44 perineal swabs, were taken from 44 healthy rabbits that visited the Prasu-Arthorn Animal Hospital, in Nakornpathom, Thailand, from January 2015 to March 2016. The traditional methods of Gram stain, mannitol fermentation, hemolysis on blood agar, catalase test, and coagulase production were used to confirm the presence of Staphylococcus aureus in all specimens. All bacterial isolates were determined by antimicrobial susceptibility test by the disk diffusion method. The polymerase chain reaction was used to identify the antimicrobial-resistant genes (blaZ, mecA, aacA-aphD, msrA, tetK, gyrA, grlA, and dfrG) in isolates of MRSA with a cefoxitin-resistant phenotype. RESULTS: From 218 specimens, 185 S. aureus were isolated, with the majority of these being found in the oral cavity (29.73%) and ventral thoracic area (22.7%), respectively. Forty-seven (25.41%) MRSAs were found in S. aureus isolates, with the majority of these being found in the perineum (16, 34.04%) and ventral thoracic area (13, 27.66%) specimens. Among MRSAs, 29 (61.7%) isolates were multidrug-resistant (MDR) strains. Most of MRSA isolates were resistant to penicillin (100%), followed by ceftriaxone (44.68%) and azithromycin (44.68%). In addition, these bacteria contained the most drug-resistance genes, blaZ (47.83%), followed by gyrA (36.17%) and tetK (23.4%). CONCLUSION: This study revealed that MRSA could be found even in healthy rabbits. Some MRSAs strains were MDR-MRSA, which means that when an infection occurs, the available antibiotics were not effective in treating it. To prevent the spread of MDR-MRSA from pets to owners, it may be helpful to educate owners about effective prevention and hygiene measures. | 2022 | 36590129 |
| 1264 | 4 | 0.9886 | Characterization of mannitol-fermenting methicillin-resistant staphylococci isolated from pigs in Nigeria. This study was conducted to determine the species distribution, antimicrobial resistance pheno- and genotypes and virulence traits of mannitol-positive methicillin-resistant staphylococci (MRS) isolated from pigs in Nsukka agricultural zone, Nigeria. Twenty mannitol-positive methicillin-resistant coagulase-negative staphylococcal (MRCoNS) strains harboring the mecA gene were detected among the 64 Staphylococcus isolates from 291 pigs. A total of 4 species were identified among the MRCoNS isolates, namely, Staphylococcus sciuri (10 strains), Staphylococcus lentus (6 strains), Staphylococcus cohnii (3 strains) and Staphylococcus haemolyticus (one strain). All MRCoNS isolates were multidrug-resistant. In addition to β-lactams, the strains were resistant to fusidic acid (85%), tetracycline (75%), streptomycin (65%), ciprofloxacin (65%), and trimethoprim/sulphamethoxazole (60%). In addition to the mecA and blaZ genes, other antimicrobial resistance genes detected were tet(K), tet(M), tet(L), erm(B), erm(C), aacA-aphD, aphA3, str, dfrK, dfrG, cat pC221, and cat pC223. Thirteen isolates were found to be ciprofloxacin-resistant, and all harbored a Ser84Leu mutation within the QRDR of the GyrA protein, with 3 isolates showing 2 extra substitutions, Ser98Ile and Arg100Lys (one strain) and Glu88Asp and Asp96Thr (2 strains). A phylogenetic tree of the QRDR nucleotide sequences in the gyrA gene revealed a high nucleotide diversity, with several major clusters not associated with the bacterial species. Our study highlights the possibility of transfer of mecA and other antimicrobial resistance genes from MRCoNS to pathogenic bacteria, which is a serious public health and veterinary concern. | 2015 | 26413075 |
| 1265 | 5 | 0.9886 | Coagulase-negative staphylococci (CoNS) isolated from ready-to-eat food of animal origin--phenotypic and genotypic antibiotic resistance. The aim of this work was to study the pheno- and genotypical antimicrobial resistance profile of coagulase negative staphylococci (CoNS) isolated from 146 ready-to-eat food of animal origin (cheeses, cured meats, sausages, smoked fishes). 58 strains were isolated, they were classified as Staphylococcus xylosus (n = 29), Staphylococcus epidermidis (n = 16); Staphylococcus lentus (n = 7); Staphylococcus saprophyticus (n = 4); Staphylococcus hyicus (n = 1) and Staphylococcus simulans (n = 1) by phenotypic and genotypic methods. Isolates were tested for resistance to erythromycin, clindamycin, gentamicin, cefoxitin, norfloxacin, ciprofloxacin, tetracycline, tigecycline, rifampicin, nitrofurantoin, linezolid, trimetoprim, sulphamethoxazole/trimethoprim, chloramphenicol, quinupristin/dalfopristin by the disk diffusion method. PCR was used for the detection of antibiotic resistance genes encoding: methicillin resistance--mecA; macrolide resistance--erm(A), erm(B), erm(C), mrs(A/B); efflux proteins tet(K) and tet(L) and ribosomal protection proteins tet(M). For all the tet(M)-positive isolates the presence of conjugative transposons of the Tn916-Tn1545 family was determined. Most of the isolates were resistant to cefoxitin (41.3%) followed by clindamycin (36.2%), tigecycline (24.1%), rifampicin (17.2%) and erythromycin (13.8%). 32.2% staphylococcal isolates were multidrug resistant (MDR). All methicillin resistant staphylococci harboured mecA gene. Isolates, phenotypic resistant to tetracycline, harboured at least one tetracycline resistance determinant on which tet(M) was most frequent. All of the isolates positive for tet(M) genes were positive for the Tn916-Tn1545 -like integrase family gene. In the erythromycin-resistant isolates, the macrolide resistance genes erm(C) or msr(A/B) were present. Although coagulase-negative staphylococci are not classical food poisoning bacteria, its presence in food could be of public health significance due to the possible spread of antibiotic resistance. | 2015 | 25475289 |
| 1266 | 6 | 0.9886 | Characterization of methicillin-resistant coagulase-negative staphylococci in milk from cows with mastitis in Brazil. Staphylococci are one of the most prevalent microorganisms in bovine mastitis. Staphylococcus spp. are widespread in the environment, and can infect animals and humans as opportunistic pathogens. The objective of this study was to determine the frequency of methicillin-resistance (MR) among coagulase-negative staphylococci (CoNS) previously obtained from milk of mastitic cows in Brazil and to characterize the antimicrobial resistance phenotype/genotype and the SCCmec type of MRCoNS isolates. Identification of MRCoNS was based on both biochemical and molecular methods. Susceptibility testing for eleven antimicrobials was performed by disk-diffusion agar. Antimicrobial resistance genes and SCCmec were investigated by specific PCRs. Twenty-six MRCoNS were detected (20 % of total CoNS), obtained from 24 animals, and were identified as follows: S. epidermidis (7 isolates), S. chromogenes (7), S. warneri (6), S. hyicus (5) and S. simulans (1). All MRCoNS isolates carried mecA while the mecC gene was not detected in any CoNS. The SCCmec IVa was demonstrated in nine MRCoNS, while the remaining 17 isolates harbored non-typeable SCCmec cassettes. In addition to oxacillin and cefoxitin resistance, MRCoNS showed resistance to tetracycline (n = 7), streptomycin (n = 6), tobramycin (n = 6), and gentamicin (n = 4), and harbored the genes tet(K) (n = 7), str (n = 3), ant(4') (n = 6) and aac(6')-aph(2″) (n = 4), respectively. In addition, seven strains showed intermediate resistance to clindamycin and two to streptomycin, of which two harboured the lnu(B) and lsa(E) genes and two the aad(E) gene, respectively. One isolate presented intermediate erythromycin and clindamycin resistance and harbored an erm(C) gene with an uncommon 89-bp deletion rendering a premature stop codon. MRCoNS can be implicated in mastitis of cows and they constitute a reservoir of resistance genes that can be transferred to other pathogenic bacteria. | 2014 | 24817534 |
| 2352 | 7 | 0.9883 | Phenotypic and Molecular Detection of Biofilm Formation in Methicillin-Resistant Staphylococcus Aureus Isolated from Different Clinical Sources in Erbil City. BACKGROUND: Staphylococcus aureus is an important causative pathogen. The production of biofilms is an important factor and makes these bacteria resistant to antimicrobial therapy. OBJECTIVES: the current study aimed to assess the prevalence of resistance to antibacterial agents and to evaluate the phenotypic and genotypic characterization of biofilm formation among S. aureus strains. METHODS: This study included 50 isolates of Methicillin-resistant S. aureus (MRSA) and Methicillin-Susceptible S. aureus (MSSA). S. aureus was identified by molecular and conventional methods, and antimicrobial resistance was tested with a disc diffusion method. The biofilm formation was performed through the Microtiter plate method. Strains were subjected to PCR to determine the presence of nuc, mecA, icaA, icaB, icaC, and icaD genes. RESULTS: Of the 50 S. aureus isolates, 32(64%) and 18(36%) were MRSA and MSSA, respectively. A large number of MRSA and MSSA isolates showed resistance to Penicillin and Azithromycin, and a lower number of MRSA and MSSA isolates showed resistance to Amikacin Gentamicin. None of the isolates was resistant to Vancomycin. The MRSA strains had significantly higher resistance against antibiotics than MSSA strains (P = 0.0154). All isolates (MRSA and MSSA) were able to produce biofilm with levels ranging from strong (31.25 %), (16.6%) to moderate (53.12%), (50%) to weak (15.6%), (33.3%) respectively. The MRSA strains had a significantly higher biofilm formation ability than the MSSA strains (P = 0.0079). The biofilm-encoding genes were detected among isolates with different frequencies. The majority of S. aureus isolates, 42 (84%), were positive for the icaA. The prevalence rates of the icaB, icaC and icaD genes were found to be 37 (74%), 40 (80%) and 41 (82%), respectively. CONCLUSIONS: The prevalence of biofilm encoding genes associated with multidrug resistance in S. aureus strains is high. Therefore, identifying epidemiology, molecular characteristics, and biofilm management of S. aureus infection would be helpful. | 2023 | 36908866 |
| 1255 | 8 | 0.9883 | Emergence of quinupristin/dalfopristin resistance among livestock-associated Staphylococcus aureus ST9 clinical isolates. Quinupristin/dalfopristin (Q/D) is a valuable alternative to vancomycin for the treatment of meticillin-resistant Staphylococcus aureus (MRSA) infections. However, not long after Q/D was approved, bacteria with resistance to this newer antimicrobial agent were reported. To investigate the prevalence of Q/D resistance, a total of 1476 non-duplicate S. aureus isolates, including 775 MRSA, from a Chinese tertiary hospital were selected randomly from 2003 to 2013. Of the 775 MRSA, 3 (0.4%) were resistant to Q/D. All meticillin-susceptible S. aureus were susceptible to Q/D. The prevalence of Q/D resistance among S. aureus was 0.2% (3/1476). The three isolates with Q/D resistance had the same antimicrobial resistance profile, except for cefaclor and chloramphenicol. All three Q/D-resistant MRSA were positive for five streptogramin B resistance genes (ermA, ermB, ermC, msrA and msrB) and two streptogramin A resistance genes (vatC and vgaA) as determined by PCR and DNA sequencing. MRSA WZ1031 belonged to ST9-MRSA-SCCmecV-t899, whilst MRSA WZ414 and WZ480 belonged to ST9-MRSA-SCCmecNT(non-typeable)-t899. ST9 has been reported predominantly in livestock-associated (LA) MRSA in some Asian countries. The three patients with these MRSA isolates were not livestock handlers and did not keep close contact with livestock. The origin of these important LA-MRSA isolates causing human infections is not known. Taken together, Q/D resistance, which was caused by a combination of ermA-ermB-ermC-msrA-msrB-vatC-vgaA, was first found among S. aureus clinical isolates in China. The present study is the first report of the emergence of human infections caused by ST9 LA-MRSA isolates with Q/D resistance. | 2014 | 25218154 |
| 2367 | 9 | 0.9883 | Vancomycin resistant Streptococcus equi subsp. equi isolated from equines suffering from respiratory manifestation in Egypt. BACKGROUND AND AIM: Upper respiratory tract infections are common in horses and can be caused by a variety of pathogens, mainly Streptococcus equi subsp. equi, which are a significant equine pathogen causing major health issues as well as financial losses to the equine industry. This study aimed to determine the prevalence of Streptococcal bacteria in equines in Egypt, and characterize vancomycin-resistant S. equi subsp. equi phenotypically and genotypically. MATERIALS AND METHODS: S. equi subsp. equi was isolated from internal nares of horses. All strains were confirmed by polymerase chain reaction-based detection of Streptococcus genus-specific 16S rRNA, sodA and seeI genes. Antibiotic susceptibility was determined phenotypically using the disk diffusion method. Genotypic detection of antibiotic resistance genes was performed by analyzing as b-lactamase resistance (blaZ), tetracycline resistance (tetK), vancomycin resistance (vanA), and chloramphenicol resistance (fexA). RESULTS: Eight streptococcal isolates were confirmed as S. equi subsp. equi. The genotypic characterization of antibiotic resistance showed resistance to vanA and tetK, with a frequency of 87.5% and 12.5%, respectively, while the frequency of sensitivity was 100% for blaz gene and fexA gene. CONCLUSION: In this study, we assessed vancomycin-resistant S. equi subsp. equi from equines suffering from respiratory manifestation in Egypt. | 2021 | 34475702 |
| 2379 | 10 | 0.9883 | Virulence and Antimicrobial Resistance in Canine Staphylococcus spp. Isolates. Dogs are reservoirs of different Staphylococcus species, but at the same time, they could develop several clinical forms caused by these bacteria. The aim of the present investigation was to characterize 50 clinical Staphylococcus isolates cultured from sick dogs. Bacterial species determination, hemolysins, protease, lipase, gelatinase, slime, and biofilm production, presence of virulence genes (lukS/F-PV, eta, etb, tsst, icaA, and icaD), methicillin resistance, and antimicrobial resistance were investigated. Most isolates (52%) were Staphylococcus pseudointermedius, but 20% and 8% belonged to Staphylococcusxylosus and Staphylococcus chromogenes, respectively. Gelatinase, biofilm, and slime production were very common characters among the investigated strains with 80%, 86%, and 76% positive isolates, respectively. Virulence genes were detected in a very small number of the tested strains. A percentage of 14% of isolates were mecA-positive and phenotypically-resistant to methicillin. Multi-drug resistance was detected in 76% of tested staphylococci; in particular, high levels of resistance were detected for ampicillin, amoxicillin, clindamycin, and erythromycin. In conclusion, although staphylococci are considered to be opportunistic bacteria, the obtained data showed that dogs may be infected by Staphylococcus strains with important virulence characteristics and a high antimicrobial resistance. | 2021 | 33801518 |
| 1254 | 11 | 0.9882 | Genetic diversity and antimicrobial resistance of Staphylococcus aureus from recurrent tonsillitis in children. The aim of this study was to analyze the prevalence of Staphylococcus aureus in the tonsils of children subjected tonsillectomy due to recurrent tonsilitis and to determine the spa types of the pathogens, carriage of virulence genes and antimicrobial resistance profiles. The study included 73 tonsillectomized children. Bacteria, including S. aureus were isolated from tonsillar surface prior to tonsillectomy, recovered from tonsillar core at the time of the surgery, and from posterior pharynx 2-4 weeks after the procedure. Staphylococcus aureus isolates were compared by spa typing, tested for antimicrobial susceptibility and for the presence of superantigenic toxin genes (sea-seu, eta, etb, tst, lukS/lukF-PV) by multiplex polymerase chain reaction. Seventy-three patients (mean 7.1 ± 4.1 years, 61.6% male) were assessed. The most commonly isolated bacteria were S. aureus. The largest proportion of staphylococcal isolates originated from tonsillar core (63%), followed by tonsillar surface (45.1%) and posterior pharynx in tonsillectomized children (18.2%, p = 0.007). Five (6.3%) isolates were identified as MRSA (mecA-positive). Up to 67.5% of the isolates synthesized penicillinases (blaZ-positive isolates), and 8.8% displayed MLS(B) resistance. The superantigenic toxin genes were detected in more than half of examined isolates (56.3%). spa types t091, t084, and t002, and clonal complexes (CCs) CC7, CC45, and CC30 turned out to be most common. Staphylococcus aureus associated with RT in children showed pathogenicity potential and considerable genetic diversity, and no clones were found to be specific for this condition although further studies are needed. | 2020 | 31692060 |
| 2378 | 12 | 0.9882 | Molecular Detection and Characterization of the mecA and nuc Genes From Staphylococcus Species (S. aureus, S. pseudintermedius, and S. schleiferi) Isolated From Dogs Suffering Superficial Pyoderma and Their Antimicrobial Resistance Profiles. Canine superficial pyoderma (CSP) is a bacterial infection secondary to several skin diseases of the dog. Staphylococcus pseudintermedius, which is a commensal bacterium of the dog's skin, is the leading agent found in dogs affected by CSP, which can progress to deep pyoderma. It is also of clinical significance because S. pseudintermedius strains carry antimicrobial resistance genes, mainly the mecA gene. In this descriptive longitudinal study, molecular characterization of bacterial isolates from dogs affected by CSP was performed in addition to phenotyping, antimicrobial profiling, and assessment of resistance carriage status. Fifty dogs (24 females and 26 males) attending the CES University Veterinary Teaching Hospital were included in the study. CSP was confirmed according to clinical signs and cytological examination. Swabs were taken from active skin lesions for bacterial culture, and phenotyping and antimicrobial resistance profiles were assessed using API-Staph phenotyping and the Kirby-Bauer method, respectively. We also performed molecular detection and characterization of the mecA and nuc encoding gene of coagulase-positive Staphylococci. The mecA gene frequency was established by qPCR amplification of a 131bp gene fragment. Data were evaluated by descriptive statistics. Erythema, peeling, pruritus, and alopecia were the predominant symptoms (72, 56, and 46%, respectively). We isolated bacteria compatible with Staphylococcus species from all samples tested. API phenotyping showed 83.1 to 97.8% compatibility with S. pseudintermedius. PCR-genotyping resulted in 15, 3, and 1 isolates positive for S. pseudintermedius, S. aureus, and S. schleiferi, respectively. Isolated strains showed high susceptibility to Imipenem, Ampicillin/Sulbactam, and Rifampicin (100, 94, and 92%, respectively). The highest resistance was against Vancomycin and Trimethoprim/Sulfamethoxazole (98 and 74%, respectively). S. pseudintermedius, S. aureus, and S. schleiferi isolates were cloned and shared 96% sequence homology. Finally, we found 62% carriage status of the mecA gene in isolates of CSP patients, although only 36% of the isolates were methicillin-resistant. Identification of three Staphylococcus species causing CSP, high-level resistance against conventional antimicrobials, and carriage of the mecA gene highlight the importance of performing molecular characterization of bacteria causing dermatological conditions in dogs. | 2020 | 32793641 |
| 2404 | 13 | 0.9882 | Prevalence of the Antibiotic Resistance Genes in Coagulase-Positive-and Negative-Staphylococcus in Chicken Meat Retailed to Consumers. The use of antibiotics in farm management (growing crops and raising animals) has become a major area of concern. Its implications is the consequent emergence of antibiotic resistant bacteria (ARB) and accordingly their access into the human food chain with passage of antibiotic resistance genes (ARG) to the normal human intestinal microbiota and hence to other pathogenic bacteria causative human disease. Therefore, we pursued in this study to unravel the frequency and the quinolone resistance determining region, mecA and cfr genes of methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), methicillin-resistant coagulase-negative staphylococci (MRCNS) and methicillin-susceptible coagulase-negative staphylococci (MSCNS) isolated from the retail trade of ready-to-eat raw chicken meat samples collected during 1 year and sold across the Great Cairo area. The 50 Staphylococcus isolated from retail raw chicken meat were analyzed for their antibiotic resistance phenotypic profile on 12 antibiotics (penicillin, oxacillin, methicillin, ampicillin-sulbactam, erythromycin, tetracycline, clindamycin, gentamicin, ciprofloxacin, chloramphenicol, sulfamethoxazole-trimethoprim, and vancomycin) and their endorsement of the quinolone resistance determining region, mecA and cfr genes. The isolation results revealed 50 isolates, CPS (14) and CNS (36), representing ten species (S. aureus, S. hyicus, S. epidermedius, S. lugdunensis, S. haemolyticus, S. hominus, S. schleiferi, S. cohnii, S. intermedius, and S. lentus). Twenty seven isolates were methicillin-resistant. Out of the characterized 50 staphylococcal isolates, three were MRSA but only 2/3 carried the mecA gene. The ARG that bestows resistance to quinolones, β-lactams, macrolides, lincosamides, and streptogramin B [MLS((B))] in MRSA and MR-CNS were perceived. According to the available literature, the present investigation was a unique endeavor into the identification of the quinolone-resistance-determining-regions, the identification of MRSA and MR-CNS from retail chicken meat in Egypt. In addition, these isolates might indicate the promulgation of methicillin, oxacillin and vancomycin resistance in the community and imply food safety hazards. | 2016 | 27920760 |
| 2376 | 14 | 0.9881 | Molecular characterization and antimicrobial susceptibility of methicillin-resistant staphylococcus aureus isolates from clinical samples and asymptomatic nasal carriers in Istanbul (Turkey). BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) has been a widespread problem in Turkish hospitals. AIMS: The aim of this study was to investigate the staphylococcal toxin genes of the clinical and nasal MRSA isolates, and their antibiotic resistance profiles. MATERIALS AND METHODS: Isolation of nasal and clinical bacteria was done following standard microbiological methods. The presence of antimicrobial resistance genes (mec A, pvl, tsst-1, and SEs genes) was determined using the real-time polymerase chain reaction (PCR) assay. RESULTS: Among nasal MRSA isolates, 66.7% were toxigenic. The distribution of genes was as follows: pvl 26.7%, tsst-1 3.3%, and SEs 36.7%. Therefore, the nasal MRSA isolates had a rate of 23.3% multidrug resistance (MDR) pattern to the non-beta-lactams antibiotics. All (100%) clinical MRSA isolates were found to be toxigenic. The distribution of genes was as follows; pvl 10%, tsst-1 6.7%, and SEs 100%. The clinical MRSA isolates had a rate of 60% MDR. CONCLUSIONS: Following detection of pvl, tsst-1, and SEs among nasal and clinical MRSA isolates, and the presence of high antimicrobial resistance, the spread of these strains may be an additional factor contributing to the emergence of community-acquired (CA)-MRSA and hospital-acquired (HA)-MRSA. This study is the first to determine the resistance to linezolid and tigecycline in both nasal and clinical MRSA isolates, for the first time in Turkey. All nasal and clinical MRSA isolates were uniformly susceptible to vancomycin and quinupristin-dalfopristin. Our findings show that MRSA infections in Turkey can be empirically treated with vancomycin and quinupristin-dalfopristin based on the lack of demonstrable resistance to these drugs. | 2021 | 34290175 |
| 1483 | 15 | 0.9881 | Clinical Evaluation of the iCubate iC-GPC Assay for Detection of Gram-Positive Bacteria and Resistance Markers from Positive Blood Cultures. The iC-GPC Assay (iCubate, Huntsville, AL) is a qualitative multiplex test for the detection of five of the most common Gram-positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Enterococcus faecalis, and Enterococcus faecium) responsible for bacterial bloodstream infections, performed directly from positive blood cultures. The assay also detects the presence of the mecA, vanA, and vanB resistance determinants. This study comparatively evaluated the performance of the iC-GPC Assay against the Verigene Gram-positive blood culture (BC-GP) assay (Luminex Corp., Austin, TX) for 1,134 patient blood culture specimens positive for Gram-positive cocci. The iC-GPC Assay had an overall percent agreement with the BC-GP assay of 95.5%. Discordant specimens were further analyzed by PCR and a bidirectional sequencing method. The results indicate that the iC-GPC Assay together with the iCubate system is an accurate and reliable tool for the detection of the five most common Gram-positive bacteria and their resistance markers responsible for bloodstream infections. | 2018 | 29899000 |
| 2380 | 16 | 0.9881 | Red foxes (Vulpes vulpes) as a specific and underappreciated reservoir of resistant and virulent coagulase-positive Staphylococcus spp. strains. The aim of the study was to analyze the presence of coagulase-positive Staphylococcus in swabs collected from red foxes and to characterize the drug resistance and virulence of these bacteria. In total, 415 rectal and oral swabs were collected, and coagulase-positive strains of S. pseudintermedius (n = 104) and S. aureus (n = 27) were identified using multiplex-PCR and MALDI TOF MS. Subsequent analyses showed the highest phenotypic resistance of the strains to penicillin (16.8%) and tetracycline (30.5%) confirmed by the presence of the blaZ, tetM, and tetK genes. Slightly lower resistance to erythromycin (6.9%), clindamycin (9.2%), gentamicin, streptogramins, rifampicin, nitrofurantoin, and sulphamethoxazol/trimetophrim was exhibited by single strains. Several virulence genes in a few different combinations were detected in S. aureus; LukE-LukD, and seB were the most frequent genes (37%), LukE-LukD, seB, and seC were detected in 11% of the strains, and PVL, etA, etB, and tst genes were present in two or single strains. The results of our research have confirmed that the red fox is an underestimated reservoir of coagulase-positive Staphylococcus strains, with approximately 50% of carriers of at least one resistance gene. In turn, 88.8% of the S. aureus strains had one or more virulence genes; therefore, this species of wildlife animals should be monitored as part of epidemiological surveillance. | 2024 | 38113638 |
| 2189 | 17 | 0.9880 | High prevalence of Panton-Valentine Leucocidin (PVL) toxin carrying MRSA and multidrug resistant gram negative bacteria in late onset neonatal sepsis indicate nosocomial spread in a Pakistani tertiary care hospital. BACKGROUND: Neonatal sepsis has high incidence with significant mortality and morbidity rates in Pakistan. We investigated common etiological patterns of neonatal sepsis at a tertiary care setup. METHODS: 90 pus and blood, gram negative and gram positive bacterial isolates were analyzed for virulence and antibiotic resistance gene profiling using PCR and disc diffusion methods. RESULTS: Staphylococcus aureus showed strong association with neonatal sepsis (43 %) followed by Citrobacter freundii (21 %), Pseudomonas aeruginosa (13 %), Escherichia coli (15 %) and Salmonella enterica (8 %). Molecular typing of E. coli isolates depicted high prevalence of the virulent F and B2 phylogroups, with 4 hypervirulent phylogroup G isolates. 76.9 % S. aureus isolates showed presence of Luk-PV, encoding for Panton-valentine leucocidin (PVL) toxin with majority also carrying MecA gene and classified as methicillin resistant S. aureus (MRSA). ecpA, papC, fimH and traT virulence genes were detected in E. coli and Salmonella isolates. 47 % Citrobacter freundii isolates carried the shiga like toxin SltII B. Antimicrobial resistance profiling depicted common resistance to cephalosporins, beta lactams and fluoroquinolones. CONCLUSION: Presence of PVL carrying MRSA and multidrug resistant gram negative bacteria, all isolated from late onset sepsis neonates indicate a predominant nosocomial transmission pattern which may complicate management of the disease in NICU setups. | 2023 | 36621204 |
| 1263 | 18 | 0.9880 | Antimicrobial Resistance and Antimicrobial Activity of Staphylococcus lugdunensis Obtained from Two Spanish Hospitals. Staphylococcus lugdunensis is a coagulase-negative-staphylococci (CoNS) that lately has gained special attention in public health as a human pathogen and also as a bacteriocin-producer bacteria. In this study, we characterized 56 S. lugdunensis isolates recovered from human samples in two Spanish hospitals. Antimicrobial susceptibility testing was performed and antimicrobial resistance and virulence genotypes were determined. Antimicrobial activity (AA) production was evaluated by the spot-on-lawn method against 37 indicator bacteria, including multidrug-resistant (MDR) isolates, and the presence of the lugD gene coding for lugdunin bacteriocin was analyzed by PCR. The antibiotic resistance detected was as follows (% resistance/genes detected): penicillin (44.6%/blaZ), oxacillin (1.8%/mecA on SCCmec-V), erythromycin-clindamycin inducible (7.1%/erm(C), msrA), tetracycline (5.3%/tetK), gentamicin and/or tobramycin (3.6%/ant(4')-Ia, acc(6')-aph(2″)), and fosfomycin (21.4%). A MDR phenotype was detected in 5% of isolates. Twenty-one of the S. lugdunensis isolates showed susceptibility to all 20 antibiotics tested (37.5%). The screening for AA revealed 23 antimicrobial producer (AP) isolates with relevant inhibition against coagulase-positive-staphylococci (CoPS), including both methicillin-susceptible and -resistant S. aureus. The lugD gene was detected in 84% of the 56 S. lugdunensis isolates. All of the AP S. lugdunensis isolates (n = 23) carried the lugD gene and it was also detected in 24 of the non-AP isolates, suggesting different gene expression levels. One of the AP isolates stood out due to its high antimicrobial activity against more than 70% of the indicator bacteria tested, so it will be further characterized at genomic and proteomic level. | 2022 | 35893538 |
| 5385 | 19 | 0.9880 | Environmental heterogeneity of Staphylococcus species from alkaline fermented foods and associated toxins and antimicrobial resistance genetic elements. Different samples of three products including Bikalga and Soumbala from Burkina Faso (West Africa) and Ntoba Mbodi from Congo-Brazzaville (Central Africa) were evaluated. The bacteria (400) were phenotyped and genotypically characterized by Rep-PCR, PFGE, 16S rRNA and rpoB gene sequencing and spa typing. Their PFGE profiles were compared with those of 12,000 isolates in the Center for Disease Control (CDC, USA) database. They were screened for the production of enterotoxins, susceptibility to 19 antimicrobials, presence of 12 staphylococcal toxin and 38 AMR genes and the ability to transfer erythromycin and tetracycline resistance genes to Enterococcus faecalis JH2-2. Fifteen coagulase negative (CoNS) and positive (CoPS) species characterized by 25 Rep-PCR/PFGE clusters were identified: Staphylococcus arlettae, S. aureus, S. cohnii, S. epidermidis, S. gallinarum, S. haemolyticus, S. hominis, S. pasteuri, S. condimenti, S. piscifermentans, S. saprophyticus, S. sciuri, S. simulans, S. warneri and Macrococcus caseolyticus. Five species were specific to Soumbala, four to Bikalga and four to Ntoba Mbodi. Two clusters of S. gallinarum and three of S. sciuri were particular to Burkina Faso. The S. aureus isolates exhibited a spa type t355 and their PFGE profiles did not match any in the CDC database. Bacteria from the same cluster displayed similar AMR and toxin phenotypes and genotypes, whereas clusters peculiar to a product or a location generated distinct profiles. The toxin genes screened were not detected and the bacteria did not produce the staphylococcal enterotoxins A, B, C and D. AMR genes including blazA, cat501, dfr(A), dfr(G), mecA, mecA1, msr(A) and tet(K) were identified in CoNS and CoPS. Conjugation experiments produced JH2-2 isolates that acquired resistance to erythromycin and tetracycline, but no gene transfer was revealed by PCR. The investigation of the heterogeneity of Staphylococcus species from alkaline fermented foods, their relationship with clinical and environmental isolates and their safety in relation to antimicrobial resistance (AMR) and toxin production is anticipated to contribute to determining the importance of staphylococci in alkaline fermented foods, especially in relation to the safety of the consumers. | 2019 | 31670141 |